105. R. Cao, D. Bhattacharya, J. Hou, J. Cheng. DeepQA: Improving the Estimation of Single Protein Model Quality with Deep Belief Networks. BMC Bioinformatics, accepted, 2016. [at BMC Bioinformatics]
104. B. Adhikari, J. Nowotny, D. Bhattacharya, J. Hou, J. Cheng. ConEVA: a Toolbox fr Comprehensive Assessment of Protein Contacts. BMC Bioinformatics, accepted, 2016. [at BMC Bioinformatics]
103. H. Li, Q. Lyu, J. Cheng. A Template-Based Protein Structure Reconstruction Method Using Deep
Autoencoder Learning. Journal of Proteomics and Bioinformatics, accepted, 2016. [PDF]
102. T. Trieu, J. Cheng. 3D Genome Structure Modeling by Lorentzian Objective Function. Nucleic Acids Research, accepted, 2016.
[at NAR]
101. R. Cao, B. Adhikari, D. Bhattacharya, M. Sun, J. Hou, J. Cheng. QAcon: Single Model Quality Assessment Using Protein Structural and Contact Information with Machine Learning Techniques. Bioinformatics, accepted, 2016. [at PubMed]
100. H. Song, Y. Lu, Z. Qu, V.V. Mossine, M.B. Martin, J. Hou, J. Cui, B.A. Peculis, T.P. Mawhinney, J. Cheng, C.M. Greenlief, K. Fritsche, F.J. Schmidt, R.B. Walter, D.B. Lubahn, G.Y. Sun, Z. Gu. Effects of aged garlic extract and FruArg on gene expression and signaling pathways in lipopolysaccharide-activated microglial cells. Scientific Reports. 6:35323, 2016. [at Scientific Reports]
99. B. Adhikari, T. Tuan, J. Cheng. Chromosome3D: Reconstructing Three-Dimensional Chromosomal Structures from Hi-C Interaction Frequency Data using Distance Geometry Simulated Annealing. BMC Genomics, 17:886, 2016. [at BMC Genomics]
98. Jiang Y, Oron TR, Clark WT, Bankapur AR, D'Andrea D, Lepore R, Funk CS, Kahanda I, Verspoor KM, Ben-Hur A, Koo da CE, Penfold-Brown D, Shasha D, Youngs N, Bonneau R, Lin A, Sahraeian SM, Martelli PL, Profiti G, Casadio R, Cao R, Zhong Z, Cheng J, Altenhoff A, Skunca N, Dessimoz C, Dogan T, Hakala K, Kaewphan S, Mehryary F, Salakoski T, Ginter F, Fang H, Smithers B, Oates M, Gough J, Törönen P, Koskinen P, Holm L, Chen CT, Hsu WL, Bryson K, Cozzetto D, Minneci F, Jones DT, Chapman S, Bkc D, Khan IK, Kihara D, Ofer D, Rappoport N, Stern A, Cibrian-Uhalte E, Denny P, Foulger RE, Hieta R, Legge D, Lovering RC, Magrane M, Melidoni AN, Mutowo-Meullenet P, Pichler K, Shypitsyna A, Li B, Zakeri P, ElShal S, Tranchevent LC, Das S, Dawson NL, Lee D, Lees JG, Sillitoe I, Bhat P, Nepusz T, Romero AE, Sasidharan R, Yang H, Paccanaro A, Gillis J, Sedeño-Cortés AE, Pavlidis P, Feng S, Cejuela JM, Goldberg T, Hamp T, Richter L, Salamov A, Gabaldon T, Marcet-Houben M, Supek F, Gong Q, Ning W, Zhou Y, Tian W, Falda M, Fontana P, Lavezzo E, Toppo S, Ferrari C, Giollo M, Piovesan D, Tosatto SC, Del Pozo A, Fernández JM, Maietta P, Valencia A, Tress ML, Benso A, Di Carlo S, Politano G, Savino A, Rehman HU, Re M, Mesiti M, Valentini G, Bargsten JW, van Dijk AD, Gemovic B, Glisic S, Perovic V, Veljkovic V, Veljkovic N, Almeida-E-Silva DC, Vencio RZ, Sharan M, Vogel J, Kansakar L, Zhang S, Vucetic S, Wang Z, Sternberg MJ, Wass MN, Huntley RP, Martin MJ, O'Donovan C, Robinson PN, Moreau Y, Tramontano A, Babbitt PC, Brenner SE, Linial M, Orengo CA, Rost B, Greene CS, Mooney SD, Friedberg I, Radivojac P. An expanded evaluation of protein function prediction methods shows an improvement in accuracy. Genome Biology. 2016. [at Genome Biology]
97. D. Bhattacharya, R. Cao, J. Cheng. UniCon3D: de novo protein structure prediction using united-residue conformational search via stepwise, probabilistic sampling. Bioinformatics, accepted, 2016. [at Bioinformatics]
96. W.R. Folk, A. Smith, H. Song, D. Chuang, J. Cheng, Z. Gu, G. Sun. Does concurrent use of some botanicals interfere with treatment of tuberculosis? Neuromolecular Med., accepted, 2016. [at NeuroMolecular Medicine]
95. B. Gandolfi, S. Alamri, W.G. Darby, B. Adhikari, J.C. Lattimer, R. Malik, C.M. Wade, L.A. Lyons, J. Cheng, J.F. Bateman, P. McIntyre, S.R. Lamande, B. Haase. A novel variant in CAMH is associated with blood type AB in Ragdoll cats. PLoS ONE, accepted, 2016. [at Plos ONE]
94. J. Li, J. Cheng. A Stochastic Point Cloud Sampling Method for Multi-Template Protein Comparative Modeling. Scientific Reports, accepted, 2016. [at PubMed]
93. D. Bhattacharya, J. Nowotny, R. Cao, J. Cheng. 3Drefine: An Interactive Web Server for Efficient Protein Structure Refinement. Nucleic Acids Research, web server issue, accepted, 2016. [at NAR website]
92. R. Cao, J. Cheng. Protein single-model quality assessment by feature-based probability density functions. Scientific Reports, accepted. [at Scientific Reports].
91. M.F. Lensink et al. Prediction of homo- and hetero-protein complexes by ab-initio and template-based docking: a CASP-CAPRI experiment. Proteins, accepted, 2016. [at PubMed].
90. D. Bhattacharya, B. Adhikari, J. Li, J. Cheng. FRAGSION: ultra-fast protein fragment library generation by IOHMM sampling. Bioinformatics, accepted, 2016. [at Bioinformatics web site].
89. S. Cui, T. Ji, J. Li, J. Cheng, J. Qiu. What if we ignore the random effects when analyzing RNA-seq data in a multifactor experiment? Statistical Applications in Genetics and Molecular Biology (SAGMB), 15(2):87-105, 2016. [at SAGMB]
88. J. Nowotny, A. Wells, O. Oluwadare, L. Xu, R. Cao, T. Trieu, C. He, J. Cheng. GMOL: an interactive tool for 3D genome structure visualization. Scientific Reports, accepted, 2016. [at Scientific Reports]
87. W. Lei, Y. Lu, J. Hou, J. Li, J. Browning, P. Eichen, J. Cheng, D. Lubahn, W. Folk, G. Sun,
K. Fritsche. Immunomodulation of innate immune cells by Sutherlandia frutescens: A
transcriptomic analyses. FASEB Journal. 29(S1):593.3, 2015. [at FASEB journal]
86. T. Tuan, J. Cheng. MOGEN: a tool for reconstructing 3D models of genomes from chromosomal conformation capturing data. Bioinformatics, accepted, 2015. doi: 10.1093/bioinformatics/btv754. [at Bioinformatics]
85. Y. Lu, N. Starkey, W. Li, J. Li, J. Cheng, W. Folk, D. Lubahn. Inhibition of Hedgehog-signaling driven genes in prostate cancer cells by Sutherlandia frutescens extract. PLoS ONE. 10(12):e0145507, 2015. [at PLoS ONE web site]
84. Y. Lu, J. Li, J. Cheng, D.B. Lubahn. Messenger RNA profile analysis deciphers new Esrrb responsive genes in prostate cancer cells. BMC Molecular Biology. 16(1):21, 2015. [at BMC Molecular Biology]
83. Y. Lu, J. Li, J. Cheng, D.B. Lubahn. Genes targeted by the Hedgehog-signaling pathway can be regulated by Estrogen related receptor B. BMC Mol Biol.. 16(1):19, 2015. [BMC Molecular Biology].
82. T. Jo, J. Hou, J. Eickholt, J. Cheng. Improving protein fold recognition by deep learning networks. Scientific Reports. 5:17573, 2015. [Scientific Reports]
81. J. Nowotny, S. Ahmed, L. Xu, O. Oluwadare, H. Chen, N. Hensley, T. Trieu, R. Cao, J. Cheng. Iterative reconstruction of three-dimensional models of human chromosomes from chromosomal contact data. BMC Bioinformatics, 16(1):338, 2015. [at BMC Bioinformatics].
80. R. Cao, J. Cheng. Deciphering the association between gene function and spatial gene-gene interactions in 3D human genome conformation. BMC Genomics, 16:880, 2015. [at BMC Genomics].
79. D. Bhattacharya, J. Cheng. De novo portein conformational sampling using a probabilistic graphical model. Scientific Reports, 5:16332, 2015. [at Scientific Reports]
78. J. Li, R. Cao, J. Cheng. A large-scale conformation sampling and evaluation server for protein tertiary structure prediction and its assessment in CASP11. BMC Bioinformatics, 16:337, 2015. [at BMC Bioinformatics]
77. J. Hou, D. Zhu, J. Cheng. An overview of bioinformatics methods for modeling biological pathways in yeast. Briefings in Functional Genomics, accepted. [Briefings in Functional Genomics]
76. R. Cao, D. Bhattacharya, B. Adhikari, J. Li, J. Cheng. Massive integration of diverse protein quality assessment methods to improve template based modeling in CASP11. Proteins, accepted. [at Proteins]
75. R. Cao, J. Cheng. Integrated protein function prediction by mining function associations, sequences, and protein-protein and gene-gene interaction networks. Methods, accepted. [at Methods].
74. J. Hou, G. Stacey, J. Cheng. Exploring soybean metabolic pathways based on probabilistic graphical model and knowledge-based methods. EURASIP Journal on Bioinformatics and Systems Biology. 1:5, 2015. [at EURASIP]
73. X. Deng, J. Gumm, S. Karki, J. Eickholt, J. Cheng. An Overview of Practical Applications of Protein Disorder Prediction and Drive for Faster, More Accurate Predictions. Int J Mol Sci. 16(7):15384-15404, 2015. [at IJMS].
72. J. Li, B. Adhikari, J. Cheng. An Improved Integration of Template-based and Template-Free Protein Structure Modeling Methods and its Assessment in CASP11. Protein Pept. Lett. 22(7):586-93, 2015. [at Protein & Peptide Letters].
71. B. Adhikari, D. Bhattacharya, R. Cao, J. Cheng. CONFOLD: Residue-Residue Contact-guided ab initio Protein Folding Proteins. 83(8):1436-1439, 2015. [at Proteins].
70. R. Cao, D. Bhattacharya, B. Adhikari, J. Li, J. Cheng. Large-Scale Model Quality Asessment
for Improving Protein Tertiary Structure Prediction. 23rd International Conference on Intelligent
Systems for Molecular Biology (ISMB), Bioinformatics. 31(12):i116-i123, 2015. [at Bioinformatics]
69. J. Li, J. Hou, L. Sun, J.M. Wilkins, Y. Lu, C.E. Niederhuth, B.R. Merideth, T.P. Mawhinney, V. Valeri, C.M. Greenlief, J.C. Walker, W.R. Folk, M. Hannink, D.B. Lubahn, J.A. Birchler, J. Cheng. From Gigabyte to Kilobyte: a Bioinformatics Protocol for Mining Large RNA-Seq Transcriptomics Data. PLoS ONE. 10(4):e0125000, 2015. [at PLoS One website].
68. H. Zhou, Z. Qu, V. Mossine, D. Nknolise, J. Li, Z. Chen, J. Cheng, M, M. Greenlief, T. Mawhinney, P.
Brown, K. Fritsche, M. Hannink, D. Lubahn, G. Sun, Z. Gu. Proteomic Analysis of the Effects of
Aged Garlic Extract and its FruArg Component on Lipopolysaccharide-induced Neuroinflammatory
Response in Microglial Cells. PLoS ONE. 9(11):e113531, 2014. [at PLoS ONE Website].
67. Q. Qi, J. Li, J. Cheng. Reconstruction of Metabolic Pathways by Combining Probabilistic Graphical Model-based and Knowledge-based Methods. BMC Proceeding, 8(S6):S5, 2014. [at BMC Proceeding Website].
66. X. Deng, J. Cheng. Enhancing HMM-Based Protein Profile-Profile Alignment with Structural Features and Evolutionary Coupling Information. BMC Bioinformatics. 15:252, 2014. [at BMC Bioinformatics Website].
65. M. Spencer, J. Eickholt, J. Cheng. A Deep Learning Network Approach to ab initio Protein Secondary Structure Prediction. IEEE Transactions on Computational Biology and Bioinformatics. Accepted. [PDF]
64. T. Jo, J. Cheng. Improving Protein Fold Recognition by Random Forest. BMC Bioinformatics. 15(S11):S14, 2014. [at BMC Bioinformatics website]
63. Z Qu, F. Meng, R. Bomgarden, R. Viner, J. Li, J. Rogers, J. Cheng, C. Greenlief, J. Cui, D. Lubahn, G. Sun, and Z. Gu. Proteomic Quantification and Site-Mapping of S-Nitrosylated Proteins Using Isobaric iodoTMT Reagents. Journal of Proteome Research. 13(7):3200-11, 2014. [at Journal of Proteome Research]
62. P. Gong, Z. Madak-Ergogan, J. Li, J. Cheng, C.M. Greenlief, W.G. Helferich, J.A. Katzenellengogen, B.S. Katzenellengogen. Transcriptome analyses reveal gene network regulated by ERalpha and ERbeta that control distinct effects of different botanical estrogens. Nuclear Receptor Signaling. 12:e001, 2014. [at NRS website].
61. R. Cao, Z. Wang, Y. Wang, J. Cheng. SMOQ: a tool for predicting the absolute residue-specific quality of a single protein model with support vector machines. BMC Bioinformatics, 15:120, 2014. [at BMC Bioinformatics' website].
60. R. Cao, Z. Wang, J. Cheng. Designing and evaluating the MULTICOM protein local and global model quality prediction methods in the CASP10 experiment. BMC Structural Biology, 14:13, 2014. [at BMC Structural Biology's website].
59. G.A. Khoury, A. Liwo, F. Khatib, H. Zhou, G. Chopra, J. Bacardit, L.O. Bortot, R.A. Faccioli, X. Deng, Y. He, P. Krupa, J. Li, M.A. Mozolewska, A.K. Sieradzan, J. Smadbeck, T. Wirecki, S. Cooper, J. Flatten, K. Xu, D. Baker, J. Cheng, A.C.B. Delbem, C.A. Floudas, C. Keasar, M. Levitt, Z. Popovic, H.A. Scheraga, J. Skolnick, S.N. Crivelli, and Foldit Players. WeFold: A Coopetition for Protein Structure Prediction. Proteins, in press. [at Proteins journal].
58. Z. Qu, F. Meng, H. Zhou, J. Li, Q. Wang, F. Wei, J. Cheng, C.M. Greenlief, D.B. Lubahn, G.Y. Sun, S. Liu, Z. Gu. NitroDIGE Analysis Reveals Inhibition of Protein S-Nitrosylation by Epigallocatechin Gallates in Lipopolysaccharide-stimulated Microglial Cells. Journal of Neuroinflammation, 11:17, 2014. [at Journal of Neuroinflamation].
57. T. Trieu, J. Cheng. Large-scale reconstruction of 3D structures of human chromosomes from chromosomal contact data. Nucleic Acids Research. 42(7):e52, 2014. [at NAR's website].
56. X. Deng, J. Li, J. Cheng. Predicting protein model quality from sequence alignments by support vector machines. Journal of Proteomics and Bioinformatics. S9:001, 2013. [PDF], [at Journal's website].
55. L. Sun, A.F. Johnson, J. Li, A.S. Lambdin, J. Cheng, J.A. Birchler. Differential effect of aneuploidy on the X chromosome and genes with sex-biased expression in Drosophila. Proceeding of National Academy of Sciences (P.N.A.S), USA. 110(41):16514-9, 2013. [at PNAS's web site].
54. M. Zhu, J. Dahmen, G. Stacey, J. Cheng. Predicting gene regulatory networks of soybean nodulation from RNA-Seq transcriptome data. BMC Bioinformatics. 14:278, 2013. [at BMC Bioinformatics's web site].
.
53. J. Eickholt, J. Cheng. A Study and Extension of DNcon: a Method for Protein Residue-Residue Contact Prediction Using Deep Networks. BMC Bioinformatics. 14(Suppl 14):S12, 2013. [at BMC Bioinformatics' web site]
52. D. Bhattacharya, J. Cheng. i3Drefine Software for Protein 3D Structure Refinement and its Assessment in CASP10. PLoS ONE. 8(7):e69648, 2013. [at PLoS ONE's website]
51. L. Sun, A.F. Johnson, R.C. Donohue, J. Li, J. Cheng, J.A. Birchler. Dosage Compensation and Inverse Effects in Triple X Metafemales of Drosophila. Proceedings of the National Academy of Sciences (PNAS). 110(18):7383-8, 2013. [at PubMed].
50. K.H. Taylor, A. Briley, Z. Wang, J. Cheng, H. Shi, C.W. Caldwell. Aberrant Epigenetic Gene Regulation in Lymphoid Malignancies. Seminars in Hematology. 50(1):38-47, 2013. [at Elsevier's website].
49. J. Eickholt, J. Cheng. DNdisorder: Predicting Protein Disorder Using Boosting and Deep Networks. BMC Bioinformatics. 14:88, 2013. [at BMC Structural Biology's website]
48. J. Li, X. Deng, J. Eickholt, J. Cheng. Designing and Benchmarking the MULTICOM Protein Structure Prediction System. BMC Structural Biology. 13:2, 2013. [at BMC Structural Biology Website]
.
47. Z. Wang, R. Cao, K. Taylor, A. Briley, C. Caldwell, J. Cheng. The Properties of Genome Conformation and Spatial Gene Interaction and Regulation Networks of Normal and Malignant Human Cell Types. PLoS ONE. 8(3):e58793, 2013 [at PLoS ONE's web site].
46. L. Sun, H.R. Fernandez, R.C. Donohue, J. Li, J. Cheng, J.A. Birchler. Male-Specific Lethal Complex in Drosophila Counteracts the Effect of Histone Acetylation and Does Not Mediate Dosage Compensation. Proceedings of National Academy of Sciences (P.N.A.S.) USA. 110(9):E808-17, 2013.[at PNAS' website].
45. P. Radivojac, W. Clark, T.B. Oron, A.M. Schnoes, T. Wittkop, A. Sokolov, K. Graim, C. Funk, K. Verspoor, A. Ben-Hur, G. Pandey, J.M. Yunes, A.S. Talwakar, S. Repo, M.L. Souza, D. Piovesan, R. Casadio, Z. Wang, J. Cheng, H. Fang, J. Gough, P. Koskinen, P. Toronen, J. Nokso-Koivisto, L. Holm, D. Cozzetto, D.W. Buchan, K. Bryson, D.T. Jones, B. Limaye, H. Inamdar, A. Datta, S.K. Manjari, R. Joshi, M. Chitale, D. Kihara, A.M. Lisewski, S. Erdin, E. Venner, O. Lichtarge, R. Rentzsch, H. Yang, A.E. Romero, P. Bhat, A. Paccanaro, T. Hamp, R. Kassner, S. Seemayer, E. Vicedo, C. Schaefer, D. Achten, F. Auer, A. Bohm, T. Braun, M. Hecht, M. Heron, P. Honigschmid, T. Hopf, S. Kaufmann, M. Kiening, D. Krompass, C. Landerer, Y. Mahlich, M. Roos, J. Bjorne, T. Salakoski, A. Wong, H. Shatkay, M.N. Wass, M.J.E. Sternberg, N. Skunca, F. Supek, M. Bosnjak, P. Panov, S. Dzeroski, T. Smuc, Y.A.I. Kourmpetis, A.D.J. van Dijk, C.J.F. ter Braak, Y. Zhou, Q. Gong, X. Dong, W. Tian, M. Falda, P. Fontana, E. Lavezzo, B.D. Camillo,
S. Toppo, L. Lan, N. Djuric, Y. Guo, S. Vucetic, A. Bairoch, M. Linial, P.C. Babbitt, S.E. Brenner, C. Orengo, B. Rost, S.D. Mooney, I. Friedberg. A Large-Scale Evaluation of Computational Protein Function Prediction. Nature Methods. 10(13):221-7, 2013. [at Nature Methods' website].
44. Z. Wang, R. Cao, J. Cheng. Three-Level Prediction of Protein Function by Combining Profile-Sequence Search, Profile-Profile Search, and Domain Co-occurrence Networks. BMC Bioinformatics. 14(Suppl 3):S3, 2013. [at BMC Bioinformatics' website].
43. D. Bhattacharya, J. Cheng. 3DRefine: Consistent Protein Structure Refinement by Optimizing Hydrogen Bonding Network and Atomic Level Energy Minimization. Proteins, 81(1):119-31, 2013. [at PubMed].
42. J. Eickholt, J. Cheng. Predicting Protein Residue-Residue Contacts Using Deep Networks and Boosting. Bioinformatics. 28(23):3066-3072, 2012. [at Bioinformatics web site].
41. M. Zhu, X. Deng, T. Joshi, D. Xu, G. Stacey, J. Cheng. Reconstructing Differentially Co-expressed Gene Modules and Regulatory Networks of Soybean Cells. BMC Genomics, 13:434, 2012. [at BMC Genomics web site].
40. J. Cheng, J. Li, Z. Wang, J. Eickholt, X. Deng. The MULTICOM Toolbox for Protein Structure Prediction. BMC Bioinformatics, 13:65, 2012. [at BMC Bioinformatics web site]
39. J. Cheng, J. Eickholt, Z. Wang, and X. Deng. Recursive Protein Modeling: a Divide and Conquer Strategy for Protein Structure Prediction and its Case Study in CASP9. Journal of Bioinformatics and Computational Biology, vol. 10, no. 3, 2012. [at JBCB journal]. DOI: 10.1142/S0219720012420036. [PDF] [at NIH PMC]
38. X. Zhang, Z. Wang, X. Zhang, M. Le, J. Sun, D. Xu, J. Cheng, and G. Stacey. Evolutionary Dynamics of Protein Domain Architecture in Plants. BMC Evolutionary Biology, 12:6, 2012.
[at BMC Evolutionary Biology web site]
37. T. Joshi, K. Patil, M.R. Fitzpatrick, L.D. Franklin, Q. Yao, Z. Wang, M. Libault,
L. Brechenmacher, B. Valiyodan, X. Wu, J. Cheng, G. Stacey, H. Nguyen,
and D. Xu. Soybean Knowledge Base (SoyKB): A Web Resource for Soybean
Translational Genomics.
BMC Genomics, 13(Suppl 1):S15, 2012. [at BMC Genomics web site]
36. Z. Wang and J. Cheng. An Iterative Self-Refining and Self-Evaluating Approach for Protein Model Quality Estimation. Protein Science, 21(1):142-151, 2012. [at Protein Science's web site] [PDF]
35. X. Deng, J. Eickholt, J. Cheng. A Comprehensive Overview of Computational Protein Disorder Prediction Methods. Molecular BioSystems, 8(1):114-121, 2012. [at Molecular BioSystems web site]
34. J. Eickholt, Z. Wang, J. Cheng. A Conformation Ensemble Approach to Protein Contact Prediction. BMC Structural Biology, 11:38, 2011. [at BMC Structural Biology web site]
33. X. Deng and J. Cheng. MSACompro: Protein Multiple Sequence Alignment Using Predicted Secondary Structure, Solvent Accessibility, and Residue-Residue Contacts. BMC Bioinformatics. 12:472, 2011. [Open access at BMC Bioinformatics] .
32. Z. Wang, J. Eickholt, J. Cheng. APOLLO: A Quality Assessment Service for Single and Multiple Protein Models. Bioinformatics. 27(12):1715-1716, 2011. [Open Access at Bioinformatics Website]
31. K. Tanaka, C. Nguyen, M. Libault, J. Cheng, Gary Stacey. Enzymatic Activity of the Soybean Ecto-Apyrase GS52 is Essential for Stimulation of Nodulation. Plant Physiology. 155(4):1988-98, 2011. [at Plant Physiology's web site].
30. Z. Wang, X. Zhang, M. Le, D. Xu, G. Stacey, and J. Cheng. A Protein Domain Co-Occurrence Network Approach for Predicting Protein Function and Inferring Species Phylogeny. PLoS ONE. 6(3): e17906, 2011. [at PLoS ONE web site].
29. J. Eickholt, X. Deng, and J. Cheng. DoBo: Protein Domain Boundary Prediction by Integrating Evolutionary Signals and Machine Learning. BMC Bioinformatics. 12:43, 2011. [at BMC Bioinformatics] .
28. M. Libault, L. Brechenmacher, J. Cheng, D. Xu, G. Stacey. Root Hair Systems Biology. Trends in Plant Science. 15(11):641-650, 2010. [at Trends' web site].
27. Z. Wang, J. Eickholt, and J. Cheng. MULTICOM: A Multi-Level Combination Approach to Protein Structure Prediction and its Assessment in CASP8. Bioinformatics. 26(7):882-888, 2010. [at Bioinformatics web site]. The MULTICOM system was ranked among the best methods in template-based modeling, template-free modeling, protein model quality assessment, protein contact map prediction, and protein disorder prediction during CASP9, 2010.
26. J. Schmutz, S. Cannon, J. Schlueter, J. Ma, T. Mitros, W. Nelson, D. Hyten, Q. Song, J. Thelen, J. Cheng, D. Xu, U. Hellsten, G. May, Y. Yu, T. Sakurai, T. Umezawa, M. Bhattacharyya, D. Sandhu, B. Valliyodan, E. Lindquist, M. Peto, D. Grant, S. Shu, D. Goodstein, K. Barry, M. Futrell-Griggs, J. Du, Z. Tian, L. Zhu, N. Gill, T. Joshi, M. Libault, A. Sethuraman, X. Zhang, S. Shinozaki, H. Nguyen, R. Wing, P. Cregan, J. Specht, J. Grimwood, D. Rokhsar, G. Stacey, R. Shoemaker and S. Jackson. Genome Sequence of the Palaeopolyploid Soybean. Nature. 463:178-83, 2010. [at Nature website].
25. Z. Wang, M. Libault, T. Joshi, B. Valliyodan, H. Nguyen, D. Xu, G. Stacey, and J. Cheng. SoyDB: A Knowledge Database of Soybean Transcription Factors. BMC Plant Biology. 10:14, 2010 [SoyDB database] [open access at BMC Plant Biology] .
24. G. Lin, Z. Wang, D. Xu, and J. Cheng. Sequence-Based Prediction of Protein Folding Rates Using Contacts, Secondary Structures and Support Vector Machines. BMC Bioinformatics, 11(Suppl 3):S1, 2010. [at BMC Bioinformatics website]
23. X. Deng, J. Eickholt, and J. Cheng. PreDisorder: Ab Initio Sequence-Based Prediction of Protein Disordered Regions. BMC Bioinformatics, 10:436, 2009. [at BMC Bioinformatics website].
Predisorder was ranked among the best protein disorder prediction methods in CASP9, 2010.
22. J. Cheng, Z. Wang, A.N. Tegge and J. Eickholt. Prediction of Global and Local Quality of CASP8 Models by MULTICOM series. Proteins, vol. 77, pp. 181-184, 2009. [at Proteins web site] CASP8 invited contribution
21. A.N. Tegge, Z. Wang, J. Eickholt, and J. Cheng. NNcon: Improved Protein Contact Map Prediction Using 2D-Recursive Neural Networks. Nucleic Acids Research , vol. 37, pp. w515-w518, 2009. [at NAR web site].
NNcon was ranked among the best contact map prediction methods in CASP8.
20. E.E. Stagner, D.J. Bouvrette, J. Cheng, and E.C. Bryda. The Polycystic Kidney Disease-related Proteins Bicc1 and SamCystin Interact. Biochemical and Biophysical Researh Communications. 383(1):16-21, 2009. [PDF]
19. Z. Wang, A. N. Tegge, and J. Cheng. Evaluating the Absolute Quality of a Single Protein Model Using Support Vector Machines and Structural Features. Proteins, vol. 75, no. 3, 638-647, 2009. [at Proteins website]
ModelEvaluator was ranked among the best model evaluation methods in CASP8.
[CASP8 model quality assessment talk]
18. J. Cheng. A Multi-Template Combination Algorithm for Protein Comparative Modeling. BMC Structural Biology.8:18, 2008.
[Open Access at BMC website] MULTICOM was ranked among the best template-based and template-free structure prediction methods in CASP8.
[CASP8 template-based modeling talk];
[CASP8 template_free modeling talk]
17. J. Dai and J. Cheng. HMMEditor: A Visual Editing Tool for Profile Hidden Markov Model. BMC Genomics. 9(S1):S8, 2008. [Open Access at BMC website]
16. J. Hecker, J. Yang, and J. Cheng. Protein Disorder Prediction at Multiple Levels of Sensitivity and Specificity. BMC Genomics. 9(S1):S9, 2008. [Open Access at BMC website]
PreDisorder was ranked among the best disorder predictors in CASP8.
[CASP8 disorder prediction talk]
15. J. Cheng, A. N. Tegge, and P. Baldi. Machine Learning Methods for Protein Structure Prediction. IEEE Reviews in Biomedical Engineering. 1:41-49, 2008. [PDF]
14. A. Randall, J. Cheng, M. Sweredoski, and P. Baldi. TMBpro: Secondary Structure, Beta-Contact, and Tertiary Structure Prediction of Transmembrane Beta-Barrel Proteins. Bioinformatics, vol. 24, pp. 513-520, 2008. [Bioinformatics website] [PDF]
13. J. Cheng. DOMAC: An Accurate, Hybrid Protein Domain
Prediction Server. Nucleic Acids Research, vol. 35, pp.
w354-w356, 2007. [PDF]
[Open Access at NAR website]
DOMAC was ranked among the best domain predictors in CASP8
12. J. Cheng and P. Baldi. Improved Residue Contact
Prediction Using Support Vector Machines and a Large Feature Set.
BMC Bioinformatics. 8:113, 2007.
[PDF][Free
access at BMC Bioinformatics website]
SVMcon is one of the best contact map
predictors in CASP7, CASP8 and CASP9.
11. M. Tress, J. Cheng, P. Baldi, K. Joo, J. Lee, J.H. Seo, J.
Lee, D. Baker, D. Chivian, D. Kim, A. Valencia, and I. Ezkurdia.
Assessment of Predictions Submitted for the CASP7 Domain
Prediction Category. Proteins: Structure, Function and
Bioinformatics, vol. 68 (S8):137-151, 2007. [CASP7 Invited Contribution] [PDF] [Paper at Proteins Website]
10. L. Larson, M. Zhang,
N. Beliakova-Bethell, V. Bilanchone, A. Lamsa, K. Nagashima, R.
Najdi, K. Kosaka, V. Kovacevic, A.
Lamsa, J. Cheng, P. Baldi, G.W. Hatfield, and S. Sandmeyer. Ty3 Capsid Scanning Mutations
Reveal Early and Late Functions of the Amino-Terminal Domain. Journal of Virology,
vol. 81, pp. 6957-6972, 2007. [PDF]
[Free Access at Journal of Virology website]
9. J. Cheng and P. Baldi.
A Machine Learning Information Retrieval Approach to Protein Fold
Recognition. Bioinformatics, vol. 22, no. 12, pp.
1456-1463, 2006.
[PDF][Free
Access
at Bioinformatics website] .
FOLDpro and 3Dpro are the No. 2 and No. 3 Servers
for High-Accuracy
Protein Structure Prediction in the Seventh Edition of Critical Assessment of Techniques for Protein Structure Prediction (CASP7).
Recommended by Faculty of 1000 Biology.
8. J. Cheng, M.
Sweredoski, and P. Baldi. DOMpro: Protein Domain Prediction Using
Profiles, Secondary Structure, Relative Solvent Accessibility, and
Recursive Neural Networks. Data Mining and Knowledge Discovery,
vol. 13, no. 1, pp. 1-10, 2006.
[PDF]
[DAMI
advance online]
. FOLDpro-DOMpro is the
No. 1 Server for Automated Protein Domain Prediction in CASP7.
7. S. A. Danziger, S. J.
Swamidass, J. Zeng, L. R. Dearth, Q. Lu, J. H. Chen, J. Cheng, V.
P. Hoang, H. Saigo, R. Luo, P. Baldi, R. K. Brachmann, and R. H.
Lathrop. Functional census of mutation sequence spaces: The
example of p53 cancer rescue mutants. IEEE Transactions on
Computational Biology and Bioinformatics, vol. 3, no. 2, pp.
114-125, 2006.
[PDF]
6. J. Cheng, A. Randall,
and P. Baldi. Prediction of Protein Stability Changes for
Single-Site Mutations Using Support Vector Machines. Proteins:
Structure, Function, Bioinformatics, vol. 62, no. 4, pp.
1125-1132, 2006.
[PDF][PDF
at Proteins website]
5. J. Cheng, H. Saigo,
and P. Baldi. Large-Scale Prediction of Disulphide Bridges Using
Kernel Methods, Two-Dimensional Recursive Neural Networks, and
Weighted Graph Matching.Proteins: Structure, Function,
Bioinformatics, vol 62, no. 3, pp. 617-629, 2006.
[PDF][PDF
at Proteins website]
4. J. Cheng, M.
Sweredoski, and P. Baldi. Accurate Prediction of Protein
Disordered Regions by Mining Protein Structure Data, Data
Mining and Knowledge Discovery, vol. 11, no. 3, pp. 213-222,
2005.
[PDF]
[PDF
at DAMI website]
DISpro is No. 2 server in disorder prediction in CASP7 (No. 5 in both human and server predictors).
3. J. Cheng, A. Randall,
M. Sweredoski, and P. Baldi, SCRATCH: a Protein Structure and
Structural Feature Prediction Server. Nucleic Acids Research,
vol. 33 (web server issue), w72-76, 2005.
[PDF][PDF
at NAR website]
2. J. Cheng, L.
Scharenbroich, P. Baldi, and E. Mjolsness. Sigmoid: Towards a
Generative, Scalable, Software Infrastructure for Pathway
Bioinformatics and Systems Biology. IEEE Intelligent Systems,
vol. 20, no. 3, pp. 68-75, 2005.[PDF][PDF
at IEEE website]
1. J. Cheng and P. Baldi.
Three-Stage Prediction of Protein Beta-Sheets by Neural Networks,
Alignments, and Graph Algorithms.
Bioinformatics, vol. 21(Suppl 1), pp. i75-84, 2005. (This is the journal version of Conference paper 2)
[PDF][Free
Access
at Bioinformatics website][ISMB
Talk]. BETApro is one of the Best Residue Contact
Predictors in CASP7 and CASP8.