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Mutations in either the Bicaudal-C or the Anks6 gene which encode the Bicc1 and SamCystin proteins
respectively cause formation of renal cysts in rodent models of polycystic kidney disease, however their
role in the mammalian kidney is unknown. Immunolocalization studies demonstrated that, unlike many
other PKD-related proteins, SamCystin and Bicc1 do not localize to the primary cilia of cultured kidney
cells. Epitope-tagged recombinant SamCystin and Bicc1 proteins were transiently transfected into inner
medullary collecting duct (IMCD) cells and co-immunoprecipitated. The results showed that SamCystin
self-associates, Bicc1 and SamCystin interact, the mutation responsible for PKD in the Han:SPRD-Cy rat
disrupts the self-association of SamCystin but not the Bicc1–SamCystin interaction, and RNA may be
an important component of the Bicc1–SamCystin complex. These studies provide the first evidence that
Bicc1 and SamCystin interact at the protein level suggesting that they function in a common molecular
pathway that when perturbed, is involved in cystogenesis.

� 2009 Elsevier Inc. All rights reserved.
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Renal tubular cysts are a feature of a number of inherited
human disorders including polycystic kidney disease (PKD). Many
rodent models for PKD have been characterized, including the jcpk
mouse model and the Cy rat model which both carry mutations
that lead to the formation of renal cysts in affected animals. A
mutation in Bicc1, the mammalian orthologue of the Drosophila
Bicaudal-C gene is responsible for disease in the jcpk mouse model
[1]. The Bicc1 protein contains two types of functional domains:
three tandem K homology (KH) domains near the N-terminus
and a sterile alpha motif (SAM) domain near the C-terminus. The
disease allele carried by the jcpk mouse (Bicc1jcpk) contains a muta-
tion that results in a frameshift leading to a premature stop which
produces a severely truncated protein. This truncated protein is
missing most of KH1, all of KH2 and 3 and all of the SAM domain
[1]. The Bicc1jcpk protein is predicted to be nonfunctional. SamCy-
stin, the protein encoded by Anks6 (formerly Pkdr1), has 10 tandem
ankyrin repeats at its N-terminus and a SAM domain at its C-termi-
nus [2]. In the Han:SPRD-Cy rat model, a single nucleotide base pair
mutation in Anks6 results in a replacement of a highly conserved
ll rights reserved.

Diagnostic Laboratory, 4011
73 884 7521.

al., The polycystic kidney disea
3

arginine residue with a tryptophan residue in the SAM domain.
The effect of this change on protein function is unknown.

The sterile alpha motif (SAM) is a conserved domain of approx-
imately 70 residues that is found in a large number of bacterial and
eukaryotic proteins [3,4]. Many of these proteins participate in
protein–protein interactions, signal transduction pathways or
various developmental processes [5]. In SAM domain-containing
proteins that have been shown to participate in protein–protein
interactions, these interactions can include homo-SAM [6–10]
and hetero-SAM [10,11] domain interactions as well as heterotypic
interactions with non-SAM domain-containing proteins [12–14].

The finding that two PKD-related proteins, Bicc1 and SamCystin
contain SAM domains led us to speculate that perhaps both the Bicc1
and SamCystin proteins physically interact via their SAM domains.
The data presented here provides evidence that both proteins co-
localize to the same region of the cell and that SamCystin is involved
in protein–protein interactions with both itself and Bicc1.
79
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Materials and methods

Constructs. Anks6 cDNA (GenBank Accession No. NM001015028)
was PCR amplified from IMAGE clone 7108955 (Open Biosystems,
Huntsville, AL) using primers 50-GAAATGGGCGAGGGCGCGCTG
GCC-30 and 50-CCTGCTCGACACTGTTTCTTCTGGCCTTA-30 (full-
length Anks6); 50-GAAATGGGCGAGGGCGCGCTGGCC-30 and 50-TGG
se-related proteins Bicc1 and SamCystin interact, Biochem. Biophys. Res.
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GACGAGGAGGAAGAC-30 (SamCystinDSAM); or 50-ATCACGCCGGT
GTCTGTGTGCATGCAG-30 and 50-AAGGTACCGGGCCCCCCCTCGAGG
TCGAC-30 (SamCystinDANK). For c-Myc-SamCystin (R823W), RT-
PCR was performed using total kidney RNA from a Cy/Cy rat and
primers 50-GAAATGGGCGAGGGCGCGCTGGCC-30 and 50-CCTGCT
CGACACTGTTTCTTCTGGCCTTA-30. Amplicons were cloned into
pCR8/GW/TOPO (Invitrogen, Carlsbad, CA), and subcloned into
the EcoRI site of pCMV-3Tag-2A (Stratagene, La Jolla, CA). For V5-
SamCystin, the full-length Anks6 coding region was recombined
from pCR8/GW/TOPO into pcDNA3.1/nV5-DEST (Invitrogen) using
LR Clonase II enzyme mix (Invitrogen). cDNA encoding Bicc1 (Gen-
Bank Accession No. NM031397) was PCR amplified from IMAGE
clone 2655954 (ATCC, Manassas, VA) using primers 50-
ATGGCCTCGCAGAGCGAG-30 and 50-ctaccagcggccactgacgct-30 (full-
length Bicc1); 50-ATGGGGTGTCTTCCTCTGGTGTT-30 and 50-GTCAGT
GGCCGCTGGTAG-30 (Bicc1DKH); or 50-TCCGAATTCGCCTTATG-30

and 50-TTATCCGGTCTCTCCAGTTGTCT-30 (Bicc1DSAM). Amplicons
were cloned into pCR8/GW/TOPO (Invitrogen). Bicc1, Bicc1(DKH),
and Bicc1(DSAM) were recombined into pcDNA3.1/nV5-DEST
(Invitrogen). For GFP-Bicc1, a full-length Bicc1 PCR product was
cloned into pcDNA3.1/NT-GFP-TOPO (Invitrogen). All sequences
were confirmed by nucleotide sequence analysis.

Cell culture and transfection. Mouse inner medullary collecting
duct (IMCD) cells (American Type Culture Collection, Manassas,
VA) were transiently transfected using Lipofectamine 2000 (Invit-
rogen) and harvested 48 h after transfection using M-PER (Pierce,
Rockford, IL) containing Complete protease inhibitor (Roche Ap-
plied Science, Indianapolis, IN). RNase treated transfected lysates
were incubated with 1 ll 100 mg/ll RNase A (USB, Cleveland,
Ohio) at 37 �C for 40 min, followed by co-immunoprecipitation as
described below.

Immunofluorescence microscopy. IMCD cells were grown on col-
lagen-coated coverslips (BD Biosciences, San Jose, CA). To assess
protein localization within cilia, cells were transfected two days
post-confluence with 4 lg of c-Myc-SamCystin or GFP-Bicc1
DNA. Cells were fixed 48 h post-transfection in a 1:1 ace-
tone:methanol for 3 min, washed briefly in phosphate-buffered
saline (PBS) and permeabilized for 10 min in PBS; 0.1% Triton-X
100. Cells were incubated for 30 min in 0.1% BSA diluted in PBS
containing 0.2% Tween (PBS-T), rinsed briefly in PBS-T, and incu-
bated for 1 h in PBS-T; 2.5% BSA; 2.5% normal goat serum (blocking
buffer). All incubations were performed at room temperature. Cells
were washed with PBS-T then incubated with primary antibodies
for 1 hour. Antibodies were diluted 1:200 in blocking buffer. c-
Myc-SamCystin was visualized using anti-c-Myc rabbit polyclonal
antibody (Novus Biologicals, Littleton, CO); GFP-Bicc1 localization
was determined by directly observing GFP fluorescence; acetylated
a-tubulin mouse monoclonal antibody (Sigma) was used to visual-
ize cilia, and anti-c-tubulin mouse monoclonal antibody (Santa
Cruz Biotech.) was used to visualize basal bodies. After primary
antibody incubation, cells were washed with PBS-T and incubated
for 1 h with fluorochrome-conjugated secondary antibodies
(Molecular Probes, Eugene, OR) diluted 1:200 in blocking buffer:
Alexa Fluor 568 goat anti-mouse for a-tubulin or c-tubulin (red)
and Alexa Fluor 488 goat anti-rabbit for c-Myc-SamCystin labeling
(green). Nuclei were stained with DAPI (Roche). Cells were washed
again in PBS-T and mounted using MOWIOL (Calbiochem, San Die-
go, CA). For SamCystin and Bicc1 co-localization, cells were co-
transfected with 4 lg each of c-Myc-SamCystin and V5-Bicc1
DNA. V5-Bicc1 was visualized with anti-V5 mouse monoclonal
antibody (Invitrogen) and Alexa Fluor 568 (red); c-Myc-SamCystin
was visualized described previously.

Co-immunoprecipitation and western blotting. Co-immunopre-
cipitation was performed using the ProFound c-Myc-Tag Co-IP
Kit (Pierce). Briefly, 400 lg of protein were applied to spin columns
containing 10 ll of anti-c-Myc antibody-coupled agarose (0.5 lg/
Please cite this article in press as: E. Stagner et al., The polycystic kidney dise
Commun. (2009), doi:10.1016/j.bbrc.2009.03.113
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ll) and incubated overnight at 4 �C with gentle mixing. Columns
were washed three times with Tris-buffered saline containing
0.05% Tween-20, and proteins were eluted by boiling with Immu-
noPure Lane Marker Non-Reducing Sample Buffer (Pierce). Twenty
micrograms of protein from transfected cell lysates and 12.5 ll of
co-immunoprecipitation eluates were separated on 10% polyacryl-
amide–SDS gels under denaturing conditions. Proteins were
transferred electrophoretically to 0.45 lM nitrocellulose mem-
branes (Bio-Rad, Hercules, CA). Membranes were blocked in PBS
containing 0.2% Tween-20 and 5% dry milk. Blots were incubated
overnight in PBS + 0.2% Tween-20 and 0.5% dry milk (PBST-M)
containing primary antibodies diluted as follows: anti-c-Myc
mouse monoclonal antibody (Clontech, Mountain View, CA)
1:5000; anti-V5-HRP (Invitrogen) 1:5000. After washing, anti-c-
Myc blots were incubated for 1 hour in goat anti-mouse-HRP
(Novagen, San Diego, CA) diluted 1:100,000 in PBST-M. The HRP
signals were detected using Immobilon Western chemilumines-
cent HRP substrate (Millipore, Billerica, MA).

Results

Localization of SamCystin and Bicc1 in IMCD cells

To analyze the subcellular distribution of SamCystin and Bicc1,
IMCD cells were transiently transfected with constructs encoding
c-Myc-SamCystin and GFP-Bicc1 recombinant proteins. Schematic
diagrams of all constructs used in transfection experiments are
shown in Fig. 1. Visualization by immunofluorescent microscopy
revealed that c-Myc-SamCystin and GFP-Bicc1 localized to the
cytoplasm. Occasional punctuate expression of GFP-Bicc1 was ob-
served in the nucleus (data not shown).

To determine whether SamCystin and Bicc1 co-localize in the
cytoplasm, IMCD cells were co-transfected with c-Myc-SamCystin
and V5-Bicc1 constructs. Double-labeling with anti-c-Myc anti-
body and anti-V5 antibody showed that SamCystin (Fig. 2E, green)
and Bicc1 (Fig. 2F, red) have overlapping expression patterns
throughout the cytoplasm (Fig. 2G, yellow-merge).

As many PKD-related proteins localize to primary cilia or basal
bodies, [19–22] antibodies to acetylated a-tubulin (cilia marker)
and c-tubulin (basal body marker) were used to determine if either
SamCystin or Bicc1 localize in these structures. IMCD cells were
grown post-confluence to allow growth of primary cilia prior to
transfection. In transfected cells, neither c-Myc-SamCystin nor
GFP-Bicc1 localize in primary cilia (Fig. 2A and C) or basal bodies
(Fig. 2B and D).

SamCystin and Bicc1 interact

To determine if SamCystin and Bicc1 interact, IMCD cells were
transfected with c-Myc-SamCystin, V5-Bicc1, or co-transfected
with both constructs and immunoprecipitation was performed.
Expression of the recombinant proteins was verified by western
blot analysis using anti-c-Myc antibody and anti-V5 antibody
(Fig. 3A–C, Input). Immunoprecipitations were performed by incu-
bating protein from transfected cell lysates with immobilized anti-
c-Myc antibody and analyzed as described for the input lysates.
(Fig. 3A–C, IP). In Fig. 3A, the presence of V5-Bicc1 in the co-immu-
noprecipitation eluates supported the hypothesis that SamCystin
and Bicc1 physically interact.

To determine whether the mutation found in the Cy PKD rats
disrupts the interaction, protein from cell lysates expressing
c-Myc-SamCystin(R823W) and V5-Bicc1 were immunoprecipitated.
The c-Myc-SamCystin(R823W) construct encodes the altered form
of SamCystin with an arginine-to-tryptophan substitution at residue
823. Bicc1 was co-immunoprecipitated, indicating that this amino
acid change does not abolish the interaction (Fig. 3B).
ase-related proteins Bicc1 and SamCystin interact, Biochem. Biophys. Res.
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Fig. 1. Schematic of recombinant proteins. All recombinant proteins have a N-terminal epitope tag (3X c-Myc, V5, or GFP) as indicated. (A and B) Full-length SamCystin. (C)
Full-length SamCystin protein with a single amino acid substitution at position 823 within the SAM domain (Anks6Cy allele) [2]. (D) SamCystin, SAM domain deleted. (E)
SamCystin, ankyrin repeat region deleted. (F and G) Full-length Bicc1. (H) Bicc1, SAM domain deleted. (I) Bicc1, KH domains deleted.
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involved in the interaction, a series of deletion constructs were
used in co-immunoprecipitation experiments. Initially, the ability
of SamCystin recombinant proteins with deletions of either the
ankyrin repeats or the SAM domain to interact with Bicc1 was
tested. As shown in Fig. 3B, c-Myc-SamCystin(DANK) is able to
pull-down V5-Bicc1, while c-Myc-SamCystin(DSAM) is not. Collec-
tively, these data suggest that SamCystin interacts with Bicc1 via
its SAM domain, but elimination of the ankyrin repeats does not
interfere with the SamCystin–Bicc1 interaction.

To determine which domain of Bicc1 is involved in the interac-
tion with SamCystin, constructs with deletions of either the KH or
SAM domains of Bicc1 were used (Fig. 3C). Interaction was de-
tected between c-Myc-SamCystin and V5-Bicc1(DSAM), but not
with V5-Bicc1(DKH). This indicates that Bicc1 KH domains are
important in mediating the interaction with SamCystin.

Since there have been no reports of KH domain involvement in
protein–protein interactions yet it is well known that proteins con-
taining KH domains bind and regulate RNA, we suspected that the
Bicc1–SamCystin interaction might be indirect and possibly in-
volve a RNA intermediate. Bicc1 and SamCystin co-transfected cell
lysates were shown to contain RNA as detected by RT-PCR assays
(data not shown). When these lysates were incubated with RNase
A, the amount of Bicc1 recovered by co-IP was notably reduced
(Fig. 3F), supporting the hypothesis that the presence of RNA is
important for the interaction.
Please cite this article in press as: E. Stagner et al., The polycystic kidney disea
Commun. (2009), doi:10.1016/j.bbrc.2009.03.113
SamCystin self-associates

Because other proteins containing SAM domains form either
homodimers or homo-oligomers, we tested the hypothesis that
SamCystin proteins self-associate. Protein from cell lysates that
were co-transfected with c-Myc-SamCystin and V5-SamCystin
were immunoprecipitated with anti-c-Myc antibody. As shown in
Fig. 3D, SamCystin proteins physically interact.

To characterize the interaction between SamCystin proteins in
more detail, immunoprecipitations were carried out using protein
from cells expressing V5-SamCystin and either c-Myc-SamCy-
stin(DSAM), or c-Myc-SamCystin(DANK). Fig. 3E shows that dele-
tion of the ankyrin repeats and deletion of the SAM domains
abolishes self-interaction. This indicates that both functional do-
mains of SamCystin are necessary in order for self-association to
occur. Likewise, the altered version of SamCystin encoded by the
Cy allele represented by c-Myc-SamCystin(R823W) was not able
to maintain an interaction with V5-SamCystin (Fig. 3E).

Discussion

While mutations in Bicc1 and Anks6 have been shown to cause
polycystic kidney disease in rodent models, [1,2] the role of these
proteins in the mammalian kidney is unknown. In this study, we
demonstrate that SamCystin self-associates and interacts with
Bicc1.
se-related proteins Bicc1 and SamCystin interact, Biochem. Biophys. Res.
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Fig. 2. Localization of SamCystin and Bicc1. Immunostaining of primary cilia with anti-acetylated a-tubulin antibody (A and C, red) or anti-c-tubulin antibody (B and D, red).
(A and B) Localization of c-Myc-SamCystin. Immunostaining with anti-c-Myc antibody (green). (C and D) Location of GFP-Bicc1 was visualized directly (green). (E–G)
Immunostaining of cells co-transfected with c-Myc-SamCystin and V5-Bicc1 with anti-c-Myc polyclonal antibody (E, green) or anti-V5 polyclonal antibody (F, red). Merged
images (G) reveal co-localization (yellow) of SamCystin and Bicc1 proteins in the cytoplasm. Nuclei were stained with DAPI (blue) in all images.

Fig. 3. SamCystin and Bicc1 Co-immunoprecipitation. IMCD cells were transfected with various constructs as indicated. Twenty micrograms of total protein extracted from
transfected cell lysates (Input) or 12.5 ll of eluate from immunoprecipitation using immobilized anti-c-Myc antibody (IP) were analyzed by western blot analysis. Proteins
were detected using either anti-c-Myc antibody or anti-V5 antibody. (A–C) Co-immunoprecipitation involving SamCystin and Bicc1. (D and E) Self-association between
SamCystin proteins. (F) Effect of RNaseA on SamCystin–Bicc1 interaction.
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Many proteins implicated in PKD are localized to the primary
cilium or the basal body of kidney tubular epithelial cells. Defects
in these proteins result in abnormal cilia structure or function that
leads to cystogenesis [19–22]. In our studies, SamCystin and Bicc1
did not localize to the primary cilia or basal bodies of cultured kid-
ney cells but instead, are primarily expressed throughout the
cytoplasm.

Studies of Drosophila mutants demonstrate that Bic-C is impor-
tant for localizing RNA and regulating translation in developing
oocytes [30–33] and recent work in our lab has shown that mouse
Bicc1 KH domains bind synthetic RNA in vitro [34]. Although spe-
cific mRNA targets of the mouse Bicc1 protein have not been iden-
tified, we speculate that it acts similar to its orthologues as a
regulator of translation. Localization of Bicc1 primarily in the cyto-
plasm is consistent with this proposed function.

While Samcystin self-associates, the presence of the arginine-
to-tryptophan change encoded by the mutant Anks6Cy allele is suf-
ficient to disrupt self-association. Using the DGK d1 SAM domain as
a structural template, [29] a molecular model of the SamCystin
SAM domain predicts that the SAM domain folds into five distinct
a-helices with both the N- and C-termini pointing outward and
that the site of mutation in the Cy rat (arginine 823) is located
on the largest helix on an exposed surface in a region that in
DGK d1 serves as an interaction interface for self-association (Sup-
plementary data). Analysis using MUpro, a program designed to
predict changes in protein stability due to single residue mutations
[18], indicates that this mutation decreases the stability of the pro-
tein to a level that could potentially affect protein-binding ability.
We speculate that the altered protein encoded by the Anks6Cy al-
lele acts in a dominant negative fashion to disrupt SamCystin
homodimer formation which leads to molecular changes in renal
epithelial cells that promote cyst formation.

Based on our data, we propose a model to describe the SamCy-
stin–Bicc1 interaction such that SamCystin, similar to other pro-
teins such as Shank, tankyrase, and Sans which contain both ANK
repeats and a SAM domain [6,25,26], acts as a molecular scaffold,
forming high molecular mass complexes via self-association, while
also binding multiple interaction partners (Fig. 4). Deletion of
either the ANK or SAM domains abolished SamCystin self-associa-
tion consistent with the idea that SamCystin proteins associate via
head-to-tail interactions. SamCystin and Bicc1 interact but this
interaction may be indirect, potentially through RNA and protein
intermediates. In our model, SamCystin homomers associate in a
head-to-tail manner, their SAM domains interacting with another
unidentified protein or protein complex that concurrently binds
to specific RNAs. Bicc1 would associate with the resulting protein
Please cite this article in press as: E. Stagner et al., The polycystic kidney disea
Commun. (2009), doi:10.1016/j.bbrc.2009.03.113
P
Rcomplex by binding the specific RNAs via its KH domains. This

model explains why the Bicc1 KH but not SAM domain is impor-
tant for the interaction. In summary, our working model is that
Bicc1 in association with SamCystin, a possible scaffolding protein
act together in a complex to localize and regulate the translation of
specific mRNAs that are important in the kidney. Mutations that
disrupt this interaction lead to translation dysregulation which re-
sults in renal cystogenesis.
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