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Deterministic Learning Machine

* Learning a mapping: x; |2 y.

 The machine is defined by a set of mappings
(functions): f(x, a)

* f(x,a) are defined by the adjustable
parameters a. The machine is assumed to be
deterministic.

* A particular choice of a generates a “trained”
machine (examples?)



Linear Classification Hyperplane

A set of labeled training data {x, y.},i=1, ..., [, x. in
RY, y.in {-1, 1}.

A linear machine trained on the separable data.

A linear hyperplane f(x) = w.x+b, separates the
positive from negative examples, w is normal to the
hyperplane.

The points which lie on the hyperplane satisfy w.x +
b =0, positives w.x+b > 0, and negatives w.x+b < 0.



X;. w+b>=+I1 fory, = +1
X;. w+b<=-1, fory =-1

combined into: y,(x..w+b) >= 1

Comments: equivalent to general form y.(x..w+b) >=c¢



“wx+b=1

. wx+b=0
wx +b=-1

Prove w is normal (perpendicular) to the hyperplane

(X, —x;) . w=x,.w=x,,.w=-b—(-b)=0






Distance from origin to wx + b=0is |b| / |w]

“wx+b=1

wx+b=0

Wx+b=—1
Choose a point x on wx+b=0 such that vector (0O, x) is
perpendicular to wx+b = 0. So x is Aw because w is

norm of wx+b=0.
SoAw.w+b=0=>A=-b/ww=-b /|w]|?
Sox=-b/|w|?*w=> |x| =|b|/|w]|.

.Oﬁgn



Q1: How logistic regression
finds a linear hyperplane?

Is the function found by
logistic regression unique?

Q2: From your 1ntuition,
which one is better?






How to Compute Margin?

w = Margin Width

~ 4 How do we compute
M in terms of w

PP and b?
o
e Plus-plane = {x:w.x+b=+1}

e Minus-plane= {x:w.x+b=-1}

A. Moore, 2003



Computing the margin width

_ x> |+ 7 \M = Margin Width

How do we compute

M in terms of w
and b?

Plus-plane = {x:w.x+b=+1}
Minus-plane= {x:w.x+b=-1}

The vector w is perpendicular to the Plus Plane —
. . __—|Any location in

Let x~ be any point on the minus plane R™: not

Let x* be the closest plus-plane-point to x-. <|datapoint

necessarily a

A. Moore, 2003



Computing the margin width

|~
/*\ xt \M Margin Width

\Q@d\d /
| | How do we compute
) o '
o ;4 5 and b?
o
Plus-plane = {x:w.x+b=+1}

Minus-plane= {x:w.x+b=-1}
The vector w is perpendicular to the Plus Plane

Let x~ be any point on the minus plane
Let x* be the closest plus-plane-point to x-.
Claim: x* = x "+ A w for some value of A. Why?

A. Moore, 2003



()
AW
O X
wx+b = +1
wx+b =0
wx+b =-1

X =X+ AW

origin



Computing the margin width

|~
/*X x* \Q'I Margin Width

\Q(Qd\d' /
Ax
A o
RPN e(\\c‘c“ 0¥
s
o

What we know:

e W.X*+b=+1

e W.X +b=-1

e Xt=Xx+ AW

e |xt-x|=M

It's now easy to get M
in terms of w and b

A. Moore, 2003



Computing the margin width

_ x> |+ 7 \M = Margin Width

X7 ‘C/\a
“:ﬁm&“ @ & w.(Xx +Aw)+b=1
o
What we know: ==
e W.X+*+b=+1 wW.xX +b+iw.w=1
b W.X-+b='1 =>
*XT=EX AW -1+Aw.w=1
e [x*-x|=M .
It's now easy to get M )
in terms of w and b A=

W.W
A. Moore, 2003



Computing the margin width

What we know:

w.xt+b=+1
w.x +b=-1
Xt=Xx+ AW
IXxt*-x| =M

|~ 2
\Q4 Margin Width = Tow

M=Ix*t-x | = Aw|=

=N W|=)\/ww

B 24/ W.W 2
W.W VW.W

A. Moore, 2003



Learning the Maximum Margin Classifier

2
|~ _ . . —
M = Margin Width —

7 '

Given a guess Of w and b we can

e Compute whether all data points in the correct half-planes
e Compute the width of the margin

So now we just need to write a program to search the space
of w's and b’s to find the widest margin that matches all
the datapoints. How?

Gradient descent? Simulated Annealing? Matrix Inversion?
EM? Newton’s Method?

A. Moore, 2003



Learning the Maximum Margin Classifier

M= Given guess of w, b we can

/—0‘:_“. Compute whether all data
points are in the correct
half-planes

e Compute the margin width

Assume R datapoints, each
(X, V) Wwhere y, = +/- 1

What should our quadratic How many constraints will we
optimization criterion be? have?

What should they be?
Constrained Optimization Problem

A. Moore, 2003



Learning the Maximum Margin Classifier

“\M=Given guess of w, b we can

, \/1:7' Compute whether all data
points are in the correct
half-planes

e Compute the margin width

Assume R datapoints, each
(x1,v) where y, = +/- 1

What should our quadratic How many constraints will we
optimization criterion be? have? R
Minimize w.w What should they be?

WXk+b>=1/fyk=1
W.Xk+b<='1ifyk='1

A. Moore, 2003
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Margin and Support Vectors
HI ..

@ O) O Support vectors,

@ @ g on the
hyperplane
\\.\\

wx +b=1

wx +b=0

wx +b=-1



Relationship with Vapnik
Chevonenkis (VC) Dimension Learning
Theory



Expectation of Test Error

R@)= [y = f(X.a)| p(X. y)dxdy

R(a) 1s called expected risk / loss, the same as before except
the ' ratio.

Empirical Risk R, (a) 1s detined to be the measured
mean error rate on / training examples.

R, (@)= Sy, - f(X,.0)]



Vapnik Risk Bound

* %|y. —f(X, a)| is also called the loss. It can only
take the values 0 and 1.

* Choose n such that 0 <=n <= 1. With probability 1 —
n, the following bound holds (Vapnik, 1995)

R(@)< R,,,(a)+ \/ (h(log(Zl / ) +1 1) -log(n/ 4))

Where h 1s a non-negative integer called the Vapnik Chevonenkis
(VC) dimension, and is a measure of the notion of capacity.
The second part of the right is called VC confidence.




Insights about Risk Bound

Independent of p(X,y).

Often not possible to compute the left hand
side.

Easily compute right hand side if h is known.

Structural Risk Minimization: Given
sufficiently small n, taking the machine which
minimizes the right hand side and gives the
lowest upper bound on the actual risk.

Question: how does the bound change
according to n?



VC Dimension

 VCdimension is a property of a set of functions
{fla) }. Here we consider functions that

correspond to two-class pattern recognition case,
so that f(X,a)& {-1, +1}.

e If a given set of / points can be labeled in all
possible 2/ ways, and for each labeling, a member
of set {f(a)} can be found to correctly assign those
labels, we say that set of points is shattered by
that set of functions.



VC Dimension

* VCdimension for a set of functions {f(a)} is
defined as the maximum number of training
points that can be shattered by {f(a)}.

* |f the VC dimension is h, then there exists at least
one set of h points that can be shattered. But not
necessary for every set of h points.



A linear function has VC dimension 3

O ] O @]
° O O 9]
— -—
Q O

A

8 possible labeling of 3 points can be separated by lines.




Simply can not separate the labeling of these four points
using a line. So the VC dimension of a line is 3.



VC Dimension and the Number of
Parameters

* |ntuitively, more parameters =2 higher VC
dimension?

* However, 1 parameter function can have infinite
VC dimension. (see Burge’s tutorial)

s % N

flz, o) = HB(sin(ax)), z.a < R.

If sin(ax) > 0, f(x,a) = 1, -1 otherwise



VC Confidence and VC Dimension h
\/ (h(lo o(21/ h)+1)-log(n/ 4))

R(a)=sR _(a)+
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h/1=VC Dimension / Sample Size

VC confidence 1s monotonic in 4. (here /= 10,000, n = 0.05 (95%))



Structural Risk Minimization

h(log(2//h)+1)-1log(n/4)
[

R(a)=R,,,(a)+ \/ ( )

Given some selection of learning machines whose empirical
risk 1s zero, one wants to choose that learning machine

whose associated set of functions has minimal VC dimension.
This 1s called Occam’s Razor: "All things being equal, the
simplest solution tends to be the best one."
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http://www.svms.org/srm/



Comments

* The risk bound equation gives a probabilistic upper
bound on the actual risk. This does not prevent a
particular machine with the same value for empirical
risk, and whose function set has higher VC dimension

from having better performance.

* For higher h value, the bound is guaranteed not
tight.
* h/l>0.37, VC confidence exceeds unity.



Example

e Whatis the VC dimension of one-nearest
neighbor method?

* Nearest neighbor classifier can still perform
well.

* For any classifier with an infinite VC
dimension, the bound is not even valid.



Structure Risk Minimization for SVM

* Margin (M) is a measure of capacity /
complexity of a linear support vector machine

* The objective is to find a linear hyperplane
with maximum margin

* Maximum margin classifier



Maximum Margin Classifier

e The optimization problem:

1
max , T
* b
y,(w'x +b)>1, Vi
e [he solution to this leads to the famous

-- believed by many to be the best "off-the-shelf" supervised learning
algorithm

S.1



Support Vector Machines Optimization

e A convex quadratic programming problem

with linear constrains:
1

S

y.(w'x, +b)>1, Vi
1

e The attained margin is now given by ”‘_‘”

S.t

e Only a few of the classification constraints are relevant = support vectors

e Constrained optimization
e We can directly solve this using commercial quadratic programming (QP) code

e But we want to take a more careful investigation of Lagrange duality, and the
solution of the above in its dual form.

= deeper insight: support vectors, kernels ...
= more efficient algorithm



Lagrange Optimization

An mathematical optimization technique named
after Joseph Louis Lagrange

A method for finding local minima of a function of
several variables subject to one or more constraints

The method reduces a problem in n variables with k
constraints to a solvable problem in n+k variables
with no constraints.

The method introduces a new unknown scalar
variable, the Lagrange multiplier, for each constraint
and forms a linear combination involving the
multipliers as coefficients.

http://en.wikipedia.org/wiki/Lagrange_multipliers



Langrangian Duality

e The Primal Problem
min, f(w)
S.t. g.w)<0, i=1.....k
h(w)y=0, i=1,....1

The generalized Lagrangian:

k l
L(w,a, ,B) = f(”) + Z ;g (w) + Z ,Bz‘hzt(w)
i=1 i=1

the ¢'s (¢z0) and fs are called the Lagarangian multipliers

Primal:

Lemma:

f(n)
max, 5,0 £(w.a.p)= {
i o8

if w satisfies primal constraints
o/w
A re-written Primal:

min, max, ;.o £(W.a. f)



Lagrangian Duality

Recall the Primal Problem:

min,, max, 5, .o £(W.a, f)

The Dual Problem:

max, 4,0 in,, L(w,a, )

Theorem (weak duality):

d’ =max, g, .omin, L(w,a,f) < min, ,max, ;..o £(w,.a,p)= p

Theorem (strong duality):

Iff there exist a saddle point of £(w,a, ), we have

a’*:p*



Primal and Dual Problems

Primal

flw*)
Dual



KKT Condition

e If there exists some saddle point of .£ then the saddle point
satisfies the following "Karush-Kuhn-Tucker" (KKT)

conditions:

0

-~

OwW.

C_ Pw.a. B)=0.

e,

I

i

— L(w,a, f)=0,

a.g.(w)=0,
g.(w) <0,

a =0,

i=1....k
i=1....1
i=1.....m
i=1...., m
i=1..... m

Complementary slackness
Primal feasibility

Dual feasibility

e Theorem: If w*, &" and S satisfy the KKT condition, then it is also a
solution to the primal and the dual problems.



Solve Maximum Margin Classifier

e Recall our opt problem'

max,,
‘ H“ﬂ

s.t
y,(wix, +b) =1, Vi

e This is equivalent to
1

. ‘T .
mm, , —Www

S 1oy Wiy, +5)<0, Vi
e Write the Lagrangian:

1 m
L(w,b,a)= > whw — a, [3'1. (11'ij +b)— 1]
i=1

e Recall that (*) can be reformulated as min,, , max, .o £(w.b, )
Now we solve its dual problem: max_.,min_, .£(w.b,a)



The Dual Problem

max,, .o min,,, £(w,b,a)

e We minimize .£ with respect to w and b first:

m

V., L(w,b,a)=w- Z(Z.v.r. =0,
=

1.7 1771

V,L(w.b,a)=> a,y,=0,

i=1

m

Note that (*) implies: w= Z a.y.X,

e Plus (***) back to .£ , and using (**), we have:

m m

T
L(wb,a)= Z a, > Zaiajyiyj(xi X )
i=1

ij=1



Proof

m

1

EWTW — z a;(yiiwTx; +b) — 1)
i=1

m
Replace w with :
P Z a;yx; ’ we get:

=1

1
== Xi=1 @iYiXi Niz1 @YX — Niz1 a;(Vi((LiZ1 a;yixi)x; + b) — 1)

1 m m m m m m
= Ez a;yiXi z a;yiXxXi — E aiyi(z a;yix;)x; + Z a;y; b — z a;)
i=1 i=1 i=1 i=1

1=1 =1

m
L T
= — > a;a;y;yjXx; Xj +
[,j=1 =1

a;

R



The Dual Problem

e Now we have the following dual opt problem:

m m

1
max, f(a)= Zai ) Z aia_,.y,.yj(xij)
i=1

i.j=1

st. =20, i=1,....k

e Thisis, (again,) a quadratic programming problem.

A global maximum of ¢; can always be found.

e But what's the big deal??

e Note two things: .

w can be recoveredby  w= z a4,y X, See next
i=1

n " _-T -
2. The "kernel X; X; More later ...



Support Vectors

e Note the KKT condition --- only a few ¢'s can be nonzeroll

a.g(w)=0, i=1...

wa+b= -1

,m

Class 2 Call the training data points
0g=0.6 @10=0 whose ¢ 's are nonzero the
) / support vectors (SV)
A% =0
7— —
0s=0 0 d‘z—o
H © =08
0,=0 Ll
0 g 2 wix+b=1
0q=0 -
(9:|assi a3=0 wix+b=0




Support Vector Machines

e Once we have the Lagrange multipliers {«;}, we can
reconstruct the parameter vector w as a weighted combination
of the training examples:

w= > a, VX,
eSSV

Question: how to get b?

e Fortesting with a new data g

e Compute . -
ieSV

and classify z as class 1 if the sum is positive, and class 2 otherwise

e Note: w need not be formed explicitly



How to Determinew and b

Use quadratic programming to solve a. and compute
w is trivial. (use KKT condition (1))

How to compute b?
Use KKT condition (5), for any support vector (point
a, > 0), y(w.x+b)-1=0.

We compute b in terms of a support vector. Better:
we computer b in terms of all support vectors and

take the average.



Interpretation of Support Vector
Machines

e The optimal w is a linear combination of a small number of
data points. This “sparse” representation can be viewed as
data compression as in the construction of KNN classifier

e To compute the weights {¢,}, and to use support vector
machines we need to specify only the inner products (or
kernel) between the examples x; x,

e \We make decisions by comparing each new example 7 with
only the support vectors:

% : T
y*= mgn[ > a.y, (x, z)+ b]

ieSV



Non-Separable Case

Can’t satisfy the constraints y.(wx.+b) >=1 for
some data points? What can we do?



Non-Linearly Separable Problem

e We allow “error

§; ©
/ O Class 2
i, o/
W 0
/ Xi @
o £
0 ” wix4+b=1
- B
Class 1 _ =w x+b=0
wlx+b= -1

' &; In classification; it Is based on the output of

the discriminant function wix+b

e & approximates the number of misclassified samples



Relax Constraints — Soft Margin

Introduce positive slack variables ¢, i=1, ..., [ to relax
constraints. (§ >=0)

New constraints:

X.W+b>=+1-¢ fory, =+1
X.W+b<=-1+¢§ fory =-1

ory,(wx; +b) >=1- §

&>=0

For an classification error to happen, the

corresponding & must exceed unity, so Z & is an
upper bound on the number of training errors.



Soft Margin Hyperplane

e Now we have a slightly different opt problem:
. 1 r ) m )
min_, Eu‘ w+C Z o

y.(wx, +b)=1-&, Vi

st - |
& >0, Vi

& are “slack variables” in optimization

Note that =0 if there is no error for x;

& is an upper bound of the number of errors

C : tradeoff parameter between error and margin



Primal Optimization

us,

=

L, =%|w|2 +CZ§ —;ai(yi(xi.w+b)—1+§i))—

oL
E=C-a -u =0
s,

= a, <=C

i=l

u. 1s the Lagrange multipliers introduced to enforce
Non-negativity of &



KKT Conditions

1.0 Lp=0 — W — Za'z-y,-xz- =0
i
Q.Bbﬁp =0 — Za',-y,- =0
i
3.a££p =0 — C"—Cl'i — M =0
4.constraint-1 y.,-,(WTx.,: —b)—14+& >0
5.constraint-2 & >0
6.multiplier condition-1 a; = 0
7.multiplier condition-2 i =0

8.complementary slackness-1 [y,-(waz- —b)—1+ {z-] =0
9.complementary slackness-1 ;& =0
Max Welling, 2005



Proof of Soft Margin Optimization

L=y WP +C S E = S a0 (rwe b -1+ £) - S

m
i=1 i=1

= % | W|2 —i ai(yi(xl..w+b)—l)—2(C—Cli _ui)gi

=1
=)



The Optimization Problem

The dual of this new constrained optimization problem is |

m 1 m
. ‘ _ v v (vl
max, J(a)= E 0(1.—5 E a.a;y,y(X;X;)
i=1

i.j=1

st. O<ea,<C, i=1....m

m

Z a.y, =0.
i=l1

This is very similar to the optimization problem in the linear
separable case, except that there is an upper bound C on o,
now

Once again, a QP solver can be used to find o,



Values of Multipliers




Solutionof wand b

Ns
W= E a; VX
=1

Use complementary slackness to compute b. Choose
a support vector (0 < a,<C) to compute b, where
&= 0. & =0 1s dertved by combining equations 3 and 9.



New Objective Function

* Minimize |w|2/2 + C(Z&)~.

 Cis parameter to be chosen by the user, a larger C
corresponding to assigning a higher penalty to
errors.

* This is a convex programming problem for any
positive integer k.



SVM Demo

https://www.youtube.com/watch?v=bqwAlpumoPM

http://cs.stanford.edu/people/karpathy/
svmjs/demo/



