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Parametric methods

Assume some functional form (Gaussian, Bernoulli,
Multinomial, logistic, Linear) for

— P(X;| Y) and P(Y) as in Naive Bayes
— P(Y| X) as in Logistic regression

Estimate parameters (1,62,0,w,3) using MLE/MAP
and plug in

Pro — need few data points to learn parameters

Con — Strong distributional assumptions, not satisfied
In practice



Non-Parametric methods

Typically don’t make any distributional assumptions

As we have more data, we should be able to learn
more complex models

Let number of parameters scale with number of
training data

Today, we will see some nonparametric methods for
— Density estimation

— Classification

— Regression



Histogram density estimate

Partition the feature space into distinct bins with widths A, and
count the number of observations, n;, in each bin.
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Effect of histogram bin width

. n;
p(z) = —1,Bin, # bins = 1/A

~ 1 Z?=1 1Xj€Bil'l;,:
plx) = A - /,j\/

Bias of histogram density estimate: "

Elp(a)] = £ P(X € Bin,) = 1 [ o p)ds T A2 _ p(a)

Assuming density it roughly constant in each bin
(holds true if A is small)



Bias — Variance tradeoff

* Choice of #bins # bins = 1/A

Elp(z)] = p(x) if A is small  (p(x) approx constant per bin)

Elp(x)] =~ p(z) if A is large  (more data per bin,
stable estimate)

* Bias— how close is the mean of estimate to the truth
* Variance — how much does the estimate vary around mean

Small A, large #bins <> “Small bias, Large variance”

Large A, small #bins <> “Large bias, Small variance”

Bias-Variance tradeoff




Choice of #bins

plz) = n—AlxeBini # bins = 1/A
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Kernel density estimate

* Histogram — blocky estimate |
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* Kernel density estimate aka “Parzen/moving window
method”
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Kernel density estimate

: p<x>—iZj_lK( =)

more generally

o(257)

n

boxcar kernel :

K(r)= l[(:l?),

9 — -

Gaussian kernel :

| | 2 /e D >
K(z)= e % /2 1 A \
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Kernel density estimation

* Place small "bumps" at each data point, determined by the
kernel function.
* The estimator consists of a (normalized) "sum of bumps”.
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* Note that where the points are denser the density estimate
will have higher values.



boxcar kernel :

K(z)= %I (z),

(Gaussian kernel :

. 1 2
K(z)= —e*/?

V2T

Kernels

Any kernel
function that
satisfies
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boxcar kernel :

K(x)= %I(l’.),

(Gaussian kernel :

- 1 _ 2
K(z)= —e /2
V2T

Kernels

Finite support

—only need local
points to compute
estimate

Infinite support

- need all points to
compute estimate

-But quite popular
since smoother
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Histograms vs. Kernel density

estimation
: 5
A = 0.04 h = 0.005
,Aj o LA
0 0.5 1 0 0.5 1
A = 0.08 ' \ Sh =007 '
0 _A/}\
0 0.5 1 0 0.5 1
A =025 ' \ Th=02 '
0 —z‘(\/\
0 0.5 1 0 0.5 1

A = h acts as a smoother.



k-NN (Nearest Neighbor) density

estimation
~ n;
* Histogram p(r) = —-1,Bin,
. . N
Kernel density est pl) =

Fix A, estimate number of points within A of x (n, or
n,) from data

Fix n,= k, estimate A from data (volume of ball
around x that contains k training pts)

* k-NN density est plx) = nAk
Ak x




k-NN density estimation

k

plz) =~ Ara

Not very popular for density
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1 estimation - expensive to

K=35 | Wy & compute, bad estimates
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\\ for classification quite popular
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k-NN classifier

O
O
N O
O O
O
O
¢ @ Sports

® O Sei

P Science

® ® Arts

®




k-NN classifier

Test document
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k-NN classifier

* Optimal Classifier: f"(z) = argmaxP(y|z)
arg maxp(z|y) P(y)

* k-NN Classifier: fpyny(z) = arg max Pen v (y) P(y)

= argmax ky (Majority vote)

R k,, —> # training pts of class y B
PenN (2y) = —E— " that lie within A, ball 2 ky =k
NyBk,x y

> # total training pts of class y
. n
P(y) = ;y



1-Nearest Neighbor (kNN) classifier
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2-Nearest Neighbor (KkNN) classifier

K even not used

. . .

o In practlce
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3-Nearest Neighbor (kNN) classifier
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What is the best K?

Bias-variance tradeoff
Larger K => predicted label is more stable
Smaller K => predicted label is more accurate

Similar to density estimation



1-NN classifier — decision boundary

Voronoi
Diagram




k-NN classifier — decision boundary

* K acts as a smoother (Bias-variance tradeoff)

* Guarantee: For n — oo , the error rate of the 1-nearest-

neighbour classifier is never more than twice the optimal error.
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Case Study:
kNN for Web Classification

* Dataset

— 20 News Groups (20 classes)

— Download :(http://people.csail.mit.edu/jrennie/20Newsgroups/)
— 61,118 words, 18,774 documents

— Class labels descriptions

comp.graphics

. . rec.autos sci.crvpt
comp.os.ms-windows misc . .
. rec.motorcycles sci.electronics
comp.svs.ibm pc hardware .
: rec_sport baseball scimed
comp.sys.mac hardware .
. rec_sport hockey scispace

comp windows x

talk politics. misc | talk religion misc
misc forsale talk politics. guns alt atheism
talk politics mideast soc religion christian




Experimental Setup

* Training/Test Sets:
— 50%-50% randomly split.
— 10 runs

— report average results

 Evaluation Criteria:

Z I( predict, — true label.)

ictest set

Accuracy =
“ # of test samples



Accuracy
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From
Classification
o

Regression



Temperature sensing

* What is the temperature

in the room? at location x?
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Kernel Regression @

* Aka Local Regression C0 0% %0 ¢
* Nadaraya-Watson Kernel Estimator

R n K (X;XZ
fn(X) =£21in¢ Where w;i(X) = K X;X.)

* Weight each training point based on distance to test
point

 Boxcar kernel Y|E|d5 boxcar kernel :
local average K(2) = =1(x),




boxcar kernel :

K(r) = %I(I),

(Gaussian kernel :

o |
K(r) = —¢ z"/2
V2T

Kernels
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Choice of kernel bandwidth h

h

=1

I
200

multipole

I
200

multipole

Too small

power

power

h

... Too small

10 .

I 1
200 400

multipole

h=200 : ... Too large
., '...'::_, .:"‘:."l."' "
PR "
R 2
 y -':"I'.:l .v."
e L
*\.?‘;'.'.' ”~ )

I I
0 200 400

multipole

Choice of kernel is
not that important



Kernel Regression as Weighted Least

Squares
n K (X—Xz)
min Y w;(£(X;) - ¥;)? wi(X) = e
I i=1 iy K (557
Weighted Least Squares

Kernel regression corresponds to locally constant estimator
obtained from (locally) weighted least squares

i.e.set f(X)=[ (aconstant)



Kernel Regression as Weighted Least

Squares
set f(X,)=[ (aconstant)
o k(59
min 3 wi(8 - Y;)? wi(X) = Yo
constant
M_Qi (B-=Y;) = Notice that Zn:w,,;=1
85 =1 =1



Local Linear/Polynomial Regression

n 5 K (X7LX2
min > w;(f(X;) = Y7) wi(X) = X=X,
f i—1 ?Zl K (- hl

Weighted Least Squares

Step:

1. Calculate the weight w, of each X, with respect to X
2. Do weighted linear regression to obtain the weight of each
dimension



Least Squares Estimator

3 = arg m6§n l(Aﬁ — Y)T(AB —Y)=arg nbln J(3)

J(B) = (AB-Y)T(AB-Y)

= ATABBT — 2pTATY + Y'Y
o9 _=2ATAB —2ATY =0
s

3

p=ATA)1Aaly



Least Squares Estimator

W
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Weighted
Least Squares Estimator

W
3 = arg mein;AKY)T(Aﬁ —~Y)=arg n’:;n J(3)
|
J(B) = AB - Y)ﬁ(@}Y) . V
="ATAppT —M+ YTy
W w

B =WATA)'WATY = (ATWA)TTATWY = (ATVw\ywA) T ATVwywY
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Summary

* Instance based/non-parametric approaches

Four things make a memory based learner:

1. Adistance metric, dist(x,X))
Euclidean (and many more)

2. How many nearby neighbors/radius to look at?
k, A/h

3. A weighting function (optional)
W based on kernel K

4.  How to fit with the local points?
Average, Majority vote, Weighted average



Summary

* Parametric vs Nonparametric approaches

» Nonparametric models place very mild assumptions on
the data distribution and provide good models for
complex data

Parametric models rely on very strong (simplistic)
distributional assumptions

» Nonparametric models (not histograms) requires
storing and computing with the entire data set.

Parametric models, once fitted, are much more efficient
in terms of storage and computation.



What you should know...

* Histograms, Kernel density estimation

— Effect of bin width/ kernel bandwidth
— Bias-variance tradeoff

 K-NN classifier

— Nonlinear decision boundaries

* Kernel (local) regression
— Interpretation as weighted least squares
— Local constant/linear/polynomial regression



Demo — KNN Classification
Boundary

https://www.youtube.com/watch?v=96ch-6Stclc




