Non-Parametric Methods

Dr. Jianlin Cheng

Computer Science Department
University of Missouri, Columbia
Fall, 2015

Slides Adapted from Book and CMU, Stanford Machine Learning Courses

Parametric methods

- Assume some functional form (Gaussian, Bernoulli, Multinomial, logistic, Linear) for
 - $-P(X_i|Y)$ and P(Y) as in Naïve Bayes
 - -P(Y|X) as in Logistic regression
- Estimate parameters $(\mu, \sigma^2, \theta, w, \beta)$ using MLE/MAP and plug in
- Pro need few data points to learn parameters
- Con Strong distributional assumptions, not satisfied in practice

Non-Parametric methods

- Typically don't make any distributional assumptions
- As we have more data, we should be able to learn more complex models
- Let number of parameters scale with number of training data

- Today, we will see some nonparametric methods for
 - Density estimation
 - Classification
 - Regression

Histogram density estimate

Partition the feature space into distinct bins with widths Δ_i and count the number of observations, n_i , in each bin.

$$\widehat{p}(x) = \frac{n_i}{n\Delta_i} \mathbf{1}_{x \in \text{Bin}_i}$$

- Often, the same width is used for all bins, $\Delta_i = \Delta$.
- Δ acts as a smoothing parameter.

Image src: Bishop book

Effect of histogram bin width

$$\widehat{p}(x) = \frac{n_i}{n\Delta} \mathbf{1}_{x \in \text{Bin}_i}$$

bins =
$$1/\Delta$$

$$\widehat{p}(x) = \frac{1}{\Delta} \frac{\sum_{j=1}^{n} \mathbf{1}_{X_j \in \text{Bin}_x}}{n}$$

Bias of histogram density estimate:

$$\mathbb{E}[\widehat{p}(x)] = \frac{1}{\Delta} P(X \in \operatorname{Bin}_x) = \frac{1}{\Delta} \int_{z \in \operatorname{Bin}_x} p(z) dz \approx \frac{p(x)\Delta}{\Delta} = p(x)$$

Assuming density it roughly constant in each bin (holds true if Δ is small)

Bias – Variance tradeoff

Choice of #bins

bins =
$$1/\Delta$$

$$\mathbb{E}[\widehat{p}(x)] pprox p(x) ext{ if } \Delta ext{ is small} \qquad ext{(p(x) approx constant per bin)}$$
 $\mathbb{E}[\widehat{p}(x)] pprox \widehat{p}(x) ext{ if } \Delta ext{ is large} \qquad ext{(more data per bin, stable estimate)}$

- Bias how close is the mean of estimate to the truth
- Variance how much does the estimate vary around mean

Small Δ , large #bins \iff "Small bias, Large variance" Large Δ , small #bins \iff "Large bias, Small variance"

Bias-Variance tradeoff

Choice of #bins

$$\widehat{p}(x) = \frac{n_i}{n\Delta} \mathbf{1}_{x \in \text{Bin}_i}$$

bins =
$$1/\Delta$$

Image src: Bishop book

Kernel density estimate

Histogram – blocky estimate

$$\widehat{p}(x) = \frac{1}{\Delta} \frac{\sum_{j=1}^{n} \mathbf{1}_{X_j \in \text{Bin}_x}}{n}$$

Kernel density estimate aka "Parzen/moving window method"

$$\widehat{p}(x) = \frac{1}{\Delta} \frac{\sum_{j=1}^{n} \mathbf{1}_{||X_j - x|| \le \Delta}}{n}$$

Kernel density estimate

$$\bullet \quad \widehat{p}(x) = \frac{1}{\Delta} \frac{\sum_{j=1}^n K\left(\frac{X_j - x}{\Delta}\right)}{n} \quad \text{more generally}$$

boxcar kernel:

$$K(x) = \frac{1}{2}I(x),$$

Gaussian kernel:

$$K(x) = \frac{1}{\sqrt{2\pi}}e^{-x^2/2}$$

Kernel density estimation

- Place small "bumps" at each data point, determined by the kernel function.
- The estimator consists of a (normalized) "sum of bumps".

Gaussian bumps (red) around six data points and their sum (blue)
$$p(x) = \frac{1}{6\sqrt{2\pi}} (e^{\frac{(x+2.1)^2}{-2}} + e^{\frac{(x+1.3)^2}{-2}} + e^{\frac{(x+0.4)^2}{-2}} + e^{\frac{(x-1.9)^2}{-2}} + e^{\frac{(x-5.1)^2}{-2}} + e^{\frac{(x-6.2)^2}{-2}})$$

 Note that where the points are denser the density estimate will have higher values.

Kernels

boxcar kernel:

$$K(x) = \frac{1}{2}I(x),$$

Gaussian kernel:

$$K(x) = \frac{1}{\sqrt{2\pi}}e^{-x^2/2}$$

Any kernel function that satisfies

$$\begin{aligned}
K(x) &\geq 0, \\
\int K(x)dx &= 1
\end{aligned}$$

Kernels

boxcar kernel:

$$K(x) = \frac{1}{2}I(x),$$

Finite support

 only need local points to compute estimate

Gaussian kernel:

$$K(x) = \frac{1}{\sqrt{2\pi}}e^{-x^2/2}$$

Infinite support

- need all points to compute estimate
- -But quite popular since smoother

Choice of kernel bandwidth

Histograms vs. Kernel density estimation

k-NN (Nearest Neighbor) density estimation

Histogram

$$\widehat{p}(x) = \frac{n_i}{n\Delta} \mathbf{1}_{x \in \text{Bin}_i}$$

Kernel density est

$$\widehat{p}(x) = \frac{n_x}{n\Delta}$$

Fix Δ , estimate number of points within Δ of x (n_i or n_x) from data

Fix n_x = k, estimate Δ from data (volume of ball around x that contains k training pts)

k-NN density est

$$\widehat{p}(x) = \frac{k}{n\Delta_{k,x}}$$

k-NN density estimation

$$\widehat{p}(x) = \frac{k}{n\Delta_{k,x}}$$

Not very popular for density estimation - expensive to compute, bad estimates

But a related version for classification quite popular

k-NN classifier

k-NN classifier

Test document

k-NN classifier

• Optimal Classifier: $f^*(x) = \arg \max_y P(y|x)$ = $\arg \max_y p(x|y)P(y)$

• k-NN Classifier: $\widehat{f}_{kNN}(x) = \arg\max_y \widehat{p}_{kNN}(x|y)\widehat{P}(y)$ $= \arg\max_y k_y \quad \text{(Majority vote)}$

$$\widehat{p}_{kNN}(x|y) = \frac{k_y \longrightarrow}{n_y \Delta_{k,x}} \text{ that lie within } \Delta_{\mathbf{k}} \text{ ball } \sum_y k_y = k$$

$$\stackrel{\widehat{P}(y) = \frac{n_y}{n_y}}{\longrightarrow} \text{ # total training pts of class y}$$

1-Nearest Neighbor (kNN) classifier

2-Nearest Neighbor (kNN) classifier

3-Nearest Neighbor (kNN) classifier

What is the best K?

Bias-variance tradeoff

Larger K => predicted label is more stable Smaller K => predicted label is more accurate

Similar to density estimation

1-NN classifier – decision boundary

Voronoi Diagram

k-NN classifier – decision boundary

- K acts as a smoother (Bias-variance tradeoff)
- Guarantee: For $n \to \infty$, the error rate of the 1-nearest-neighbour classifier is never more than twice the optimal error.

Case Study: kNN for Web Classification

Dataset

- 20 News Groups (20 classes)
- Download :(http://people.csail.mit.edu/jrennie/20Newsgroups/)
- 61,118 words, 18,774 documents
- Class labels descriptions

comp.graphics comp.os.ms-windows.misc comp.sys.ibm.pc.hardware comp.sys.mac.hardware comp.windows.x

rec.autos rec.motorcycles rec.sport.baseball rec.sport.hockey

sci.crypt sci.electronics sci.med sci.space

misc forsale

talk.politics.misc talk.politics.guns talk.politics.mideast soc.religion.christian

talk.religion.misc alt.atheism

Experimental Setup

- Training/Test Sets:
 - 50%-50% randomly split.
 - 10 runs
 - report average results
- Evaluation Criteria:

$$Accuracy = \frac{\sum_{i \in \textit{test set}} I(\textit{predict}_i = \textit{true label}_i)}{\textit{\# of test samples}}$$

Results: Binary Classes

From Classification to Regression

Temperature sensing

What is the temperature in the room?

$$\widehat{T} = \frac{1}{n} \sum_{i=1}^{n} Y_i$$

Average

at location x?

$$\widehat{T}(x) = \frac{\sum_{i=1}^{n} Y_i \mathbf{1}_{||X_i - x|| \le h}}{\sum_{i=1}^{n} \mathbf{1}_{||X_i - x|| \le h}}$$

"Local" Average

Kernel Regression

- Aka Local Regression
- Nadaraya-Watson Kernel Estimator

$$\widehat{f}_n(X) = \sum_{i=1}^n w_i Y_i$$
 Where $w_i(X) = \frac{K\left(\frac{X - X_i}{h}\right)}{\sum_{i=1}^n K\left(\frac{X - X_i}{h}\right)}$

- Weight each training point based on distance to test point
- Boxcar kernel yields local average

boxcar kernel :
$$K(x) = \frac{1}{2}I(x),$$

Kernels

boxcar kernel:

$$K(x) = \frac{1}{2}I(x),$$

Gaussian kernel:

$$K(x) = \frac{1}{\sqrt{2\pi}}e^{-x^2/2}$$

$$K\left(\frac{X_j - x}{\Delta}\right)$$

Choice of kernel bandwidth h

Choice of kernel is not that important

Kernel Regression as Weighted Least Squares

$$\min_{f} \sum_{i=1}^{n} w_i (f(X_i) - Y_i)^2 \qquad w_i(X) = \frac{K\left(\frac{X - X_i}{h}\right)}{\sum_{i=1}^{n} K\left(\frac{X - X_i}{h}\right)}$$

Weighted Least Squares

Kernel regression corresponds to locally constant estimator obtained from (locally) weighted least squares

i.e. set
$$f(X_i) = \beta$$
 (a constant)

Kernel Regression as Weighted Least Squares

set $f(X_i) = \beta$ (a constant)

$$\min_{\beta} \sum_{i=1}^{n} w_i (\beta - Y_i)^2$$

$$w_i(X) = \frac{K\left(\frac{X - X_i}{h}\right)}{\sum_{i=1}^n K\left(\frac{X - X_i}{h}\right)}$$

$$\frac{\partial J(\beta)}{\partial \beta} = 2 \sum_{i=1}^n w_i (\beta - Y_i) = 0$$
 Notice that $\sum_{i=1}^n w_i = 1$

Notice that
$$\sum\limits_{i=1}^n w_i = 1$$

$$\Rightarrow \widehat{f}_n(X) = \widehat{\beta} = \sum_{i=1}^n w_i Y_i$$

Local Linear/Polynomial Regression

$$\min_{f} \sum_{i=1}^{n} w_i (f(X_i) - Y_i)^2 \qquad w_i(X) = \frac{K\left(\frac{X - X_i}{h}\right)}{\sum_{i=1}^{n} K\left(\frac{X - X_i}{h}\right)}$$

Weighted Least Squares

Step:

- 1. Calculate the weight w_i of each X_i with respect to X
- 2. Do weighted linear regression to obtain the weight of each dimension

Least Squares Estimator

$$\widehat{\beta} = \arg\min_{\beta} \frac{1}{n} (\mathbf{A}\beta - \mathbf{Y})^T (\mathbf{A}\beta - \mathbf{Y}) = \arg\min_{\beta} J(\beta)$$

$$J(\beta) = (\mathbf{A}\beta - \mathbf{Y})^T (\mathbf{A}\beta - \mathbf{Y})$$

$$= A^T A \beta \beta^T - 2 \beta^T A^T Y + Y^T Y$$

$$\frac{\partial J(\beta)}{\partial \beta}\Big|_{\widehat{\beta}} = 2A^TA\beta - 2A^TY = 0$$

$$\boldsymbol{\beta} = (A^T A)^{-1} A^T Y$$

Least Squares Estimator

$$\widehat{\beta} = \arg\min_{\beta} \frac{1}{n} (\mathbf{A}\beta - \mathbf{Y})^T (\mathbf{A}\beta - \mathbf{Y}) = \arg\min_{\beta} J(\beta)$$

$$J(\beta) = (\mathbf{A}\beta - \mathbf{Y})^T (\mathbf{A}\beta - \mathbf{Y}) \qquad \mathbf{w} \qquad \mathbf$$

Weighted Least Squares Estimator

$$\widehat{\beta} = \arg\min_{\beta} \frac{1}{n} (\mathbf{A}\beta - \mathbf{Y})^{T} (\mathbf{A}\beta - \mathbf{Y}) = \arg\min_{\beta} J(\beta)$$

$$J(\beta) = (\mathbf{A}\beta - \mathbf{Y})^{T} (\mathbf{A}\beta - \mathbf{Y}) \qquad \mathbf{W} \qquad \mathbf{W}$$

 $\beta = (WA^{T}A)^{-1}WA^{T}Y = (A^{T}WA)^{-1}A^{T}WY = (A^{T}\sqrt{w}\sqrt{w}A)^{-1}A^{T}\sqrt{w}\sqrt{w}Y$

Summary

Instance based/non-parametric approaches

Four things make a memory based learner:

- A distance metric, dist(x,X_i)
 Euclidean (and many more)
- How many nearby neighbors/radius to look at?
 k, Δ/h
- A weighting function (optional)
 W based on kernel K
- How to fit with the local points?
 Average, Majority vote, Weighted average

Summary

- Parametric vs Nonparametric approaches
 - Nonparametric models place very mild assumptions on the data distribution and provide good models for complex data
 - Parametric models rely on very strong (simplistic) distributional assumptions
 - Nonparametric models (not histograms) requires storing and computing with the entire data set.
 - Parametric models, once fitted, are much more efficient in terms of storage and computation.

What you should know...

- Histograms, Kernel density estimation
 - Effect of bin width/ kernel bandwidth
 - Bias-variance tradeoff
- K-NN classifier
 - Nonlinear decision boundaries
- Kernel (local) regression
 - Interpretation as weighted least squares
 - Local constant/linear/polynomial regression

Demo – KNN Classification Boundary

https://www.youtube.com/watch?v=96cb-6Stclc