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Deep Learning Buzz
El)t 2012: Is Deep Learning

New fJork ;=ovon R atieE - Accomplishments
¢cimes

Apple’s Siri virtual personal assistant
Google’s Street View

Google/Facebook/Tweeter/Yahoo Deep
Learning Acquisition

Hinton’s identification of drug molecule
Hinton’s hand writing recognition

Swiss Al Lab’s recognition of German
traffic sign images beats human experts

Rashid’s speech was translated into Chinese by deep learning tools.
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Who's heard of ...

* Energy Based Models (EBMs)

e Restricted Boltzmann Machines (RBMs)
* Deep Belief Networks

e Auto-encoders



Objectives

1. Awareness of new developments in statistical
machine learning

2. Exposure to Energy Based Models, RBMs and
Deep Belief Networks

3. Generate some excitement about these new
developments



Outline

Motivating factors for study
RBMs

Deep Belief Networks
Applications

o
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The Toolbox

We often reach for the familiar...
For discriminative tasks we have
o neural networks (~1980’s, back-prop)
o SVM (~1990’s, Vapnik)

But is there anything better out there???



Challenges with SVM/NN

Potential difficulties with SVM
o Training time for large datasets

o Large number of support vectors for hard
classification problems

Potential difficulties with NN & back-prop

o Diminishing gradient inhibits multiple layers
o Can get stuck in local minimums

o Training time can be extensive




Challenges with SVM/NN

More general “problems” with NNs and SVM...

o Need labeled data (what about unlabeled
data?)

o Amount of information restricted by labels (ie,

hard to learn a complex model if we are limited
by labels)
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How to respond to these challenges

* Try to model the structure of the sensory input
(ie, data), but keep the efficiency and simplicity
of a gradient method

— Adjust the weights to maximize the probability that a
generative model would have produced the sensory
input.

— Learn p(data) not p(label | data)

* So instead of learning a label, first learn how to
generative your data

Hinton, 2007



How to respond to these challenges

* Try to model the structure of the sensory input
(ie, data), but keep the efficiency and simplicity
of a gradient method

— Adjust the weights to maximize the probability that a
generative model would have produced the sensory
input.

— Learn p(data) not p(label | data)
* So instead of learning el, first learn how to

generative your data Immediate benefit in that all data

does not have to be label. Also
reduces dependency on label.

Hinton, 2007
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Recap

So, we are convinced we ...

1.

recognize some concerns with
“standard” tools and would like
what other options are out
there

like the idea of modeling the
input first (ie, building a model
of our data as oppose to an out
right classifier)



Perceptron

Learning to map input to output / label and is guided by output.

Error: (f(x)-y)?

JX)=wy+wx, +twx, + .., wx,

f(X) > (: positive (1) new __ o cur _ GEI’I’OI’ — U _
f(x) <0: negative (-1) woo=w P w (f(x)=-y)x

Perceptron — 1950s

Rosenblatt, Psychological Review, 1958



Neural Network

. Backward
L

u ,"v.& ¢ Forward Propagation
: ropagation

Error: (0-y)?

Hidden layer

1980s — Neural Network Revolution
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t Deep Networks?

G. Hinton

2006



Why Deep Learning? — A Face
Recognition Analogy

Face or not ?

Lines, circles,
squares

Brain Learning
Image pixels



Learning Representation First
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http://theanalyticsstore.com/deep-learning/



COOGLE TIRES BRAINS THAT
HELPED SUPERCHARGE
MACHINE LEARNING

A Deep
Learning
Success |




Energy Based Models

p(x) — probability of our data; data is represented by

feature vector x. o~ E()
plz) = -

Z

and 7 _ Z ~E(2)

Attach an energy function (ie, E(x)) to score a
configuration (ie, each possible input x).

We want desirable data to have low energy. Thus,
tweak the parameters of E(x) accordingly.

Restricted Boltzann Machines (RBM)



EBMs with Hidden Units

To increase power of EBMs, add hidden

variables. .

Zplll Z)Z

h

By using the notatlon

Ty — — l()hz E(x.h)

Free energy

We can rewrite p(x) in a form similar to the
standard EBM,

P(a) = <" with 2 = et l0g(P(x)) = -F(x) - log(2)

Restricted Boltzmann Machines (RBM)



Tweakin’ Parameters

Now we need to adjust the model so it reflects
our data, do ML

e Likelihood fn

L(0) = 1L, p(zi; )

* Avg. Log-likelihood fn

| 1
0(0) = 5loh ip(z;;0)) - Zloo p(x;; 6

:;Zlog = Z — log(Z))




Tweakin’ Parameters

Take the derivative
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Tweakin’ Parameters

e Take the derivative

:_Z —OF (;) 81;(;‘ ):%Z(—QF(:I:Z) +10_Z)

=% <‘0£§?")>+Zp<a:~>am

This is an expectation over all
possible configurations of input

Can think of as an expectation X. ?#@! Grows exponentially as
over dataset. function of the length of input

Restricted Boltzann Machines (RBM)



Transition to RBM

Looks like training a EBM is, in general, a
tall task. But after much

D+ =@

Jump to an end result...
Restricted Boltzmann Machines (RBM)



RBMs

* Represented by a bipartite
graph, with symmetric,
weighted connections

* One layer has visible nodes

and the other hidden (ie,
latent) variables.

* Notes are often binary,
stochastic units (ie, assume 0
or 1 based on probability)




Unsupervised Restricted Boltzmann

Machine (RBM)

* A model for a distribution over
two layers of binary nodes

* Probability is defined via an
“energy”

(v, h) Z bijv; — Z cihj — Z hjviw;;
J i,J
ph) = “_EZM) Z=3 p e th
, v h

e—E(-'l_w,h.)
p(v) =

h

hidden layer

N

visible layer




What’s gained by “Restricted”

1) Conditional probabilities factor nicely
P(h|"U) == H?"P(h-.i"?)) and P('U|h.) — HiP(‘UiVZ)
2) Using binary units, we also can get

P(vj = 1|h) = o(bj + W;h)
P(h; = 1|v)

o(c; + Wjv)

So we can get a sample of the visible or hidden
nodes easily...

Restricted Boltzann Machines (RBM)



Training a RBM — Maximum Likelihood

e~ E(v,h)
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Gibbs Sampling
@ ¢ )

— =
Gibbs Step

Can sample from p(v,h) by repeatedly

sampling from v and h using the eqgns. for p(v]|
h) and p(h]|v).

As t oo, (Vi) h{t) converge to samples of
p(v,h).

But... hard to know when equilibrium has been
reach, can be computationaly expensive

Restricted Boltzann Machines (RBM)



Training a RBM - Contrastive
Divergence based on Gibbs Sampling

Instead of attempting to sample from joint
distribution p(v,h) (i.e. pee), sample from pi(v,h).
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Hinton, Neural Computation(2002)




Learning Rule

Recall energy function

E(v,h) Z b;jv;— Z c]-h.j—z vihjw;

J 0]
Calculating derlvahves... v
OFE (v, h) OE(v,h)
: = v;h j b =Y
) OFE (v, h) ;
dc; J

So,
Aw; j o< €(< vihj >7 — < wvihj >



A quick way to learn an RBM
Q/Q)K Q Q/@ Q Start with a training vector on the

visible units.

0 1
<Vihj> <vihf> Update all the hidden units in
parallel
Gj Q @Q Update the all the visible units in
parallel to get a “reconstruction”.
t=0 t=1
data reconstruction Update the hidden units again.
Aw. = g(<vh;>" —<vh>")
ij i i

This is not following the gradient of the log likelihood. But it works well. It is
approximately following the gradient of another objective function (Carreira-
Perpinan & Hinton, 2005).

Slide modified from Hinton, 2007



Training a RBM via Contrastive
Divergence

Gradient of the likelihood with respect to w; = the

difference between interaction of v; and /; at time 0 and
at time 1.

Hidden
Layer Q @ Q p§0> — O'(Z V; W; 5 -+ C])
7

1

0
< vipj >data

/
Visible Q)‘ ®

Layer

Hinton, Neural Computation(2002)



Training a RBM via Contrastive
Divergence

Gradient of the likelihood with respect to w; = the

difference between interaction of v; and /; at time 0 and
at time 1.

Hidden
Layer Q Q Q p§0) — O'(Z V; Wi j -+ C])
/

< vip(‘) >data i
'/ \ p) = o(>  hjwij +b;)
Visible 6)‘ ® @ O j

Layer

t=0 t=1

Hinton, Neural Computation(2002)



Training a RBM via Contrastive
Divergence

Gradient of the likelihood with respect to w; = the

difference between interaction of v; and /; at time 0 and
at time 1.

Hidden
Layer O Q O Q/@ O p§'0) = U(Z viw;j + ¢;j)
/ .

< Uip(‘) >data < p}pl >recon :
Visible O J
O P\ = o> plwij + ¢))

Layer

t=0 t=1

c: sigmoid function

— 1,01
Awi,]. o <vlpj0> - <pl pj > Hinton, Neural Computation(2002)



Challenges with RBMs

A number of choices to be made

— Types of nodes, learning weight, initial values,
batch sizes, etc.

— Care should be taken to avoid over-fitting

A RBM “manual” is available on line...
http://www.cs.utoronto.ca/~hinton/absps/guideTR.pdf

Software package: Pylearn2:
http://deeplearning.net/software/pylearn2/

On both GPU and CPU



GPU Implementation

Calculations need for
training and classification
made use of CUDAMat and
GPUs
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Train with over one million
parameters in about an hour




Why ???

Okay, we can model p(x).

But how to...

1. Find p(label|x). We want a
classifier!

&

2. Improve the model for p(x).



Deep Belief Nets

RBMs are typically used

in stack ¥ w,
— Train them up one layer

at a time +3

2

— Hidden units become

visible units to the next

layer up *9 m
If your goal is a data _|

discriminator, you train a
classifier on the top level
representation of your
input.



Training a Deep Network

1. Weights are learned
layer by layer via
unsupervised learning.

2. Final layer is learned as a

supervised neural
network.

3. All weights are fine-
tuned using supervised
back propagation.

Hinton and Salakhutdinov, Science, 2006



Why stack them up? Why does this
work?

This is a good question, with a long complicated
answer.

Basically, doing so can improve a lower
variation bound on the probability of training
data under the model.

Hinton, Osindero, & The, 2006



How to generate from the model

e To generate data:

O

Get an equilibrium sample h3

from the top-level RBM by

performing alternating -

Gibbs sampling for a long 3

time.

Perform a top-down pass to h2

get states for all the other

layers. I 1 W5
So the lower level bottom-up hl

connections are not part of

the generative model. They I 1 4

are just used for inference.

data

Slide modified from Hinton, 2007



28x28

Deep Autoencoders i

* They always looked like a 1000 neurons
really nice way to do non- w, T
linear dimensionality 500 Neurons

reduction:
. e Wy T
— But it is very difficult to
optimize deep 250 neurons
autoencoders using wy
backpropagation. 20 | «— "”?ar
* We now have a much better W, T units
way to optimize them:
— First train a stack of 4 250 neurons
RBM’s Wy T
— Then “unroll” them. 500 neurons
— Then fine-tune with W, T
backprop. 1000 neurons
Wl

Hinton & Salakhutdinov, 2006; slide form Hinton

UCL tutorial 28x28




Some Applications

We will look at two ﬂ
applications done by Hinton’s ;e'

Lab
A model for digit recognition

e Cluster/search documents



Applications: A model of digit recognition

e Classify digits (0—9)

* Inputis a 28x28 image from MNIST (training

60k, test 10k examples)
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Applications: A model of digit recognition

This is work from Hinton
et al., 2006

2000 top-level neurons

The top two layers form an

associative memory whose I
energy landscape models the

low dimensional manifolds of

- 10 label
the digits.
= s — 500 neurons

The energy valleys have names neurons I

The model learns to generate

combinations of labels and images. 500 neurons
To perform recognition we start with a I 1
neutral state of the label units and do an
up-pass from the image followed by a few 28 x 28
iterations of the top-level associative pixel
memory. :

image

Matlab/Octave code available at
http://www.cs.utoronto.ca/~hinton/ Slide modified from Hinton, 2007




Model in action

Hinton has provided an excellent way to view the model in

action...
011234
1o 7s]o]
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http://www.cs.toronto.edu/~hinton/digits.html




More Digits

Samples generated by letting the associative memory
run with one label clamped. There are 1000 iterations of
alternating Gibbs sampling between samples.
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Slide from Hinton, 2007



Even More Digits

Examples of correctly recognized handwritten digits
that the neural network had never seen before

ol il N\ (/A2
de2dQ32A5H7
3¢ 7914947046 >59
el 772\ 71289%79
b8 78 L9497

Slide from Hinton, 2007



Extensions

Do classification.

One way (probably no N or >V
the best), train ﬂ
generative model with 2000 top-level neurons
labeled/unlabeled data T 1
Then train a NN on Soot”e”mns
higher dimensional — neur:m
representation. < T 1
28 x 28 pixel
image




Applications: Classifying text documents

A document can be characterized by the
frequency of words that appear (ie, word
counts for some dictionary become feature
vector)

* Goals...
1. Group/cluster similar documents
2. Find similar documents



How to compress the count vector

2000 reconstructed counts

T Multi-layer auto-encoder
500 Neurons * Train a model to reproduce
T its input vector as its output

* This setup forces as much

250 neurons : : :
information as possible be

L | compressed and passed thru
10 the 10 numbers in the
1} central bottleneck.

250 neurons * These 10 numbers are then
T a good way to compare

documents.

500 neurons

T

2000 word counts Slide modified from Hinton, 2007




How to compress the count vector

2000 reconstructed counts

i

500 neurons

Multi-layer auto-encoder

Train a model to reproduce
its input vector as its output

This setup forces as much
information as possible be
compressed and passed thru

250 neurons
O 12)
.r -for.easy 46 9
visualization

250 neurons

1

500 neurons

1

2000 word counts

the-d8 2 numbers in the
central bottleneck.

These 38 2 numbers are
then a good way to compare
documents.

Slide modified from Hinton, 2007



LSA 2-D Topic Space

Clusters

Autoencoder 2-D Topic Space

European Community
Interbank Markets Monetary/Economic

Disasters and
Accidents

Leading Ecnomic .~ *5 A L "'ﬁ_\h Legal/Judicial
T N

Indicators #’ A S
e ey ‘.¢g = i
- 3 % = ."“ -
', : Government
Accounts/ . Borrowings

Earnings

Images from Hinton, 2007



Search

2000 reconstructed counts

Add noise to input to

1T :
500 neurons middle layer
T - Forces output to become
250 neurons bimodal
b

3 - Round valuestoOor1to

10 form a binary vector (ie,
Noise vector

= code)

250 neurons (constant per
o data example)

500 neurons

|

2000 word counts

Hinton, 2007



Search

Use the binary codes as a key/hash documents

To find a similar document, calculate binary code and then
retrieve documents that correspond to small deviations

of the code. 0000011011 | —> ﬂ\ ﬂ\ A‘

0000011011 > |=||=

— )

0000011110

0000011111 \u ﬂ\ j j

Salakhutdinov and Hinton, 2007



A summary of functions of deep
learning — a universal learner

Classification fEEP LEARNING

Regression T \

ftwor 1h tc g e pa H dgt I

Clustering |
Autoenco?ling N v‘ ‘*,g; }
Compression - ) e

Dimension reduction

Data generation

Modeling distribution

Feature abstraction

Flexible training and architecture

Unsupervised, supervised, and semi-supervised learning
Suitable for big data
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