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Shortcomings of HMMs

HMM models capture dependences between each state and only its

corresponding observation

e NLP example: In a sentence segmentation task, each segmental state may depend not just
on a single word (and the adjacent segmental stages), but also on the (non-local) features of
the whole line such as line length, indentation, amount of white space, etc.

Mismatch between learning objective function and prediction

objective function

e HMM learns a joint distribution of states and observations P(Y, X), but in a prediction task, we
need the conditional probability P(Y|X)



Generative vs. Discriminative
Classifiers

e Goal: Wishtolearnf: X > Y, e.g., P(Y|X)

e Generative classifiers (e.g., Naive Bayes):
e Assume some functional form for P(X|Y), P(Y)
This is a ‘generative’ model of the datal
o Estimate parameters of P(X|Y), P(Y) directly from training data
e Use Bayes rule to calculate P(Y|X= x)

e Discriminative classifiers (e.g., logistic regression)
e Directly assume some functional form for P(Y|X)
This is a ‘discriminative’ model of the datal
e Estimate parameters of P(Y|X) directly from training data



Structured Conditional Models

Conditional probability P(label sequence y | observation sequence x)
rather than joint probability P(y, x)

o Specify the probability of possible label sequences given an observation sequence

Allow arbitrary, non-independent features on the observation
sequence X

The probability of a transition between labels may depend on past
and future observations

Relax strong independence assumptions in generative models



Conditional Distribution

If the graph G=(V, E) of Y is a tree, the conditional distribution over
the label sequence Y =y, given X =x, by the Hammersley Clifford
theorem of random fields is:

Po(yX) eXp( > Afileyl.xX)+ > g (v.y v-X)]

ecEk vel’ ik
_  xis a data sequence O‘@\
— yis alabel sequence .
— vis a vertex from vertex set V = set of label random variables X, X,

— eis an edge from edge set E over V

- f,and g, are given and fixed. g, is a Boolean vertex feature; f, is a Boolean edge
feature

—  kis the number of features

- O=(A. Ay A i 1. 1) A, and g, are parameters to be estimated
— Y|, 1s the set of components of y defined by edge e

— Y|, is the set of components of y defined by vertex v



Conditional Random Fields
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e CREF Is a partially directed model
e Discriminative model
e Usage of global normalizer Z(x)
e Models the dependence between each state and the entire observation sequence



Conditional Random Field

e General parametric form:

1

Ply|x) = Zx. ) EXD(;(; e fe(yis yio1,x) + Zj:mgl(yisx]))

e:-cp(Z()\Tf(y-g, yio1,X) + p' gy x)))

=1

T

where Z(x, A, ) = ZGXP(Z()*TI”(%,%—MX)+#Tg(i¢fnx)))
v i=1



Conditional Random Field

1
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e Allow arbitrary dependencies
on input

e Clique dependencies on labels

e Use approximate inference for
general graphs




CRFs Inference

e Given CRF parameters A and u, find the y* that maximizes P(y|x)
T

y© = argmaxexp(d (A (g vio1,x) + 0" 8 (i %))
i=1

e Canignore Z(x) because it is not a function of y

e Run the max-product algorithm on the junction-tree of CRF:

Same as Viterbi decoding
used in HMMs!




CRF Learning

o Given {(Xy, Yg)}4=1", find 1*, u* such that

PN — argma}:L(A,p):argmaxHP(yd|xd,/\,p)
AL ALt 0
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Gradient of the log-partition function in
_ _ an exponential family is the expectation
e Computing the gradient w.r.t A of the sufficient statistics.
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A CRF Example

Edge features?
Node features?

Loaded

Output the maximum number of three dice throws



Edge Features
T T N
F F 0 1 1

F F 1 1 1
L F 1 1 1
L F 2 1 1

Node Features
Yo X X X
F 0 1 1
F 1 1 1

L 1 1 1
L 2 1 1



Evaluation & Decoding

Model parameters: weights for features
Calculate P(Path | Obs). Y = FFLF. X = 1216.
Edge features: FF (012), FL (121), LF (216)
Node features: F(012), F(121), L(216), F(160)
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Learning — Gradient Ascend

Fit the weights of the features

v V% 6 % I [ [ X
F F 0 1 1 F 0 1 1

F F 1 1 1 F 1 1 1

L F 1 1 1 L 1 1 1

L F 2 1 1 L p) 1 1
N

VaLw) = > 0O fyaivai-1,.%a) — > _(P(ylxa) > £(Wair Yai-1,%a)))

d=1 i=1 b4 =1



Comparison on Synthetic Data
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e Comparison of error rates on synthetic data
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MEMM: maximum entropy Markov models



CRFs: Some Empirical Results on
Speech Tagging

e Parts of Speech tagging

model | error  oov error
HMM | 5.69%  45.99%
MEMM | 637%  54.61%
CRF | 5.55%  48.05%

MEMMT | 481%  26.99%
CRF*™ | 427%  23.76%

T Using spelling features

e Using same set of features: HMM >=< CRF > MEMM
e Using additional overlapping features: CRF* > MEMM* >> HMM



More References

* Collection of papers and tools:
http://www.inference.phy.cam.ac.uk/hmw26/
crf

 Tutorial: H.M. Wallach. Conditional Random
Fields: An Introduction

* Paper:J. Lafferty, A. McCallum, F. Perreira.
Conditional Random Fields: Probabilistic
Models for Segmenting and Labeling
Sequence Data



http://www.inference.phy.cam.ac.uk/hmw26/crf/
http://www.inference.phy.cam.ac.uk/hmw26/crf/
http://www.inference.phy.cam.ac.uk/hmw26/crf/

