Conditional Random Field

Dr. Jianlin Cheng

Department of Computer Science University of Missouri, Columbia

Slides Adapted from Book and CMU, MU, Stanford Machine Learning Courses
Fall, 2011

Shortcomings of HMMs

- HMM models capture dependences between each state and only its corresponding observation
 - NLP example: In a sentence segmentation task, each segmental state may depend not just on a single word (and the adjacent segmental stages), but also on the (non-local) features of the whole line such as line length, indentation, amount of white space, etc.
- Mismatch between learning objective function and prediction objective function
 - HMM learns a joint distribution of states and observations P(Y, X), but in a prediction task, we
 need the conditional probability P(Y|X)

Generative vs. Discriminative Classifiers

- Goal: Wish to learn f: X → Y, e.g., P(Y|X)
- Generative classifiers (e.g., Naïve Bayes):
 - Assume some functional form for P(X|Y), P(Y)
 This is a 'generative' model of the data!

- Use Bayes rule to calculate P(Y|X= x)
- Discriminative classifiers (e.g., logistic regression)
 - Directly assume some functional form for P(Y|X)
 This is a 'discriminative' model of the data!
 - Estimate parameters of P(Y|X) directly from training data

Structured Conditional Models

- Conditional probability $P(\text{label sequence } \mathbf{y} \mid \text{observation sequence } \mathbf{x})$ rather than joint probability $P(\mathbf{y}, \mathbf{x})$
 - Specify the probability of possible label sequences given an observation sequence
- Allow arbitrary, non-independent features on the observation sequence X
- The probability of a transition between labels may depend on past and future observations
- Relax strong independence assumptions in generative models

Conditional Distribution

 If the graph G = (V, E) of Y is a tree, the conditional distribution over the label sequence Y = y, given X = x, by the Hammersley Clifford theorem of random fields is:

$$p_{\theta}(\mathbf{y} \mid \mathbf{x}) \propto \exp \left(\sum_{e \in E, k} \lambda_k f_k(e, \mathbf{y} \mid_e, \mathbf{x}) + \sum_{v \in V, k} \mu_k g_k(v, \mathbf{y} \mid_v, \mathbf{x}) \right)$$

- x is a data sequence
- y is a label sequence
- v is a vertex from vertex set V = set of label random variables

- e is an edge from edge set E over V
- f_k and g_k are given and fixed. g_k is a Boolean vertex feature; f_k is a Boolean edge feature
- k is the number of features
- $-\theta = (\lambda_1, \lambda_2, \dots, \lambda_n; \mu_1, \mu_2, \dots, \mu_n); \lambda_k \text{ and } \mu_k \text{ are parameters to be estimated}$
- y_e is the set of components of y defined by edge e
- $-y|_{v}$ is the set of components of y defined by vertex v

Conditional Random Fields

$$P(\mathbf{y}_{1:n}|\mathbf{x}_{1:n}) = \frac{1}{Z(\mathbf{x}_{1:n})} \prod_{i=1}^{n} \phi(y_i, y_{i-1}, \mathbf{x}_{1:n}) = \frac{1}{Z(\mathbf{x}_{1:n}, \mathbf{w})} \prod_{i=1}^{n} \exp(\mathbf{w}^T \mathbf{f}(y_i, y_{i-1}, \mathbf{x}_{1:n}))$$

- CRF is a partially directed model
 - Discriminative model
 - Usage of global normalizer Z(x)
 - Models the dependence between each state and the entire observation sequence

Conditional Random Field

General parametric form:

$$P(\mathbf{y}|\mathbf{x}) = \frac{1}{Z(\mathbf{x}, \lambda, \mu)} \exp(\sum_{i=1}^{n} (\sum_{k} \lambda_{k} f_{k}(y_{i}, y_{i-1}, \mathbf{x}) + \sum_{l} \mu_{l} g_{l}(y_{i}, \mathbf{x})))$$
$$= \frac{1}{Z(\mathbf{x}, \lambda, \mu)} \exp(\sum_{i=1}^{n} (\lambda^{T} \mathbf{f}(y_{i}, y_{i-1}, \mathbf{x}) + \mu^{T} \mathbf{g}(y_{i}, \mathbf{x})))$$

where
$$Z(\mathbf{x}, \lambda, \mu) = \sum_{\mathbf{y}} \exp(\sum_{i=1}^{n} (\lambda^T \mathbf{f}(y_i, y_{i-1}, \mathbf{x}) + \mu^T \mathbf{g}(y_i, \mathbf{x})))$$

Conditional Random Field

$$p_{\theta}(y \mid x) = \frac{1}{Z(\theta, x)} \exp \left\{ \sum_{c} \theta_{c} f_{c}(x, y_{c}) \right\}$$

- Allow arbitrary dependencies on input
- Clique dependencies on labels
- Use approximate inference for general graphs

CRFs Inference

• Given CRF parameters λ and μ , find the \mathbf{y}^* that maximizes $P(\mathbf{y}|\mathbf{x})$

$$\mathbf{y}^* = \arg\max_{\mathbf{y}} \exp(\sum_{i=1}^n (\lambda^T \mathbf{f}(y_i, y_{i-1}, \mathbf{x}) + \mu^T \mathbf{g}(y_i, \mathbf{x})))$$

- Can ignore Z(x) because it is not a function of y
- Run the max-product algorithm on the junction-tree of CRF:

CRF Learning

Given {(x_d, y_d)}_{d=1}^N, find λ*, μ* such that

$$\lambda*, \mu* = \arg\max_{\lambda,\mu} L(\lambda,\mu) = \arg\max_{\lambda,\mu} \prod_{d=1}^{N} P(\mathbf{y}_{d}|\mathbf{x}_{d},\lambda,\mu)$$

$$= \arg\max_{\lambda,\mu} \prod_{d=1}^{N} \frac{1}{Z(\mathbf{x}_{d},\lambda,\mu)} \exp(\sum_{i=1}^{n} (\mathbf{f}(y_{d,i},y_{d,i-1},\mathbf{x}_{d}) + \mathbf{\mu}^{T}\mathbf{g}(y_{d,i},\mathbf{x}_{d})))$$

$$= \arg\max_{\lambda,\mu} \sum_{d=1}^{N} (\sum_{i=1}^{n} (\lambda^{T}\mathbf{f}(y_{d,i},y_{d,i-1},\mathbf{x}_{d}) + \mu^{T}\mathbf{g}(y_{d,i},\mathbf{x}_{d})) - \log Z(\mathbf{x}_{d},\lambda,\mu))$$

Computing the gradient w.r.t λ:

Gradient of the log-partition function in an exponential family is the expectation of the sufficient statistics.

$$\nabla_{\lambda} L(\lambda, \mu) = \sum_{d=1}^{N} \left(\sum_{i=1}^{n} \mathbf{f}(y_{d,i}, y_{d,i-1}, \mathbf{x}_d) - \sum_{\mathbf{y}} \left(P(\mathbf{y} | \mathbf{x}_d) \sum_{i=1}^{n} \mathbf{f}(y_{d,i}, y_{d,i-1}, \mathbf{x}_d) \right) \right)$$

A CRF Example

Output the maximum number of three dice throws

Edge Features

Yi	Y _{i+1}	X _{i-1}	X _i	X _{i+1}
F	F	0	1	1
F	F	1	1	1
•••	•••	•••	•••	
L	F	1	1	1
L	F	2	1	1

Node Features

Yi	X _{i-1}	X _i	X _{i+1}
F	0	1	1
F	1	1	1
•••	•••	•••	•••
L	1	1	1
L	2	1	1

Evaluation & Decoding

- Model parameters: weights for features
- **Calculate** P(Path | Obs). Y = FFLF. X = 1216.
- Edge features: FF (012), FL (121), LF (216)
- Node features: F(012), F(121), L(216), F(160)

$$P(\mathbf{y}|\mathbf{x}) = \frac{1}{Z(\mathbf{x}, \lambda, \mu)} \exp(\sum_{i=1}^{n} (\sum_{k} \lambda_{k} f_{k}(y_{i}, y_{i-1}, \mathbf{x}) + \sum_{l} \mu_{l} g_{l}(y_{i}, \mathbf{x})))$$

$$= \frac{1}{Z(\mathbf{x}, \lambda, \mu)} \exp(\sum_{i=1}^{n} (\lambda^{T} \mathbf{f}(y_{i}, y_{i-1}, \mathbf{x}) + \mu^{T} \mathbf{g}(y_{i}, \mathbf{x})))$$

Learning – Gradient Ascend

Fit the weights of the features

Yi	Y _{i+1}	X _{i-1}	X _i	X _{i+1}
F	F	0	1	1
F	F	1	1	1
•••	•••			•••
L	F	1	1	1
L	F	2	1	1

Yi	X _{i-1}	X _i	X _{i+1}
F	0	1	1
F	1	1	1
L	1	1	1
L	2	1	1
			•••

$$\nabla_{\lambda}L(\lambda,\mu) = \sum_{d=1}^{N} (\sum_{i=1}^{n} \mathbf{f}(y_{d,i},y_{d,i-1},\mathbf{x}_d) - \sum_{\mathbf{y}} (P(\mathbf{y}|\mathbf{x}_d) \sum_{i=1}^{n} \mathbf{f}(y_{d,i},y_{d,i-1},\mathbf{x}_d)))$$

Comparison on Synthetic Data

Comparison of error rates on synthetic data

MEMM: maximum entropy Markov models

CRFs: Some Empirical Results on Speech Tagging

Parts of Speech tagging

model	error	oov error
HMM	5.69%	45.99%
MEMM	6.37%	54.61%
CRF	5.55%	48.05%
MEMM ⁺	4.81%	26.99%
CRF^+	4.27%	23.76%

⁺Using spelling features

- Using same set of features: HMM >=< CRF > MEMM
- Using additional overlapping features: CRF+ > MEMM+ >> HMM

More References

- Collection of papers and tools: http://www.inference.phy.cam.ac.uk/hmw26/crf/
- Tutorial: H.M. Wallach. Conditional Random Fields: An Introduction
- Paper: J. Lafferty, A. McCallum, F. Perreira. Conditional Random Fields: Probabilistic Models for Segmenting and Labeling Sequence Data