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Protein Secondary Structure Prediction Based on
Position-specific Scoring Matrices

David T. Jones
Department of Biological
Sciences, University of
Warwick, Coventry CV4 7AL
United Kingdom
As a result of the in¯ux of sequence data from the
numerous genome sequencing projects, interest has
never been greater in methods for predicting pro-
tein structure from amino acid sequence. At pre-
sent, the prediction of an unknown protein
structure by comparative modelling (e.g. Sali, 1995)
is by far the most reliable technique, but only when
a template protein structure can be found with a
very high degree of sequence similarity to the target
protein. In the absence of a suitable homologous
template structure with which to build a model for
a given sequence, fold recognition methods now
provide another option for constructing useful ter-
tiary structural models (e.g. Bowie et al., 1991; Jones
et al., 1992; Lemer et al., 1995). Beyond methods
based on recognizing similarities between proteins
are ab initio tertiary methods, which attempt to pre-
dict the structure of a protein without reference to a
template structure. Despite some recent progress in
ab initio tertieary protein structure prediction (Jones,
1997), by far the most commonly used ab initio
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prediction methods are aimed at the prediction of
secondary structural elements in proteins (e.g. Lim,
1974; Chou & Fasman, 1974; Garnier et al., 1978;
Zvelebil et al., 1987; Rost & Sander, 1993; Geourjon
& Deleage, 1995; Salamov & Solovyev, 1995;
Frishman & Argos, 1996; King & Sternberg, 1996).
Secondary structure prediction methods are not
often used alone, but are instead often used to pro-
vide constraints for tertiary structure prediction
methods or as part of fold recognition methods (e.g.
Russell et al., 1996; Rost, 1997).

Early methods for secondary structure prediction
were based on either simple stereochemical prin-
ciples (Lim, 1974) or statistics (Chou & Fasman,
1974; Garnier et al., 1978). The GOR method
(Garnier et al, 1978) has been particularly popular
due the simplicity of implementing the method in
software. Increasingly, however, rather than a
single sequence a whole family of related
sequences is available for analysis. By constructing
a multiple sequence alignment, additional infor-
mation may be obtained from the observed
patterns in sequence variability, and the location of
insertions and deletions. Probably the earliest
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PSI-BLAST. Despite the simplicity and convenience of the approach used,
the results are found to be superior to those produced by other methods,
including the popular PHD method according to our own benchmarking
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on a set of 187 unique folds, and three-way cross-validation based on
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previously (no similar folds were present in both the testing and training
sets) the method presented here (PSIPRED) achieved an average Q3 score
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for any method to date. Given the success of the method in CASP3, it is
reasonable to be con®dent that the evaluation presented here gives a fair
indication of the performance of the method in general.

# 1999 Academic Press
Keywords: protein structure prediction; secondary structure; protein
folding; sequence analysis; neural network
# 1999 Academic Press

http://www.idealibrary.com
mailto:jones@globin.bio.warwick.ac.uk


196 Protein Secondary Structure Prediction
attempts at using such multiple sequence infor-
mation for secondary structure prediction was the
successful prediction of the secondary structure
(and from this the fold) for the alpha-subunit of
tryptophan synthase by Niermann et al. (1987), and
a general method published by Zvelebil et al.
(1987). It is fair to say, however, that the use of
multiple sequence data was perhaps popularised
by the later work by Benner & Gerloff (1991) on
the successful secondary structure prediction for
the cAMP-dependent kinases. The main source of
information in this approach to secondary struc-
ture prediction is obtained by observing that the
most conserved regions of a protein sequence are
those regions which are either functionally import-
ant, and/or buried in the protein core. Conversely,
the more variable regions can be fairly con®dently
assumed to be on the surface of the protein, where
few constraints are imposed on the type of amino
acid residues observed, apart from a bias towards
hydrophilic amino acid residues. By clustering the
sequences in an aligned family, and assessing the
degree of sequence variability observed between
very similar pairs, Benner & Gerloff demonstrated
that the degree of solvent accessibility of an amino
acid residue can be predicted with reasonable accu-
racy. Secondary structure can then be predicted by
comparing the accessibility patterns generally
associated with speci®c secondary structures when
packed against a hydrophobic protein core.

Despite the apparent power of the manual
approach described above, it is clearly bene®cial to
attempt to incorporate these ideas into an auto-
matic method so that a large number of accurate
predictions can be generated routinely. The PHD
method by Rost & Sander (1993) uses a set of feed-
forward neural networks trained by back-propa-
gation (Rumelhart et al., 1986) to replace the
``human expert'' components of the Benner & Gerl-
off approach, and has since become the de facto
standard secondary structure prediction method.

The method described here also makes use of
neural networks, but is greatly simpli®ed. Despite
the simpli®cation, the method achieves a very high
degree of prediction accuracy, being the most accu-
rate method evaluated in the recent third CASP
experiment (Moult et al., 1997) and can be easily
implemented and run on any common computer
system.

Method

The prediction method (illustrated in Figure 1) is
split into three stages: generation of a sequence
pro®le, prediction of initial secondary structure,
and ®nally the ®ltering of the predicted structure.

Generation of sequence profiles

The main design goal of this prediction method
was to make the entire system easily ported to any
workstation. This aim encompasses both the gener-
ation of sequence pro®les and the actual prediction
of secondary structure. Standard approaches to
generating sequence pro®les are cumbersome and
time-consuming. For example, the PHD server
(Rost & Sander, 1993) makes use of a large multi-
processor computer system to generate multiple
sequence alignments in a timely fashion, and it is
therefore dif®cult to move the whole PHD predic-
tion server to another site. Furthermore, the predic-
tion accuracy of methods based on multiple
sequence alignments has been found to correlate
with the degree of divergence present in the
aligned set of sequences. Alignments which incor-
porate sequences with signi®cant yet low sequence
similarity to the target protein produce more accu-
rate predictions that those which incorporate
sequences which are very closely related to the tar-
get. Recently a new method for very sensitive
sequence comparison based on the new gapped-
version of BLAST has been published (Altschul
et al., 1997). With suitable choices of parameters
and ®ltering of the search data banks, PSI-BLAST
greatly outperforms a standard Smith-Waterman
(Smith & Waterman, 1981) search in its ability to
detect distant homologues of a query sequence. In
addition to this, PSI-BLAST generates sequence
pro®les as part of the search process, and here we
explore the idea of using these intermediate PSI-
BLAST pro®les as a direct input to a secondary
structure prediction method rather than extracting
the sequences, and producing an explicit multiple
sequence alignment as a separate step. By using
the PSI-BLAST pro®les directly, the very time-con-
suming multiple-sequence alignment stage is elimi-
nated, and this leads to a radical reduction in the
overall time taken to go from target sequence to
predicted secondary structure. On a Silicon
Graphics Origin 200 server, the entire prediction
process takes only two minutes.

Although PSI-BLAST is a very powerful
sequence searching method, it is prone to failure
for a number of reasons. The iterative nature of the
PSI-BLAST algorithm makes it very sensitive to
biases in the sequence data banks. In particular,
PSI-BLAST is very prone to erroneously incorpor-
ating repetitive sequences into the intermediate
pro®les. As soon as one or two of these pathologi-
cal sequences are incorporated, then the whole
process goes astray with completely random
sequences being matched with apparent high con®-
dence. In order to maximise the effectiveness of
PSI-BLAST in producing very sensitive pro®les, a
custom sequence data bank was constructed for
the present application. Firstly, a large non-redun-
dant protein sequence data bank was compiled by
extracting non-identical sequences from a number
of publicly available data banks. This databank,
which currently contains around 340,000
sequences, is then ®ltered with the SEG program
(Wootton & Federhen, 1993) to remove regions
with very low information content. A custom pro-
gram is used to further ®lter the data bank in
order to remove transmembrane segments (Jones



Figure 1. An outline of the PSIPRED method, which shows how the PSI-BLAST score matrices are processed.
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et al., 1994), and regions which are likely to form
coiled-coil structures.

The ®nal position-speci®c scoring matrix (log-
odds values) from PSI-BLAST (after three iterations)
is used as input to the neural network. To obtain
this scoring matrix, PSI-BLAST was compiled using
the appropriate ``debug'' ¯ag in the POSIT module,
which allows the matrix to be parsed easily from
the resulting PSI-BLAST log ®le. This matrix has
20 �M elements, where M is the length of the tar-
get sequence, and each element represents the log-
likelihood of that particular residue substitution at
that position in the template (based on a weighted
average of BLOSUM62 matrix scores for the given
alignment position). Depending on the coverage of
the hits obtained, different parts of this pro®le may
be based on multiple sequences or just the query
sequence itself (in which case the pro®le elements
are identical to the appropriate row or column in
the BLOSUM62 matrix). PSI-BLAST uses a simple
but effective scheme for weighting the contribution
of locally different numbers of sequences to the
resulting pro®les, and here no attempt was made to
further adjust for such biases. The pro®le matrix
elements (typically in the range � seven) are scaled
to the required 0-1 range by using the standard
logistic function:

1

1� eÿx

where x is the raw pro®le matrix value. This scaling
could also have been achieved by adapting the
input units directly to accept input in the given
range.

Neural network architecture

A standard feed-forward back-propagation net-
work architecture (Rumelhart et al., 1986) with a
single hidden layer was used for PSIPRED.
Although no serious attempt was made to search
through the many different possible network topol-
ogies (different numbers of input units and differ-
ent numbers of hidden units), a few alternative
architectures were tried, and a set of 16 prediction
targets from the second CASP experiment (Moult
et al., 1997) was used as a limited benchmark. A
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window of 15 amino acid residues was found to be
optimal (producing an overall Q3 score of 80.1 %),
and thus the ®nal input layer comprises 315 input
units, divided into 15 groups of 21 units. The extra
unit per amino acid is used to indicate where the
window spans either the N or C terminus of the
protein chain. A large hidden layer of 75 units was
used, with another three units making the output
layer where the units represent the three-states of
secondary structure (helix, strand or coil).

As with previous neural network secondary
structure prediction methods (Rost & Sander,
1993), a second network is used to ®lter successive
outputs from the main network. As only three
possible inputs are necessary for each amino acid
position, this network has an input layer compris-
ing just 60 input units, divided into 15 groups of
four. Again the extra input in each group is used
to indicate that the window spans a chain termi-
nus. For this network, a smaller hidden layer of 60
units was used.

Neural network training

An on-line back-propagation training procedure
was used to optimise the weights in the network,
i.e. the weights in the network were updated after
each pattern presentation, though with a momen-
tum term to prevent oscillation. A momentum
term of 0.9 and a learning rate of 0.005 was found
to be effective. To prevent over-training of the net-
work, 10 % of the training set was kept aside to
evaluate the performance of the network during
training. This subset of the training set was not
used to calculated the weight changes in the net-
work. Training of the network was halted when
the performance of the network on the excluded
10 % of the training data began to degrade.

Testing procedure

Correct evaluation of a secondary structure pre-
diction method requires a properly cross-validated
testing procedure. It has been known for a long
time that poor cross-validation can produce overly
favourable results (see Cuff & Barton (1999) for
a detailed discussion), and so it was decided to do
a very thorough cross-validation experiment to
evaluate the current method. Up until now, sec-
ondary structure methods have been tested with
training and test sets screened for signi®cant
sequence similarity. However, as pointed out by
Cuff & Barton (1999), using pairwise sequence
alignment methods, weak but signi®cant sequence
similarity between members of the two sequence
sets can remain. Here we avoid this complication
by screening our testing and training sets using a
structural similarity criterion. Rather than remov-
ing from the training set any protein with a signi®-
cant degree of sequence similarity to any member
of the testing set, we removed any protein with a
similar fold to any member of the testing set. We
believe that this represents the most stringent
cross-validation test that is possible, and avoids
the complexities of sensitive sequence comparison.

To produce the training and test sets, each pair
of proteins from the testing set and training set
was evaluated with respect to the CATH classi®-
cations (Orengo et al., 1997) for their constituent
domains. Any protein in the training set which
had a domain fold in common with any of the
domains found in the test set was excluded. A
further check was performed using ®ve iterations
of PSI-BLAST to detect any missed remote relation-
ships that might not be represented in the CATH
classi®cation scheme, but no such pairs were
detected, and there appears to be no detectable
overlap at all between the training and test sets. It
is also worth noting that a PSI-BLAST check is
now included in the processing of the current
CATH database (C. Orengo, personal communi-
cation) to identify distantly related but structurally
divergent proteins, and so the chance of any hom-
ologous proteins being found in both the training
and test sets is negligible. Using this scheme, three
independent training and testing set pairs were
compiled. The testing sets were based on the
CATH T-level, and so comprised a set of unique
protein folds. However, only highly resolved struc-
tures (resolution <1.8 AÊ ) were included in the ®nal
set, giving a total of 187 protein chains in the test-
ing set, divided into three sets of 62, 62 and 63
chains. Note that none of the 16 proteins (or any
homologues) used for the limited search for the
best network architecture were present in this test
set.

The reference secondary structure states (helix,
strand and coil states) for each structure in the
training and test sets were derived from the de®-
nitions produced by DSSP (Kabsch & Sander,
1983). The eight states (H, I, G, E, B, S, T, ÿ) were
reduced to three states according to the scheme
outlined by Rost & Sander (1993), i.e. H and G are
taken to be helix states, E and B are taken to be
strand states, and all others considered to be coil.
To estimate a higher bound on the expected accu-
racy, a simpler mapping scheme was also tried
where only H states in DSSP are mapped to helix,
and E states mapped to strand.

Results

Figure 2(a) and (b) shows the distributions of Q3

scores and Sov3 scores (Rost et al., 1994) for the
testing set of 187 protein chains. Note that the
average Q3 score for these 187 proteins, calculated
by chain, is found to be 76.0 % with a standard
deviation of 7.8 %. The average Sov3 score was
73.5 % with a standard deviation of 12.7 %. Taken
by residue (i.e. averaging with weighting by
sequence length), the average Q3 score is 76.5 %.
Using the simpler DSSP mapping, which results in
a higher proportion of coil states, the by-residue
Q3s score was found to be as high as 78.3 %. These
results indicate that the method described here,
despite the very stringent cross-validation strategy,



Figure 2. (a) Bar graph showing
the distribution of Q3 scores for the
benchmark set of 187 protein
chains with unique folds. (b) Bar
graph showing the distribution of
Sov3 scores for the same 187
protein chains.
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is at the very top of the range of accuracies
documented for secondary structure prediction
methods.

Despite the impressive results shown in Figure 2,
there always remain nagging doubts about the
possibility of some bias remaining from a knowl-
edge of the experimentally determined structures.
For example, the architecture of the network and
training protocol could be optimised for any given
given testing set, so that no matter how rigorously
the predictions have been evaluated by cross-vali-
dated testing, the results are still better than might
be expected for newly characterised proteins. The
CASP (Moult et al., 1997) experiment which has
been run every two years since 1994 offers a means
to evaluate available prediction methods entirely
blindly. Although it is possible to criticise the
CASP experiment on the basis of small sample
sizes, it does act as a very useful adjunct to bench-
marking procedures, and offers a ``level playing
®eld'' so that methods can be fairly compared
against each other. In view of this, it was vital to
participate in the third CASP experiment (CASP3)
with the method described here to see if it really
was able to make more accurate predictions than
the existing popular methods.

Table 1 summarises the results for the predic-
tions which were submitted to the CASP3 predic-
tion server and which were evaluated by the
independent assessors. The raw data for this table
was extracted from the public CASP3 Web page:
http://predictioncenter.llnl.gov/casp3. For the
purposes of discussion during the CASP3 meeting
held at Asilomar, the assessors decided to restrict
their own evaluation to the hardest targets (i.e.
those which were most poorly predicted on aver-
age by all the groups). The average Q3 and Sov3

scores for PSIPRED when evaluated on these tar-
gets were 73.4 % and 71.9 %, respectively. On the
same targets, the next best method (K. Karplus,
unpublished results) achieved an average by resi-
due Q3 score of 69.0 %, and an average Sov3 score
of 65.7 %. For reference, the widely used PHD
method achieved a Q3 score of 66.7 % and a Sov3
score of 63.8 % on these targets. It is important to
point out, however, that the PHD results evaluated
at CASP3 were not provided by the authors, but
were instead provided independently by the

http://predictioncenter.llnl.gov/casp3


Table 1. Complete set of PSIPRED prediction results for the 21 CASP3 targets for which a prediction was submitted

Target Q3(a) Q3(b) Sov3 Nseq Length

T0043 78.5 79.1 72.8 15 158
T0044 73.1 74.3 78.5 12 335
T0046 71.4 73.9 67.9 7 119
T0053 80.2 80.9 82.3 2 257
T0056 78.9 82.5 85.1 16 114
T0059 73.2 76.1 78.7 40 71
T0061 55.3 61.8 65.6 1 76
T0063 70.4 75.6 71.6 45 135
T0064 91.3 91.3 88.1 119 104
T0065 96.8 96.8 100.0 2 31
T0067 83.2 88.6 81.6 29 185
T0068 71.5 71.5 72.2 56 376
T0071 71.3 70.9 73.7 7 237
T0074 94.7 95.8 98.9 263 95
T0075 74.5 77.3 72.9 31 110
T0077 79.8 79.8 76.0 45 104
T0079 93.1 93.1 99.5 123 116
T0080 70.3 76.7 69.3 120 202
T0081 66.2 70.9 70.8 14 151
T0083 85.3 85.3 85.9 5 156
T0085 64.0 65.9 60.7 1 211
Mean (by chain) 77.3 79.4 78.7
Mean (by residue) 75.7 77.6

Two Q3 scores are shown: (a) where DSSP states HG are considered to be alpha helices and EB states are considered to be strands
and (b) where only H states are considered to be alpha helices and E states are strands. Sov3 scores are also shown, along with the
length of the target sequence and the number of sequences included in the ®nal PSI-BLAST pro®le (Nseq).
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JPRED server (Cuff & Barton, 1998), and so some
improvement in the PHD results might be antici-
pated if a more recent implementation of the
program was tested. However, the margin of
improvement for PSIPRED over PHD at CASP3
was not trivial, and so the CASP3 results and the
benchmark results presented here are probably a
fair re¯ection of at least the current rankings of
available secondary prediction methods.

Figure 3 shows the case by case comparison of
the Q3 score from the PSIPRED CASP3 predictions
with predictions from JPRED (Cuff & Barton,
1999), which incorporates PHD results in its con-
Figure 3. Bar graph showing a comparison of prediction
popular methods: JPRED (including PHD) and DSC.
sensus prediction, and another popular method,
DSC (King & Sternberg, 1996). The average Q3

scores for the three methods over these targets are
76.3 % (PSIPRED), 72.4 % (JPRED) and 67.3 % (DSC
over 16 targets). Furthermore, in all but one case,
PSIPRED achieved an accuracy of at least 60 %,
and produced no predictions with an accuracy
below 55 %. A total of 17 of the 23 PSIPRED pre-
dictions had an accuracy of at least 70 % compared
to 12 out of 23 for JPRED. Despite the higher over-
all performance of PSIPRED over the other
methods, in seven cases one of the other prediction
methods produced a more accurate prediction.
results for 22 CASP3 targets by PSIPRED and two other
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This suggests that there might be some scope for
improving the prediction accuracy of PSIPRED by
calculating a consensus prediction with other
methods, as is currently done by the JPRED
method.

Conclusions

At this stage it is not yet clear which factors con-
tribute most to the success of the PSIPRED meth-
od, and work is currently underway to compare
the results obtained from PSIPRED with those
obtained from other methods, but using the same
input pro®les. There are three aspects of the PSI-
BLAST program that no doubt contribute, perhaps
equally, to the success of PSIPRED. Firstly the
alignments produced by PSI-BLAST are based
on pairwise local alignments. Previous work
(Frishman & Argos, 1997; Salamov & Solovyev,
1997) has suggested that the use of reliable local
alignments produces a de®nite improvement in the
accuracy of resulting secondary structure predic-
tions. Secondly, the use of iterated pro®les greatly
enhances the sensitivity of PSI-BLAST. It has been
shown that PSI-BLAST can identify twice as many
pairwise relationships than an equivalent pairwise
comparison method. Thirdly, in my own labora-
tory (M. Tress, unpublished results) we have found
that the accuracy of PSI-BLAST alignments (when
compared to alignments based on structure com-
parison) are signi®cantly higher than any other
method we have tried for automatic multiple
sequence alignment (though again this relates to
the effect of reliable local alignments).

Perhaps the most signi®cant conclusion that can
be reached from the presented results, is that a
very simple method for secondary prediction
based on a straightforward neural network evalu-
ation of PSI-BLAST-generated pro®les is capable of
producing results which rank the method at the
very top of the current crop of prediction methods.
The ideas described can be easily applied to other
prediction schemes, and it might well be expected
that by using PSI-BLAST pro®les, as opposed to
pro®les generated from traditional multiple
sequence alignment approaches, other secondary
structure prediction methods will show measurable
improvements in accuracy.

Availability

The PSIPRED Web server, along with the soft-
ware and test sets used here may be obtained elec-
tronically from the following address: http://
globin.bio.warwick.ac.uk/psipred.
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