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Abstract A main advantage of statistical approaches is that explicit
Motivation: Most existing bioinformatics methods are Probabilistic models are employed to describe relationships
limited to making point estimates of one variable, e.g. theétween various quantities with consideration of the un-
optimal alignment, with fixed input values for all otherderlying uncertainty. Then available statistical theory can
variables, e.g. gap penalties and scoring matrices. While trfitomatically lead to an efficient use of available informa-
requirement to specify parameters remains one of the mof@n in making predictions regarding biopolymer sequences.
vexing issues in bioinformatics, it is a reflection of a largerT© date, however, statistical approaches have been primarily

issue: the need to broaden the view on statistical inference y$ed for deriving efficient computational strategies. The util-
bioinformatics ity of these methods to make statistical inferences about un-

Results: The assignment of probab“ities for all possibleObserV-ed variables has received far less attentlon With one
values of all unknown variables in a problem in the form ofxception (Zhetal., 1997, 1998), methods which give com-

a posterior distribution is the goal of Bayesian inferencePlete statistical inferences on all unknowns for biopolymer
Here we show how this goal can be achieved for mo§pquer_lces,_elther classical or Bayesian, are unavailable.
bioinformatics methods that use dynamic programming. In this article, we show that the Bayesian methodology
Specifically, a tutorial style description of a BayesianProvides a useful way to formulate mathematically a bioin-
inference procedure for segmentation of a sequence basedfgfmatics problem which yields an assessment of the uncer-
the heterogeneity in its composition is given. In addition, full@inty in all unknowns. We also show that many existing re-
Bayesian inference algorithms for sequence alignment afd!'sive dynamic programming (DP) algorithms can be
described modified to solve the difficult computational problems re-

Availability: Software and a set of transparencies for aduired by Bayesian analysis. Following the Introduction, we
tutorial describing these ideas are available atprovide a brief overview of Bayesian statistics. In subsequent
http:/Aww.wadsworth.org/res&res/bioinfo/ sections, we apply the basic Bayes procedures to a simple

Contact:lawrence@wadsworth.org; jliu@stat.stabford.educ0in example; describe applications in bicinformatics using
two specific examples: sequence segmentation and global

sequence alignment; and discuss the relationship of the
Bayesian approach to other existing methods.
Computational approaches to molecular and structural biol-

ogy are becoming increasingly important and have spawnggsic Bayesian statistics

the new field of bioinformatics. In the past decade, we have

witnessed the developments of the likelihood and minimuriihe key focus of statistics is on making inferences, where the
message length approaches to pairwise alignments (Bishaprd inference follows the dictionary definition as ‘the pro-
and Thompson, 1986; Thorm al., 1991, 1992; Allison cess of deriving a conclusion from fact and/or premise’. In
etal., 1992), the probabilistic models for RNA secondanstatistics, the facts are the observed data, the premise is repre-
structure (Zuker, 1989; McCaskill, 1990); the expectationsented by a probabilistic model of the system of interest, and
maximization (EM) algorithm for finding regulatory regions the conclusions concern unobserved quantities. Statistical
(Cardon and Stormo, 1992; Lawrence and Reilly, 1990), tHaference distinguishes itself from other forms of inference
hidden Markov models for DNA composition analysis andy explicitly quantifying uncertainties involved in the prem-
multiple alignments (Churchill, 1989; Balét al., 1994; ise and thus the conclusions.

Kroghetal., 1994), the Gibbs sampling strategies for subtle Classical statistics arrives at its inferential statements by
motif detections and subtle multiple alignments (Lawrencasing point estimates of unknown variables, with the maxi-
etal., 1993; Liu, 1994; Neuwaldt al., 1997), etc., all of mum likelihood estimates being most popular. Uncertainty
which show that algorithms resulting from statistical think-in estimation is addressed by studying the frequency beha-
ing are invaluable tools in this field. vior (or more properly, the pre-data behavior) of these esti-

Introduction

38 © Oxford University Press



Bayesian inference on biopolymer models

mates and then putting confidence limits on the unknowrg(e Yond =
parameters accordingly. ob
Bayesian statistics seeks a more ambitious goal by model-

ing all sources of uncertainty (physical randomness, Subje{}\_/hene is discrete, the integral is replaced by summation.

tive opinions, prior ignorance, etc.) with probability distribu- . . ) S
tions and then trying to find the a posteriori distribution of aIIThe denominatop(yops is the marginal distribution of the

unknown variables of interest after considering the data. ﬂata, the so-called marginal likelihood of the model. It is

uses the calculus of probability as the guiding principle iﬁometlmes convenient to realize tighby) is a normalizing

. : . ) T . constant, i.e. the constant that is required so that the whole
manipulating data and information, and derives |t§_|nfe_ren_t I%ﬁunction integrates to one. This cons(:ant is obtained by inte-
statement purely based on the post-data probability dlstrlbufaﬂn out oF Summi ove.r all variables. excent for the ob-
tions. 9 9 o ' P

. e . served data, from the joint distribution.
The value of using probability distributions to describe un When there is more than one unknown, 8.g.(81, 65),

known quantities is indicated by the fact that probability nd interest focuses only on one componentgaghose

theory is the only known coherent system for quantifyin " . S

objective and subjective uncertainties. Furthermore, prob pkr&ozvr;)qusntltlesétr;at are not of immediate interest, bUt‘er)
bilistic models have been accepted as appropriate in almd§coed y.t € model, nuisance parameters, are removed by
all information-based technologies, including informationmtegratlon'

theory, control theory, system science, communication and

signal processing, and statistics. When the system under j P(ops | 01,62)7(01,6,)d0 Bape 6

study is modeled properly, the Bayesian approach is alway¥’s | Yood = = p(oy:b ) @)
among the most coherent, consistent and efficient statistical J J PWYobs | 01,02)7(61,0,)d0,d0,

methods.

p(yobs | 9)7[(9) — p(evyobg

PYobd P(Yobs | O)7(0)  (2)
f P(Yobs | 6)(6)d0

Note that computations required for completing a Baye-
sian inference are the integrations (sums for discrete vari-
able) over all unknowns in the joint distribution to obtain the

Bayesian statistics treats all quantities under consideratigRarginal likelihood and over all but those of interest to re-
be they observed data, unknown parameters, or missing d4ReVe nuisance parameters. Despite the deceptively simple-
as random variables. The full process of a typical Bayesidpoking form of equation (3), the challenging aspects of
analysis can be described as consisting of three main stdfyesian statistics are 2-fold: (i) the development of a model,
(Gelmaretal., 1995): (i) setting up a full probability model, P(Vobs | 8)T(8), which must effectively capture the key fea-
the joint distribution, that captures the relationship among di#res of the underlying scientific problem; and (i) the
the variables in consideration; (i) summarizing the finding§€cessary computation for deriving the posterior distribu-
for particular quantities of interest by appropriate posteridfons:

distributions, which is typically a conditional distribution of ) .

the quantities of interest given the observed data; (jii) eval-0onjugate priors

ating the appropriateness of the model and suggesting iy, early effort at making the integration required by equa-
provements (model criticizing and selection). tion (2) accessible was the development of the so-called

A standard procedure for carrying out step (i) is first tQ:onjugate priors (Gelmagtal., 1995). Abstractly, a conju-
write down the likelihood function, i.e. the probability of the ;4q prior is a family of distributions fax(®) that has the

observed data given the unknowns, and multiply it by the g&me fynctional form as the likelihood function. As a conse-
priori distribution of all the unobserved variables (typlcallyquence’ when a conjugate prior is used, the functional form
unknown parameters). Lygps denote the observed data andys the posterior distribution is the same as that of the prior.

0 the unobserved parameter. The joint probability can bRIthough we can choose any functional form @), the

represented afint = likelihood x prior, i.e. conjugate prior enjoys the greatest mathematical and com-
- putational advantage.

PBobs 6) = P0fobs | )ri() @) In computational biology, because the data to be analyzed
wherep(yops| 6) is often denoted d56;yong) and referredto  are usually categorical (e.g. DNA sequences with a four-
as the likelihood in classical statistics. letter alphabet or protein sequences with a 20-letter al-

The Bayesian inference is drawn by examining the prolphabet), the binomial and multinomial distributions are most
ability of all possible values of the variables of interest aftecommonly used. The unknown parameters often correspond
considering the data. Accordingly, step (ii) is completed byo the frequencies of each letter in the alphabet. The conju-
obtaining the posterior distribution through the applicatiorgate priors for the multinomial families are the Dirichlet dis-
of the Bayes theorem: tributions, among which the Beta distribution is a special

The joint and posterior distributions
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case for the binomial family. In analyzing DNA sequencesSince everything is treated as random variables in Bayesian
we often leb = (B,, &, 8y, 6) represent the unknown prob- statistics, the integration for eliminating the missing data is
abilities of the four nucleotides (e.B.6 = 1). With the no different than that for eliminating nuisance parameters.
simple model that each residue in the observed sequence is
independent and identically distributed (iid) with frequencysodel selection and Bayes evidence
8, the likelihood of an observed DNA sequence can be
. N, Ny Ng ng At times, biology indicates that more than one model may be
written asp(fe, 1, g, e [O) U 04 0t 0g Oc, Where ta,  50r0priate, and interest often focuses on assessing model
n, Ny, ) is the count of the four types of nucleotides in thditness and conducting model selections [step (iii) described
sequen&:e. Thus, tr&e conjugate priortfas of formti0) 0  in the previous section ‘The joint and posterior distribu-
Oaq Oy Mo-1 Ocy o o e tions’). The classical hypothesis testing can be seen as a
fa 6t 6g Oc -, whichis a Dirichlet distribution model selection method in which one selects either the null
with parameted = (g, O, Og, Oc), Wherea is often called  hypothesis or the alternative in light of data. Model selection
the ‘pseudo-counts’. can also be achieved by a formal Bayes procedure. Firstly, all
the candidate models are embedded into one unified model.
Then, the ‘overall’ posterior probability of each candidate
The missing data framework model is computed and used to discriminate among the mo-
dels (Kass and Raftery, 1995).

In many problems, it is often fruitful to distinguish two kinds  To illustrate the Bayesian model selection procedure, we
of unknowns: (population) parameters and missing data. Afocus on the comparison of two modafs= 0 indicates the
though there is no absolute distinction between the two typeBull’ model andM = 1 the alternative. The joint distribution
missing data are usually directly related to the individual daf®r the augmented model becomes:
and their dimensionality tends to increase as more and more _
, 0, M) = 6, M)p(6, M

data are observed. On the other hand, the parameters usually POobs: 6. M) = P(Yops | 6. M)p(B. M)
characterize the entire population of observations and atinder the assumption that the data depend on the models
fixed in number. For example, in a multiple alignment probthrough their respective parameters, the above equation is
lem, alignment variables that must be specified for each sequal to:
guence (observation) are missing data. Residue frequencies B B B
or scoring matrices, which apply to all the sequences regard- ~ POkbs 8. M) = P(Yobs | 8m)p(Bm [M = m)p(M = m)
less of their number, are population parameters. Whereas tjerep(6,, | M = m) is the prior for the parameters in model
_dlstlnctlon IS essenftlal to the maximum Il_ke[lhood method, I, andp(M = m) is the prior probability of modeh. The
is employed primarily for conceptual clarity in Bayesian statposterior probability for modeh is obtained as:
istics.

When missing datgs are present in a statistical problem,
the inference can be achieved by using the ‘observed-dat M = . 8006 | M = M = mido
likelihood", defined as ops(8:Yobs) = P(obs | 8), which can ~ PM = M 1 Yend | PWoss | Omdp(6m [ M = m)p(M = m)db,
obtained by int_egrating out the missing data from the ‘com- = PYops | M = mp(M = m)
plete-data likelihood’, i.e.:

The choice op(M =m) is dependent on the problem, and
we often sep(M = 0) =p(M = 1) = 0.5 a priori if we expect
Lobs (€; Yopd = J P Yobs Ymis | ) O that both models are equally likely. Param8tecan change
meaning and dimensionality as the model typehanges.
For example, in the context of database searching, the prior
Since it is often difficult to complete this integral, the maxi-probability that the query sequence is related to a sequence
mum likelihood methods often employ advanced computdaken at random from the database is much smaller. We might

tional tools such as the EM algorithm (Dempserl., setp(M = 1) inversely proportional to the number of se-
1977). guences in the database. Often in hypothesis testing, we wish
Bayesian analysis for missing data problems can e compare the null to a family of alternative models whose
achieved coherently through integration: priors are not well specified, i.e. to a diffused alternative.
Then the Bayesian evidence can be summarized as:
o _ _ sup AM =1 |Ye9
p(ellyobs) ij(yobsymls | 911 92)p(911 ez)dymusdez p(9||\/| _ 1)
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where the supremum is taken with respect to all allowable™ T
priors for8 in model 1.

2

Computational issues

In many practical problems, the required computation is the” ;
main obstacle for applying the Bayesian method. In facé;, i
until recently, this computation has often been so difficulf '
that Bayesian statistics was largely a field restricted to |
specialists. The introduction of iterative simulation methods, **1
such as the data augmentation and the more general Markov
chain Monte Carlo (MCMC) (Tanner and Wong, 1987; Gel- ‘ -
fand and Smith, 1990), which provide Monte Carlo approx- R Thon
imations to the required integrations and summations, has

brought the Bayesian method into the mainstream of statist
cal analysis. The MCMC strategy has also led to some usef
sequence analysis algorithms (Lawreatal., 1993; Neu-
waldetal., 1995, 1997). As we illustrate below, by appealing
to the rich history of computation in bioinformatics, the re- T@=p) 4 sus s
quired summations can often be performed exactly, whicRVeos ) = L1 Yord(01) = Frvparoin ™10y
gives rise to either an exact Bayesian inference or an im-
proved MCMC method.

lf'g. 1.Two Beta distributions with parameterss 2 and3 = 4, and
H rameterst = 1 andp = 1.

from which we derive the marginal likelihood by using for-
mula (6):

_1(a +p) hnta-1(1 _ 0 \hn+th—1 _
. o o  Plyas = F5T8) j O)"* Y1 — 6)™*F~1d, =
To illustrate the basic ideas just described, in this section we
consider a simple coin game in which one cannot expect the

A coin example

coins to be fair. In the game coins are tossed and laid out Ia+p) Iy + )Tty + B) @
in a row. You are asked to make an inference about the prob-  I(a)[() I'n+a+p)
ability of heads for this sequence of coins. and the posterior distribution:
Single coin type POy | You) = _PI(Dyg;s 31)
ob:
Suppose the coins are identical with probability of heads
1. Leth, be the number of observed headstattte number _ I'n+a+p) Phura-1(1 — g.yn+i-1 (g
of tails. The likelihood function for the observed sequence  — TI(h, + a)I'(n — h, + ) * 1 -0, (8)

can be written as the productroBernouli trials: As expected, the posterior is a Beta distribution with up-

. _ N 1 N dated parameters, iB(81; hy + 0, t, + ). Notice that in this
L(O1; Yobd = P(Yord6) = 6'1'(1 — 61) “) posterior distribution the prior parameter, () and the
We model the prior d;1 by a Beta distribution defined as: _number of hegds or tailky( tn) are exchangeable. Accord-

ingly, these prior parameters are often referred to as pseudo
o + p) counts.
H()(B) The posterior distribution of8;, with yops =

Wherer(.) is the Comp|ete gamma function an(p} >0 are {010100000000011001101001011011} (1 = h_ead_s, 0 =talls;
the parameters set by the user. A useful fact to show th@h = 12 and;, = 18) andx =3 = 1, is shown in Figure 2,

7(0) = BOy.fp) =

0571160/ o 037H(1-0,)P1 (5)

equation (5) does integrate to one is: which graphically summarizes the Bayesian inference for
this problem: after considering the data, the inferend® on
1 ~ . el is made by specifying a probability density on all its possible
0 (1-0)"do = Ia + B) (6)  values. The inferred posterior distributiorbgfs a probabil-
0

ity density with main probability mass surrounding the em-
Figure 1 shows this distribution far=2 and3 =4, as well  pirical frequency 0.4 with an appropriate spread.
as for the special case= 1, andB = 1 which corresponds If four-sided or 20-sided coins are employed, the foregoing
to a uniform distribution. The joint distribution of the datagame serves as a model for residue composition of DNA or
ande- is: protein sequences, respectively. Generally, if the outcome of
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’ distribution of all the variables including the missing data
becomes:

P(01,05, Yops A = @) = L(01,05 Yops A7(64,605)0(a)

5 2 .
: = g@) [ TGt BD ghraiy gyiepi
g E=EEEE) i=1 I@)B)
i The exact posterior distribution féris obtained as fol-
. lows:
’ 0.1 02 00 04 05 06 07 08 08 P(A = a, ycbs) = J I p(eli 08, yobs)dgldHZ
! Theta 2 F((l +ﬂ) 1
— i i hi(a) +a;—1 (@) +8i-10.
9@ 1, T a5y j o
Fig. 2. Posterior Beta distribution for coin-tossing game assuming (11)

the use of only one coi(61; 13,19). ) )
By using formula (6), we further derive that:

: ; ; _ _ 2 | Ia; + ) I'(hy + a)I(t + By)
each trial (or observed residue) takes value in an alphabet {1, P(A = a,y,,) = g(a)iI:Il [ )Gy T+ & +a & ﬁi)] (12)

..., D} with probability 84 ford = 1, ..., D, then the binomial
distribution is generalized to the multinomial distribution For an alphabet of siZ& the expression in square brackets
and the conjugate Beta prior distribution generalizes to thie replaced by an expression analogous to (9). The marginal
conjugate Dirichlet distribution. With this generalization, thdikelihood is obtained by summing ov&rP(yohe) =24 P(A

marginal likelihood (7) becomes: =@, Yobg and the posterior distribution faris:
Iy (N + oy P(A=a|Yobsd =P(A=2a Yobs)/P(Yobs  (13)
P(yobs) = H F Z (9) . _
d(ag) I'(n+ Zqag) For givenA = a, the two parameter8; andd,, are mutual-

whereng are the parameters for the prior Dirichlet distribulY independent and have Beta distributions. Thus, the mar-
tion, andry are the counts of residue typ@bserved after 9inal posterior distribution of, sa, can be expressed as a
tossing theD-sided objech = S4ry times. Furthermore, the Mixture of Beta distributions:

posterior distribution (8) generalizes to: n
POWord = . PO | YopsA = a)P(A = alyopd
a=0

_TCyny + 0y) Ng + o1
P(elyobg - Hdr(nd + ad) a 1d (10) |
= > B(O;(d) + a5, ty(a) + BYPA = a | ygp
a=0
Two types of coins: Bayesian segmentation As an alternative to this messy expression of mixtures, we

) ) can perform a Monte Carlo approximation by drawing ran-
Suppose you are told that, in the game described above, tgem samplesy, ay, ..., an from P(A = a | Yop9 and then

types of coins rather than one have been used: thé\firstayeraging the Beta distributions determined by the sampled
coins which make up the first segment have probabiiof  \z)ues:

heads, and the remaining- A coins have probabilit§, of N
heads, wittA unknown. Treating (called the change point) 5(0 — 1N B h(a) + a.t(a) +
as missing data, we can write the complete-data likelihood of P(6: | Yoo m; Ohi(@) + o t(@) +5)

the sequence as: The above approach can be illustrated by a data set of size

_ h h n = 30 generated froly = 0.2 and, = 0.6. We obserwgps

L(01, 02 Yors A = @) = 0 1(1 — 62)10 (1 ~ 020(3),  =19010100000000101110111100010}. The trua equals
. . 13 and is generated from Binomial(30,1/2). We conducted
whereh is the number of heads in tite segment, anfithe 6 Bayesian two-coin analysis. Setting the prior parameters

cprre_sponding number of tails, and an arbitrary_prior diséSO(1 =B1=0,=P, = 1, and assuming all change points are
tribution g(a) for A. Note thaty andt, are both functions of 1

a. We sometimes also writg(a) andtj(a) for clarity’s sake. €qually likely, i.eg(a) = —-—. The marginal likelihood for
We choose conjugate priors for he.g. the Beta distribu- the model with one coin B(yopgonecoin) = 2.69x 10-10
tions, i.e1(B1, 8) = B(B1; a1, B1) X B(B2; ao, B2),. The joint  and for the two-coin mod@l(yopdtwo coing = 5.9x 10710
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Posterior for the changepoint k Posterior for the 0.2-coin
. o
8 [}
=]
. o
T N
5 o . g
B . T Q9
o ".c..o". ®e®gg400%0 00 =
o T T T T T T (@]
0 5 10 15 20 25 30 0.0 0.2 0.4 0.6 0.8 1.0
Posterior for the 0.6-coin MC Approximation with 100 random draws
° Solid line --- the true posterior
- 2
(@]
d (o]
9 o o
5 =
T Q 8 o
o o
] o
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0

Fig. 3. Posterior distributions for the coin-tossing game assume two coins areagamktérior distribution for the change point from coin #1
to coin #2. b) Posterior distribution for probability of heads on coin #) Rosterior distribution for the probability of heads on coin #P. (
Sampling approximations for the posterior distribution of the probability of heads on coin #1 and the exact posterigonlistribut

Assuming that the two models are equally likely a priori, that a time from its conditional distribution with the rest of the
posterior probability that these data were generated by tvammponents fixed. In particular, the following procedure se-
coins,P(twocoingyopg = 0.69. The posterior distributions of izes the essence of the Gibbs sampler (Gelfand and Smith,
a, 61 andB, are in Figure 3. A Monte Carlo approximation 1990):

to the posterior 08, is also shown, just to demonstrate that Fix A = a and6,, draw a newd4 from its conditional

this approximation can be quite accurate. posterior distribution
_ _ P(B1|A=a, 62, Yobs) = P(B1|A =2, Yobs)
Gibbs sampling: a method of Monte Carlo = Beta@q; hy(a) + ay, t1(a) + B1)

approximation to substitute for the ol€l;.

As indicated above, it is usually the case in applied statistits Now we move td;: fix A =a and thed; just drawn,
that the computation involved in eliminating the missing data ~ We sample a ne&, from

ora ngisance parameter is so difficult that one needs to US®., | A=a, 61, Yobd =P(B2 | A =2, Yobe)

numerical approximations, Monte Carlo methods, other heu- = Betafs; hy(a) + a, tx(a) + By).

ristics or a combination of these to complete the required ) ) - o
sums and integrals. The Gibbs sampling approach is a special  Given81 and®y, drawA from its conditional distribu-
MCMC method that allows one to draw samples of high-di- 10N

mensional random variables in an iterative fashion. Whil B hy(a) t- (@)@ t(a

such approximations are not necessary for the example in t @ = w02 Yon) = 6,77(10) 196,771-07'%(@) (14)
previous paragraph, we consider the application of Gibbs This step can be done by computing the right-hand side of
sampling to this problem for illustration purposes. The Gibbequation (14) fom = 0, 1,..., n and then summing them to
sampler proceeds by drawing samples from each componeehormalize. Asympotically, this algorithm will converge
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and yield samples from the posterior distribution8af @2,  Bayesian sequence segmentation algorithm
A). After convergence, samples from this distribution can b
used to approximate posterior distributions of interest in
manner similar to that described at the end of the last secti
The major weakness of MCMC sampling algorithms is thalf

in general there is no way to guarantee that convergence .
been achieved. Accordingly, such MCMC samples are agtucture (Schmidlegtal., 1998), models of sequence com-
xity (Wootton, 1994), models of sequence composition

proximate. On the other hand, when samples can be shof/(rﬁ] ; i o
to be drawn from the posterior distribution, as is the case fynurchill, 1989) and models for gene identification (Krogh
b etal., 1994a; Snyder and Stormo, 1995). What is common

the previous section, the samples are said to be exact. ) . . :
to all these methods is that a single sequence is characterized
by a series of models which only involve local properties. To
facilitate the presentation of these concepts, we begin with a
A Bayesian bioinformatics paradigm simple case in Whi(_:h each segment is_ described by an inde-
pendent model. This approach is applicable to studies of se-
guence composition and sequence complexity. In the next
A probabilistic model is often used as a mechanism througﬁjbsection, we outline the approach to a more complicated
which one connects observed data with a scientific premiggise which requires that each segment may be described by

or hypothesis about the real-world phenomena. Such modeJe of several models, e.g. protein secondary structure mo-
are at the core of all statistical analysis. Since bioinformatigse|s.

explicitly or implicitly concerns the analysis of data, such

models are also at the core of bioinformatics. Because no ) ) ) ) ]
model can completely represent every detail of reality, thEhebasicsegmentatiomodel This segmentation model is
goal of modeling is to abstract the key features of the u|@_generallzatlon of the two-coin example in the previous sec-
derlying scientific problem into a workable mathematicafion. Suppose you are told that a dealer Kyas different
form with which the scientific premise may be examinedC0ins avallablg to toss instead of just two. The probabilities
Families of probability distributions characterized by a fev?f heads are different from one anotherfyet 6,7 ... # 8
parameters are often used to achieve the purpose. kmax @nd unknown to you. The dealer flips the first &@jn

When the model is given, some efficient methods shoulimes and records the results, the second@piimes, and
be used to make inference on the parameters. Both the ma3§-0n until she or he has uses kmay, coins with a total of
mum likelihood estimation method and the Bayes methogl _
use the likelihood function to extract information from data, —
and are efficient. Nearly all bioinformatics methods employf heads and tail® = (r4, ..., 1j), whererj = {H,T}, with Cy,
score functions, which often are functions of likelihoods oCy, ..., Cx andk unknown. The change points in this se-
likelihood ratios, at least implicitly. The specification of quence occur each time a new coin is used, i.e. at
priors, required for Bayesian statistics, is less well under- k )
stood in bioinformatics, although not completely foreign/ = > C + 1withCo= 0 andk=1, ..., K.

Specifically, the setting of parameters for an algorithm can ~ ¥=°

be viewed as a special case of prior specification in which ti@f interest are the values of all the unknowns. Since the

prior distribution is degenerate with probability one for thenumber of parameters changes withthe choice of the

set value and zero for all other values. At the other extrenmeimber of change points is a model selection problem. Com-
is the specification of the so-called uninformed priors, whiclpared with the two-coin example, the new game is more

assigns equal probability to all possible values of the urcomplicated: there are more change points and the number
knowns. The introduction of non-degenerate priors caaf these changes is unknown. This example will illustrate a

usually give more flexibility in modeling reality without the general characteristic of Bayesian bioinformatics: the use of

use of a more complicated likelihood. recursions for completing large summations.

To obtain desired posterior distributions, we must com- The use of a four-sided or 20-sided coin in the foregoing
plete the summations and integrations in equations such geme serves as a model for heterogeneity in residue com-
(2) and (3). Recursions have been employed with great apesition of DNA or protein sequences. Generally, we assume
vantage in bioinformatics as the basis of numerous DP algtiat each outcome (or residue) can take values in an alphabet
rithms. In the following, we show by two examples how the1, ..., D}. If residuej is in thekth segment, theR(rj = d)
basic principles in Bayesian statistics can be applied and ex6ford=1,...,D. We let®y = (6, ..., &p). To facilitate
isting DP algorithms can be adapted to solve bioinformatiasomputation, we introduce the following notations for a seg-
problems. ment of the sequence:

§equence segmentation models have been developed for

JRany purposes in bioinformatics. These include models of

rotein sequence hydrophobicity (Kyte and Doolittle, 1982;
er and Lawrence, 1989), models of protein secondary

Z C, flips. You are given only the complete sequence
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Rij1=(is oo )i Rig1 = G + 1,00, 1) Rigy = (i o 1l — 1) 0.35
Assuming that the segments are independent of each othero-3
given the change points, the complete data likelihood is again ,, |

the product of the likelihoods of tkesegments weighted by
the prior distribution of the change points:

0.2

Probability

P(RAIG,K) = fTP(Ry, ay | OIP(A | %)

0.1

whereP(A | K) plays the role ofj(a) in the previous section
‘Model selection and Bayes evidence’, andre the para-
meters of the prior segmentation model. With this likelihood, ©

0.05 +——

R

1 2 3 4 5 6 7 8 ¢ 10 11 12 13 14 15 16 17

the joint distribution for all the variables can be written as .
follows: Number of Change Points
mP(K|R)
P(R A 0,x) = L(R A, O;x)7(0,x)
= P(RIA, ®)P(AlKx)P(x)P(®) (15) Fig. 4. F_’osterior dis_tribution of the number of change points in_the
nucleotide composition of the 500 bp upstream of the translational
where® andk are assumed independent a priori. start site of histone H1 froBaccharomyceserevisiagH1: 500bp.

ComputationsThe unknowns are the number of segmeents

segmentatioi of the sequence, and residue composifion ming approach of Auger and Lawrence (1989) can be

in each segment. The posterior distributions of these quaadapted to complete the summation.

tities can all be derived from equation (15), if the necessaryLet P(R;i;j; | k) denote the probability of observing the

summations and integrations can be completed. subsequenceyfy given that it consists afsegments. These
We assume again, as with the two-coin example, thatquantities can be computed using equation (17) Righbb-

priori all the segmentations wikhchange points are equally stituted byRyj;,j = 1,..., N,i =j, ..., N, and stored in ad-

likely, and thus have prior probability inversely proportionalvance. The DP recursion of Auger and Lawrence can then be

to the number of ways to segment the sequence ipaots, adapted as:

-1
i.e.P(A|K) = (%) . Furthermore, we assign a prior prob- P(Ryylk) = Z P(Ruylk — 1)P(Ryyl1) (18)
ability 0.5 to the null model and assume that all ofkihs V<]
models which have > 0 change points are equally likely, i.e. With P(R| k) computed, we use the Bayes rule to obtain
P(K) = KO_'-_51_ P(k | R). Figure 4 gives the distribution of the number of

change points in composition for a fragment of the genome

From equation (15), we obtain the marginal likelihood: sequence oBaccharomyceserevisiae the 500 base pairs

Kmax upstream of the translational start site of the histone H1 gene
P(R) = > P(x = KPR = K) (H1: 500bp.
k=1 The marginal probability that a change point will occur at
) positionv can be obtained:
= Z Pk =K Z f P(RA |,0)P(@)d® (16) P(Ac = v for some K R)

k=1 AlA =k

where||A|| is the number of segmentations implied?y\s = %z Z P(Ruy | KPRy | — K  (19)
X k

in the coin example, we model the residues in each segment
by a product multinomial model and a prior product Dirichlet This distribution is illustrated fdd1: 500bpin Figure 5.
model. With the segment independence and model indep

dence assumptions, we have: e§ackwardsamplmg Since the locations of the change points

are mutually dependent, an analytic expression for the dis-
['(Z0q) (Mg + ag) tribution of A is not available. However, we can draw exact
PRIk = k) = Z nndr(ad) (n, + Z40.) A7) and independent samples from this distribution by using a
recursive backward sampling algorithm.
wherenyq is the count of residue typkin thekth segment ~ The first step of the backward sampling algorithm is to
R[A«—1:A)- Apparently, a brute-force computation of equa-drawk = k from its marginal posterior distribution obtained
tion (17) is prohibitive. Fortunately, the dynamic program-by inverting equation (17) with the Bayes theorem, and to set

Ak K
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A =J. Then the change point8y( ..., A«_1) are obtained Furtheranalysisandextensionsin the previous subsection,
by recursively sampling backward from the following dis-our development employed the following assumptions: resi-
tribution: dues are independent of one another and the same model with
P(A — i, IRA =m) = independent parameters is applicable to all segments. Gener-
-1 = LR alization to more complicated segmentation models, e.g.
P(Ruy | 4 — PRumlL) Markov Chain models of sequence composition or applica-
i) 19 ail tion-specific models, e.g. intron/exon models can be ob-
P(R1mld) tained through the specification of individual segment mo-
This forward/backward process mirrors the usual dynamidels (Liu and Lawrence, 1996; Schmidigal., 1998).
programming in which the forward step finds the optimal The most well known of these is protein secondary struc-
value of the objective function and the backward step tracéigre prediction in which any subsequences may be classified
the solution corresponding to that optimum. Here, the forihto any of the three modetshelix, 3 strand or random coil
ward step sums over all segmentation variables to yie[@imple and useful probabilistic models for the helices and
necessary marginal and conditional distributions, and trgrands have been proposed by Schmatiat. (1998)]. In
backward step samples a solution in proportion to its po#dis case, not only are the locations of the change points un-
terior probability. Averaging over these draws yields a histaknown, but also the identity of the model appropriate to each
gram which approaches the distribution of equation (19) teegment is unknown. The class of a segment can also depend
any desired degree. The posterior distribution of the resid@e the classes of the adjacent segments. Traditionally, these
frequencyf; at each positiof after considering all possible methods employ fixed parameters which have been esti-

segmentations, may be examined as well: suppose positiorated using a training set. In the Bayesian context, this corre-
j is covered by thth segmentl, v] of a given segmentation, sponds to the specification of priors for each of the classes.

then: They thus may be described by hidden Semi-Markov models
for which appropriate recursions can be employed
P(5 |R) = P(&x | R) = PR} | Ok, 1)P(OK) (Schmidleretal. 1998). e

Averaging these over the sampled segmentations yields thé he recursive Bayesian approach is also useful when train-
desired distribution. Figure 6 shows this distributiorHar  ing data are available. When training data yield exact de-
500bp termination of change poingsand model typel, the dis-
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Fig. 5. Posterior marginal distribution of the change point positionki10/500bp
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Fig. 6. Posterior distribution of the segmented compositiod 1bf500bp

tribution of the observed data paramelggand the missing sian alignment algorithms to traditional optimal alignment
data parameters, e.g. length distributions of secondary methods. One is a gap-based alignment procedure based on
structure types, can be inferred by the Bayesian method wittiie recursion of Needleman and Wunsch (1970). The other
out the use of advanced computational methods. There arethod is a motif-based alignment algorithm which has been
also situations when the training data are less than perfedéscribed in detail by Zhetal. (1998). Throughout the sec-

For example, crystal structures provide good data on the seion, the observed data consist of two nucleotide or protein
ondary structure types for each segment and their locatiorsquence®! andR?, of lengths, andny, respectively. The

but the ends of secondary structure elements are often diffibserved data parametéy, is a finite set of matrices which

cult to pinpoint exactly. In this case, model type variables are analogs of scoring matrices, e.g. the PAM (Dataff,

are observed exactly, but there is some uncertainty in th®72) or Blosum (Henikoff and Henikoff, 1992) series. The
change point#\, which can be incorporated into training alignment s characterized by a matAxwhose element;
through the assignment of positive probabilities for residuesre set to one if residief sequence 1 aligns with residue
near these ends, and zero probabilities elsewhere. Furthpbf sequence 2, and zero otherwise.

more, data sets with mixed observations of complete data

and incomplete data can be analyzed in one coherent way.

The posterior distributions developed in training become th ap—basedallgnmen_t Traditionally, the entropic explosmn_
informed priors for the testing phase. In the number of alignments has been controlled by using

penalties, log{p) and logle), where),, andhe are probabil-

ities of gap opening and gap extension, respectively. Here we
show how alignment problems of this type may be treated in
Sequence alignment has been one of the most importamBayesian way by using the statistical models pioneered by
methodologies developed in bioinformatics [see Watermahhorneetal. (1991, 1992). For the gap-based alignment al-
(1995) for a review]. In this section, we compare two Bayegorithm, the parameters of the missing data are the gap pen-

Bayesian pairwise alignment
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(a) Joint Prior for Gap Parameters (b) Joint Posterior for Gap Parameters

0 510152025
yA
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Fig. 7.Prior (@) and posteriork) distributions of the gap penalties for the alignment of the hemogioaimd chains.

alties,\. The prior for alignment in the motif-based modeluninformed forms. In the following, we describe a Bayesian
will be described later. The joint distribution is defined as: Needleman—Wunsch algorithm.
- ool o2 LetAbe the alignment matrix which can be seen as a ‘path’
P(R%, R% A ©,A) =P(R%, R | A ©)P(O) P(A|AP(A) in a dynamic programming setting. With givr= (A, Ae),
Traditional alignment procedures can be seen as optimif} Probability of any allowable path, prior to seeing the con-
ing an objective function, usually a similarity score, which ident of the two seque.rpes to be aligned but conditional on
often a log-likelihood (Holmes and Durbin, 1998). More prelN€ir lengthsy andny, is:
cisely, for a set of fixed valugs =% andA = A?, one finds

A* so that: PA | A, Ao =
log(P(R,A*]|@°%A9) =

kg(A)) 1g(A) — kg(A)
A\ lg kg
kg(A), 1g(A) — kg(A)
3 AR 19 A) g

(21)

where ky(A) andlg(A) are the total number and the total
length of the gaps iA, respectively. The summation in the
max [log(P(R | A, @9 + log(P(A | AY)] (20) denominator is over all possible alignménbf the two se-
all A guences. In the following derivation, we assume that the

The need for setting parameter val@8andA® has been Iength informationng andny, is conditioned on implicitly.
the subject of much discussion in bioinformatics. A distinc-
tive advantage of the Bayesian procedure is the added model- P(N, A, RL, R? | A) = P(RL, R? | A, ©)P(@)P(A | Ao, Ae)
ingflexibilityinthe_ specification of parameters. Here we can here® = ©(ryr>)) is the joint distribution of a pair of
regar_o_l th_e Se'eC“O’.‘ ®0. an_d/\(_) asa speC|aI_ case for the aligned residues. The marginal distributions@fg, -) and
specification of a prior distribution, i.e. the prior is degener—@(. ). In this notation, we can write that:
ate with probability 1 for the valu@? andA9, and zero for e ' :
all other values. logP(RY, RYA, ©) =

A full Bayesian procedure uses a non-degenerate prior dis-
tribution for ® andA. Figure 7a shows one such prior dis- n n,
tributionP(A) for the affine gap opening and extension para- log®(r}, -) + z log®(-,rd) + ajlog¥,, ,
meters Ko, Ae), Which is a product of Beta distributions with i=1 k=1 Ik
the form Betako; 2,18)x Beta; 1,3). This choice is just
one from a family of distributions described by Bagagi, where log V1172 = 090G rPriog (] )-loge( 1) corresponds to a
Bo) x Betade; Og, Be) which includes degenerate forms andscoring matrix, say a PAM or Blosum matrix.

48



Bayesian inference on biopolymer models

One can remove two of the three unknowns as follows:with insertions and deletions in alignments. In the procedure
just described, the gap parameters are primarily used to con-
trol the prior distribution for the alignment (e.g. penalizing
exponentially growing number of ways of gap opening). In
contrast, Zhwet al. (1998) attack the problem by directly
specifying a prior alignment distribution: all alignments with
) ) o ~ kogaps are equally likely, and the probability on the distribu-
where in the numerator thié is marginalized by summing tion of k is uniform. This prior discounts alignment with
over all the scoring matrices in a given set, each with prighany gaps by penalizing it with a factor that is inversely pro-
‘weight' P(IT). Both the numerator and the denominator ofyortional to the number of that type of alignments. Input re-
equation (21) can be computed via a recursive algorithglirements for the scoring matrices are also more flexible in
shown as follows, which is similar to the dynamic programthe Bayesian setting than in traditional methods. For
ming of Needleman and Wunsch (1970). example, Zhetal. (1997, 1998) examine the use of a series
As with the traditional alignment algorithm, we can de-f either the PAM or the Blosum matrices as prior input in
scribe a path as consecutive moves of three typgglele-  \hich all the matrices are assigned equal probability a priori.
tion), 1 (insertion) and (match). To ensure uniqueness,They report that the posterior distributions of the scoring ma-
one often adds the restriction that an insertigénnot fol-  trices are often flat and sometimes multimodal, indicating
low a deletion (). For example, to obtain the numerator ofthat no one matrix is clearly more preferable to others when
equation (21), we defing(k|l), pm(kl), p(kl) andp(kl),  aligning the two sequences. One multimodal case is shown
where: in Figure 9, in which there are strong modes at PAM 140 and
PAM 80. This result illustrates two further features of Baye-
sian procedures. To examine these, we consider the express-
ion for the posterior distribution of the scoring matrix.

P(RLR | A) =

ZoZAP(RL R? | A @)P(@)\IWLIAH®
3, M) g AR

(22)

pm(k, ) = p(k-L,1-1)0(r}, r?)

i) = {hepi(k=L,1) + hopm(k=L,D}O(rZ, )

Pk 1) = [hePg(k, I=1) + Aopm(k, I-1) + Aopik, I-1)|O(-, 1)
pl.) = pmk1) + pik 1) + pyk.1)

P

If the model uses only the interaction term, as is traditional
in bioinformatics, instead of the joint distribution, all the ] o ] ,
marginal term® (12, ) and® (-, r?) can be substituted by First, we see that this posterlpr is f)bt(_euned by.averagmg
1, and® (rLr3 by W (r%,r?) in the forgoing recursive for- over all alignments. Hence, a ‘good’ alignment is not re-

mulas. The marginal likelihood can be obtaineB(@E, R2) quired to assess the distances between the sequences. This
' 9 ’ feature may be of value to distance methods employed in

= f P(RL, R2| A)P(A)dA. We know of no ways to complete Molecular evolution studies, since the requirement that a pair
of sequences must be sufficiently close to permit a good
this integration analytically. Traditional numerical integra-alignment is removed. Furthermore, samples from these dis-
tion methods work well for this low-dimensional integration.tance distributions can be employed to incorporate alignment
With the marginal likelihood, we can have the desirable posmcertainty into phylogenetic tree construction. Secondly,

®|R = ﬁ; ; P(RLR? | A ®)P(O)P(A | A)P(A)

terior distribution such as: this posterior distribution of the sequence distance incorpor-

ates variations in the alignments, which means that varying

P(A | RER) = > > P(O,A RRE | A)P(A)/P(R:,R) levels of sequence conservation in different regions of pro-
A ©

tein sequences can be detected. &fal. (1998) show that

Toillustrate, we examined the alignment of two sequencebimodality in distance is a reflection of the variable degrees
hemoglobiro andB chains, and use the PAM-80 matrix. Theto which motifs in the GTPase sequences they compared are
posterior joint distribution of the gap penalty parameters, i.€onserved.

P(ho, A | R)

is one of the outputs. As shown in Figure 7b, the posteri(gelationshipoothermethodsln many cases of applying the

distribution of these parameters differs substantially from thm?]?;zogiﬁl]alt'ggggigﬁ p:)?/ce?ilflrebggiiﬂg?l/i bnenfgmgtggé(;(;g}
prior distribution, indicating that the data have a strong influ- y P 9

ence on the results. The marginal posterior distributiokg of Of Parameter values @fandA\, but this approach is problem-
and)e are shown in Figure 8. atic because it often leads to non-ignorable bias (Little and

Rubin, 1987). An approach that does not share this difficulty
Motif-basedalignment While the gap penalty-based ap-is based on the observed data likelihood, i.e. the one obtained
proaches have dominated alignment methods for maryy summing over (or integrating out) all possible values of
years, Bayesian statistics opens up new directions in dealitige missing data in the complete-data likelihood:
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Fig. 8. Marginal posterior distributions of the gap penalties for the alignment of the hemaoglahit3 chains.

0.7

0.6

PAM Probability
o =3 o o
o w IS 2

e

o

Fig. 9. Posterior distribution of the PAM distance between LETU

and

40 60 80 100 120 140 160
PAM

1GIA.

180

200

220

PR|©,A) = > P(RA|O,A)

Al A

240

260

(23)

from dynamic programming algorithms. Several authors
have presented algorithms which find the optimal values of
the parameter§*, A*, for the observed data likelihood. For
example, Churchill (1989) uses the maximum likelihood
method to characterize the compositional heterogeneity of
nucleotide sequences. Thoetal. (1991) give a maximum
likelihood method for the alignment of a pair of nucleotide
sequences, and Allisatal. (1992) give a related method to
choose between alternate alignment models. Their pro-
cedures yield point estimates of theandA, but provide no
information about uncertainties in these estimates or the ef-
fect of these uncertainties on the other unknowns. Under cer-
tain conditions, confidence limits based on asymptotic nor-
mality of these estimates can be obtained. However, no pro-
cedures are available to assess either the impact of
uncertainties in these parameters, or the effects of using the
optimized values o® and/\, on the alignment.

Discussion

Since bioinformatics concerns the analysis of biopolymer se-

Just as in the Bayesian algorithms described above, thepgence data, its main products are inferences about unob-
summations are completed using recursive relations derivedrved variables. As in classical statistics, optimization has
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been the primary tool for making inference in bioinformatfor the histone hl example. This work was partially sup-
ics, in which point estimates of very high-dimensional obported by NIH grant R011HG01257 and DOE grant

jects, obtained by using dynamic programming, are freDEFG0296ER7266 to C.E.L., and NSF grants

guently used. Characterizations of uncertainties in these eftiSF-9501570 and NSF-9803649 and by the Terman fellow-
mates have been very difficult and are mostly limited to ahip from Stanford University to J.S.L.

simple significance test or completely ignored.

We show in this article that the rich history of computation
in bioinformatics can be adapted to meet the requirementslg
the Bayesian methods. Specifically, dynamic programming
recurSionS Can. be mOd.iﬁed.to complete the high_dimer}ﬁﬂ\ison,L., Wallace,C.S. and Yee,C.N. (1992) Minimum message
sional summations reqUIred in Baye3|§1n a”a'Y,SeS- Throug ength encoding evolutionary trees and multiple alignmerd-
the use of these recursions, coupled with specific approachegeegingsof 25th Hawaii International Conferenceon System
to integrate out or sum over all other variables, the full power sgience1, 663-674.
of the Bayesian methodology can be brought to bear onpager,.E. and Lawrence,C.E. (1989) Algorithms for the optimal
wide range of problems previously addressed by dynamicidentification of segment neighborhoodgull. Math. Biol., 51,
programming. The fruits of this Bayesian approach include 39-54.
the following: (i) full inferences on all unknowns, with all Baldi,P., Chauvin,Y., McClure,M. and Hunkapiller,T. (1994) Hidden
uncertainties incorporated; (ii) a general and broad relax-Markov models of biological primary sequence informatferc.
ation of the traditional fixed parameter settings; (jii) asses- Natl Acad Sci USA 91, 1059-1063.

sments of significance through the use of Bayesian mod r:eor?t‘hngbﬁlethsgn?;%n‘l\iﬁ é%cjg%g/'??g‘_ﬁ;ke“hmd align-
selection procedures. q N oo o '

Th - limitati he B . hod .Cardon,L.R. and Stormo,G.D. (1992) Expectation maximization
e most important limitation on the Bayesian method IS algorithm for identifying binding sites with variable lengths from

the need for additional computational resources. While ynajigned DNA fragments. Mol. Biol., 223 159-170.

Bayesian algorithms generally have time and space requir€nurchill,G.A. (1989) Stochastic models for heterogeneous DNA
ments of the same order as their dynamic programmingsequencesull. Math. Biol., 51, 79-94.

counterparts, the constants are generally larger by an ordwiyhoff,M.E., Eck,R.V. and Park,C.M. (1972) A model of evolution-
of magnitude or more. As a result of the combination of ary change in proteins. hitlasof Protein Sequencand Structure
previously developed efficient algorithms and the availabil- National Biomedical Research Foundation, Vol. 5, 89-99.

ity of fast workstations with large memories, this limitationPempster,A.P., Laird,N.M. and Rubin,D.B. (1977) Maximum likeli-
is not a serious one for most applications. As discussed onl)}‘_OOd estimation from incomplete data via the EM algorithm (with

riefy here for hose prablems for which no pohnomial_ SECSSe) £ S SR 0
time algorithm exists, such as multiple sequence alignmen ‘calculating marginal densitied. Am Stat Assoc, 85, 398-409.

Markov Chain Mome Carlo (a_nd perhaps Other Monte Carl elman,A., Carlin,J.B., Stern,H.S. and Rubin,D.B. (19&yesian
approaches) provide alternative means to implement a full p,a Analysis Chapman & Hall, New York.
Bayesian analysis. When this is the case, bioinformatig$enikoff,S. and Henikoff,JG. (1992) Amino acid substitution matrices
joins the majority of the field of applied statistics and statisti- from protein blocksProc. Natl Acad Sci USA 89, 10915-10919.
cal physics in the need to rely on algorithms whose converolmes,|. and Durbin,R. (1998) Dynamic programming alignment
gence cannot be guaranteed. accuracyProceeding®f the 2nd AnnualInternational Conference
Only recently have explicit statistical approaches, in the onComputationaMolecularBiology, 2, 102-108.
form of hidden Markov models and Gibbs sampling algok@ss,R.E. and Raftery,A.E. (1995) Bayes factardm Stat Assoc
rithms, come to play a significant role in bioinformatics%rgg'gf_'\ﬁi-I S, and Haussler.0. (1994a) A hidden Markov model
While these approaches have brought a number of alg -that’fir;ljs er;e.s.iE coliDNA NilcieicAcidsRes 22,4768-4778
rlthr_nlc advances to bioinformatics, the pot.entlal fo.r statistiy ogh A, BrgownyM” Mian,S., Sjolander K. and haissler’D_ (1994b)
cal inference has gone largely underexploited. As |IIustrated’Protein modeling using hidden Markov modaisMol. Biol., 235
here, because Bayesian statistics is so well suited to bioinfor-sn1_1531 T

'm’C_ItiCS_, it providgs a fa_cile rout_e to unleash the power of statyte,J. and Doolittle,R.P. (1982) A simple method for displaying the
istical inference in bioinformatics. hydrophobic character of a protedaMol. Biol., 157, 105-132.
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