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Abstract
Motivation: Most existing bioinformatics methods are
limited to making point estimates of one variable, e.g. the
optimal alignment, with fixed input values for all other
variables, e.g. gap penalties and scoring matrices. While the
requirement to specify parameters remains one of the more
vexing issues in bioinformatics, it is a reflection of a larger
issue: the need to broaden the view on statistical inference in
bioinformatics.
Results: The assignment of probabilities for all possible
values of all unknown variables in a problem in the form of
a posterior distribution is the goal of Bayesian inference.
Here we show how this goal can be achieved for most
bioinformatics methods that use dynamic programming.
Specifically, a tutorial style description of a Bayesian
inference procedure for segmentation of a sequence based on
the heterogeneity in its composition is given. In addition, full
Bayesian inference algorithms for sequence alignment are
described.
Availability: Software and a set of transparencies for a
tutorial describing these ideas are available at
http://www.wadsworth.org/res&res/bioinfo/
Contact: lawrence@wadsworth.org; jliu@stat.stabford.edu

Introduction

Computational approaches to molecular and structural biol-
ogy are becoming increasingly important and have spawned
the new field of bioinformatics. In the past decade, we have
witnessed the developments of the likelihood and minimum
message length approaches to pairwise alignments (Bishop
and Thompson, 1986; Thorne et al., 1991, 1992; Allison
et al., 1992), the probabilistic models for RNA secondary
structure (Zuker, 1989; McCaskill, 1990); the expectation-
maximization (EM) algorithm for finding regulatory regions
(Cardon and Stormo, 1992; Lawrence and Reilly, 1990), the
hidden Markov models for DNA composition analysis and
multiple alignments (Churchill, 1989; Baldi et al., 1994;
Krogh et al., 1994), the Gibbs sampling strategies for subtle
motif detections and subtle multiple alignments (Lawrence
et al., 1993; Liu, 1994; Neuwald et al., 1997), etc., all of
which show that algorithms resulting from statistical think-
ing are invaluable tools in this field.

A main advantage of statistical approaches is that explicit
probabilistic models are employed to describe relationships
between various quantities with consideration of the un-
derlying uncertainty. Then available statistical theory can
automatically lead to an efficient use of available informa-
tion in making predictions regarding biopolymer sequences.
To date, however, statistical approaches have been primarily
used for deriving efficient computational strategies. The util-
ity of these methods to make statistical inferences about un-
observed variables has received far less attention. With one
exception (Zhu et al., 1997, 1998), methods which give com-
plete statistical inferences on all unknowns for biopolymer
sequences, either classical or Bayesian, are unavailable.

In this article, we show that the Bayesian methodology
provides a useful way to formulate mathematically a bioin-
formatics problem which yields an assessment of the uncer-
tainty in all unknowns. We also show that many existing re-
cursive dynamic programming (DP) algorithms can be
modified to solve the difficult computational problems re-
quired by Bayesian analysis. Following the Introduction, we
provide a brief overview of Bayesian statistics. In subsequent
sections, we apply the basic Bayes procedures to a simple
coin example; describe applications in bioinformatics using
two specific examples: sequence segmentation and global
sequence alignment; and discuss the relationship of the
Bayesian approach to other existing methods.

Basic Bayesian statistics

The key focus of statistics is on making inferences, where the
word inference follows the dictionary definition as ‘the pro-
cess of deriving a conclusion from fact and/or premise’. In
statistics, the facts are the observed data, the premise is repre-
sented by a probabilistic model of the system of interest, and
the conclusions concern unobserved quantities. Statistical
inference distinguishes itself from other forms of inference
by explicitly quantifying uncertainties involved in the prem-
ise and thus the conclusions.

Classical statistics arrives at its inferential statements by
using point estimates of unknown variables, with the maxi-
mum likelihood estimates being most popular. Uncertainty
in estimation is addressed by studying the frequency beha-
vior (or more properly, the pre-data behavior) of these esti-
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mates and then putting confidence limits on the unknown
parameters accordingly.

Bayesian statistics seeks a more ambitious goal by model-
ing all sources of uncertainty (physical randomness, subjec-
tive opinions, prior ignorance, etc.) with probability distribu-
tions and then trying to find the a posteriori distribution of all
unknown variables of interest after considering the data. It
uses the calculus of probability as the guiding principle in
manipulating data and information, and derives its inferential
statement purely based on the post-data probability distribu-
tions.

The value of using probability distributions to describe un-
known quantities is indicated by the fact that probability
theory is the only known coherent system for quantifying
objective and subjective uncertainties. Furthermore, proba-
bilistic models have been accepted as appropriate in almost
all information-based technologies, including information
theory, control theory, system science, communication and
signal processing, and statistics. When the system under
study is modeled properly, the Bayesian approach is always
among the most coherent, consistent and efficient statistical
methods.

The joint and posterior distributions

Bayesian statistics treats all quantities under consideration,
be they observed data, unknown parameters, or missing data,
as random variables. The full process of a typical Bayesian
analysis can be described as consisting of three main steps
(Gelman et al., 1995): (i) setting up a full probability model,
the joint distribution, that captures the relationship among all
the variables in consideration; (ii) summarizing the findings
for particular quantities of interest by appropriate posterior
distributions, which is typically a conditional distribution of
the quantities of interest given the observed data; (iii) evalu-
ating the appropriateness of the model and suggesting im-
provements (model criticizing and selection).

A standard procedure for carrying out step (i) is first to
write down the likelihood function, i.e. the probability of the
observed data given the unknowns, and multiply it by the a
priori distribution of all the unobserved variables (typically
unknown parameters). Let yobs denote the observed data and
θ the unobserved parameter. The joint probability can be
represented as Joint = likelihood × prior, i.e.

p(yobs, θ) = p(yobs | θ)π(θ) (1)

where p(yobs | θ) is often denoted as L(θ;yobs) and referred to
as the likelihood in classical statistics.

The Bayesian inference is drawn by examining the prob-
ability of all possible values of the variables of interest after
considering the data. Accordingly, step (ii) is completed by
obtaining the posterior distribution through the application
of the Bayes theorem:

p(� | yobs) �
p(yobs | �)�(�)

� p(yobs | �)�(�)d�

�
p(�, yobs)
p(yobs)

� p(yobs | �)�(�) (2)

When θ is discrete, the integral is replaced by summation.
The denominator p(yobs) is the marginal distribution of the
data, the so-called marginal likelihood of the model. It is
sometimes convenient to realize that p(yobs) is a normalizing
constant, i.e. the constant that is required so that the whole
function integrates to one. This constant is obtained by inte-
grating out or summing over all variables, except for the ob-
served data, from the joint distribution.

When there is more than one unknown, e.g. θ = (θ1, θ2),
and interest focuses only on one component, say θ1, those
unknown quantities that are not of immediate interest, but are
needed by the model, nuisance parameters, are removed by
integration:

p(�1 | yobs) �

� p(yobs | �1,�2)�(�1,�2)d�2

� � p(yobs | �1,�2)�(�1,�2)d�1d�2

�
p(yobs,�1)

p(yobs)
(3)

Note that computations required for completing a Baye-
sian inference are the integrations (sums for discrete vari-
able) over all unknowns in the joint distribution to obtain the
marginal likelihood and over all but those of interest to re-
move nuisance parameters. Despite the deceptively simple-
looking form of equation (3), the challenging aspects of
Bayesian statistics are 2-fold: (i) the development of a model,
p(yobs | θ)π(θ), which must effectively capture the key fea-
tures of the underlying scientific problem; and (ii) the
necessary computation for deriving the posterior distribu-
tions.

Conjugate priors

An early effort at making the integration required by equa-
tion (2) accessible was the development of the so-called
conjugate priors (Gelman et al., 1995). Abstractly, a conju-
gate prior is a family of distributions for π(θ) that has the
same functional form as the likelihood function. As a conse-
quence, when a conjugate prior is used, the functional form
of the posterior distribution is the same as that of the prior.
Although we can choose any functional form for π(θ), the
conjugate prior enjoys the greatest mathematical and com-
putational advantage.

In computational biology, because the data to be analyzed
are usually categorical (e.g. DNA sequences with a four-
letter alphabet or protein sequences with a 20-letter al-
phabet), the binomial and multinomial distributions are most
commonly used. The unknown parameters often correspond
to the frequencies of each letter in the alphabet. The conju-
gate priors for the multinomial families are the Dirichlet dis-
tributions, among which the Beta distribution is a special
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case for the binomial family. In analyzing DNA sequences,
we often let θ = (θa, θt, θg, θc) represent the unknown prob-
abilities of the four nucleotides (e.g. Ρ θi  = 1). With the
simple model that each residue in the observed sequence is
independent and identically distributed (iid) with frequency
θ, the likelihood of an observed DNA sequence can be

written as p(na, nt, ng, nc | θ) ∝  �
na

� �
nt

t �

ng

g �
nc

c , where (na,

nt, ng, nc) is the count of the four types of nucleotides in the
sequence. Thus, the conjugate prior for θ is of form π(θ) ∝

�
αa–1

a �

αt�1

t �

αg�1

g �
αc�1

c , which is a Dirichlet distribution

with parameter α = (αa, αt, αg, αc), where α is often called
the ‘pseudo-counts’.

The missing data framework

In many problems, it is often fruitful to distinguish two kinds
of unknowns: (population) parameters and missing data. Al-
though there is no absolute distinction between the two types,
missing data are usually directly related to the individual data
and their dimensionality tends to increase as more and more
data are observed. On the other hand, the parameters usually
characterize the entire population of observations and are
fixed in number. For example, in a multiple alignment prob-
lem, alignment variables that must be specified for each se-
quence (observation) are missing data. Residue frequencies
or scoring matrices, which apply to all the sequences regard-
less of their number, are population parameters. Whereas this
distinction is essential to the maximum likelihood method, it
is employed primarily for conceptual clarity in Bayesian stat-
istics.

When missing data ymis are present in a statistical problem,
the inference can be achieved by using the ‘observed-data
likelihood’, defined as Lobs(θ;yobs) =  p(yobs | θ), which can
obtained by integrating out the missing data from the ‘com-
plete-data likelihood’, i.e.:

Lobs (�; yobs) ��p (yobs, ymis | �) dymis

Since it is often difficult to complete this integral, the maxi-
mum likelihood methods often employ advanced computa-
tional tools such as the EM algorithm (Dempster et al.,
1977).

Bayesian analysis for missing data problems can be
achieved coherently through integration:

p(�1|yobs) � �� p(yobs,ymis | �1,�2)p(�1,�2)dymisd�2

Since everything is treated as random variables in Bayesian
statistics, the integration for eliminating the missing data is
no different than that for eliminating nuisance parameters.

Model selection and Bayes evidence

At times, biology indicates that more than one model may be
appropriate, and interest often focuses on assessing model
fitness and conducting model selections [step (iii) described
in the previous section ‘The joint and posterior distribu-
tions’). The classical hypothesis testing can be seen as a
model selection method in which one selects either the null
hypothesis or the alternative in light of data. Model selection
can also be achieved by a formal Bayes procedure. Firstly, all
the candidate models are embedded into one unified model.
Then, the ‘overall’ posterior probability of each candidate
model is computed and used to discriminate among the mo-
dels (Kass and Raftery, 1995).

To illustrate the Bayesian model selection procedure, we
focus on the comparison of two models: M =  0 indicates the
‘null’ model and M =  1 the alternative. The joint distribution
for the augmented model becomes:

p(yobs, θ, M) = p(yobs | θ, M)p(θ, M)

Under the assumption that the data depend on the models
through their respective parameters, the above equation is
equal to:

p(yobs, θ, M) =  p(yobs | θm)p(θm | M =  m)p(M =  m)

where p(θm | M = m) is the prior for the parameters in model
m, and p(M = m) is the prior probability of model m. The
posterior probability for model m is obtained as:

p(M� m | yobs)� �p(yobs | �m)p(�m | M� m)p(M� m)d�m

� p(yobs | M� m)p(M� m)

The choice of p(M = m) is dependent on the problem, and
we often set p(M =  0) = p(M =  1) = 0.5 a priori if we expect
that both models are equally likely. Parameter θm can change
meaning and dimensionality as the model type m changes.
For example, in the context of database searching, the prior
probability that the query sequence is related to a sequence
taken at random from the database is much smaller. We might
set p(M =  1) inversely proportional to the number of se-
quences in the database. Often in hypothesis testing, we wish
to compare the null to a family of alternative models whose
priors are not well specified, i.e. to a diffused alternative.
Then the Bayesian evidence can be summarized as:

sup p(M� 1 | yobs)
p(�|M� 1)
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where the supremum is taken with respect to all allowable
priors for θ in model 1.

Computational issues

In many practical problems, the required computation is the
main obstacle for applying the Bayesian method. In fact,
until recently, this computation has often been so difficult
that Bayesian statistics was largely a field restricted to
specialists. The introduction of iterative simulation methods,
such as the data augmentation and the more general Markov
chain Monte Carlo (MCMC) (Tanner and Wong, 1987; Gel-
fand and Smith, 1990), which provide Monte Carlo approx-
imations to the required integrations and summations, has
brought the Bayesian method into the mainstream of statisti-
cal analysis. The MCMC strategy has also led to some useful
sequence analysis algorithms (Lawrence et al., 1993; Neu-
wald et al., 1995, 1997). As we illustrate below, by appealing
to the rich history of computation in bioinformatics, the re-
quired summations can often be performed exactly, which
gives rise to either an exact Bayesian inference or an im-
proved MCMC method.

A coin example

To illustrate the basic ideas just described, in this section we
consider a simple coin game in which one cannot expect the
coins to be fair. In the game, n coins are tossed and laid out
in a row. You are asked to make an inference about the prob-
ability of heads for this sequence of coins.

Single coin type

Suppose the n coins are identical with probability of heads
θ1. Let hn be the number of observed heads and tn the number
of tails. The likelihood function for the observed sequence
can be written as the product of n Bernoulli trials:

L(�1; yobs)� P(yobs|�1)� �
hn
1 (1� �1)

tn (4)

We model the prior of θ1 by a Beta distribution defined as:

�(�1)� B(�1;�,�)�
�(�� �)
�(�)�(�)

�
α–1
1 (1–�1)

�–1� �
α–1
1 (1–�1)

�–1 (5)

where Γ(·) is the complete gamma function and α, β > 0 are
the parameters set by the user. A useful fact to show that
equation (5) does integrate to one is:

�1

0

�
�–1(1–�)�–1d��

�(�)�(�)
�(�� �)

(6)

Figure 1 shows this distribution for α = 2 and β = 4, as well
as for the special case α =  1, and β =  1 which corresponds
to a uniform distribution. The joint distribution of the data
and θ1 is:

Fig. 1. Two Beta distributions with parameters α = 2 and β = 4, and
parameters α =  1 and β =  1.

P(yobs,�1)� L(�1; yobs)�(�1)�
�(�� �)
�(�)�(�)

�
hn��–1
1

(1–�1)
tn��–1

from which we derive the marginal likelihood by using for-
mula (6):

P(yobs) �
�(�� �)
�(�)�(�)
�(�1)

hn���1(1� �1)
hn���1d�1�

�(�� �)
�(�)�(�)

�(hn� �)�(tn� �)
�(n� �� �)

(7)

and the posterior distribution:

P(�1 | yobs)�
P(yobs,�1)

P(yobs)

�
�(n� �� �)

�(hn� �)�(n� hn� �)
�

hn���1
1

(1� �1)
tn���1 (8)

As expected, the posterior is a Beta distribution with up-
dated parameters, i.e. B(θ1; hn + α, tn + β). Notice that in this
posterior distribution the prior parameter (α, β) and the
number of heads or tails (hn, tn) are exchangeable. Accord-
ingly, these prior parameters are often referred to as pseudo
counts.

The posterior distribution of θ1, with yobs =
{010100000000011001101001011011} (1 = heads, 0 = tails;
so hn = 12 and tn = 18) and α = β = 1, is shown in Figure 2,
which graphically summarizes the Bayesian inference for
this problem: after considering the data, the inference on θ1
is made by specifying a probability density on all its possible
values. The inferred posterior distribution of θ1 is a probabil-
ity density with main probability mass surrounding the em-
pirical frequency 0.4 with an appropriate spread.

If four-sided or 20-sided coins are employed, the foregoing
game serves as a model for residue composition of DNA or
protein sequences, respectively. Generally, if the outcome of
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Fig. 2. Posterior Beta distribution for coin-tossing game assuming
the use of only one coin: B(θ1; 13,19).

each trial (or observed residue) takes value in an alphabet {1,
…, D} with probability θd for d =  1, …, D, then the binomial
distribution is generalized to the multinomial distribution
and the conjugate Beta prior distribution generalizes to the
conjugate Dirichlet distribution. With this generalization, the
marginal likelihood (7) becomes:

P(yobs) �
�(�d�d)
�d�(�d)

�d�(nd� �d)
�(n� �d�d)

(9)

where αd are the parameters for the prior Dirichlet distribu-
tion, and nd are the counts of residue type d observed after
tossing the D-sided object n = Σdnd times. Furthermore, the
posterior distribution (8) generalizes to:

P(�|yobs) �
�(�d(nd� �d))
�d�(nd� �d)

�
d
�

nd� �d–1
1d

(10)

Two types of coins: Bayesian segmentation

Suppose you are told that, in the game described above, two
types of coins rather than one have been used: the first A
coins which make up the first segment have probability θ1 of
heads, and the remaining n – A coins have probability θ2 of
heads, with A unknown. Treating A (called the change point)
as missing data, we can write the complete-data likelihood of
the sequence as:

L(�1,�2; yobs, A� a) � �
h1
1 (1� �1)

t1�
h2
2 (1� �2)

t2g(a),

where hi  is the number of heads in the ith segment, and ti  the
corresponding number of tails, and an arbitrary prior dis-
tribution g(a) for A. Note that hi  and ti  are both functions of
a. We sometimes also write hi(a) and ti(a) for clarity’s sake.

We choose conjugate priors for the θ, e.g. the Beta distribu-
tions, i.e. π(θ1, θ2) =  B(θ1; α1, β1) × B(θ2; α2, β2),. The joint

distribution of all the variables including the missing data
becomes:

P(�1,�2,yobs, A� a) � L(�1,�2; yobs,a)�(�1,�2)g(a)

� g(a) �
2

i�1

�(�i � �a)
�(�i)�(�i)

�
hi��i
i

(1–�i)
ti��i–1

The exact posterior distribution for A is obtained as fol-
lows:

P(A� a, yobs) � �� p(�1,�2,a, yobs)d�1d�2

� g(a) �
2

i�1

�(�i � �i)
�(�i)�(�i)

�1

o

�
hi(a)��i–1
i

(1–�i)
ti(a)��i–1d�i

(11)

By using formula (6), we further derive that:

P(A� a, yobs) � g(a) �
2

i�1
��(�i � �i)
�(�i)�(�i)

�(hi � �i)�(ti � �i)
�(hi � ti � �i � �i)

� (12)

For an alphabet of size D, the expression in square brackets
is replaced by an expression analogous to (9). The marginal
likelihood is obtained by summing over a: P(yobs) = Σa P(A
= a, yobs) and the posterior distribution for a is:

P(A = a | yobs) = P(A = a, yobs)/P(yobs) (13)

For given A = a, the two parameters, θ1 and θ2, are mutual-
ly independent and have Beta distributions. Thus, the mar-
ginal posterior distribution of, say, θ1, can be expressed as a
mixture of Beta distributions:

p(�1|yobs) � �
n

a�0

p(�1 | yobs, A� a)p(A� a|yobs)

� �
n

a�0

B(�1; h1(a)� �1, t1(a)� �1)P(A� a | yobs)

As an alternative to this messy expression of mixtures, we
can perform a Monte Carlo approximation by drawing ran-
dom samples a1, a2, …, am from P(A = a | yobs) and then
averaging the Beta distributions determined by the sampled
values:

p~(�1 | yobs) �
1
m�

m

j�1

B(�1; h1(aj)� �1, t1(aj)� �1)

The above approach can be illustrated by a data set of size
n = 30 generated from θ1 = 0.2 and θ2 = 0.6. We observe yobs
={001010000000010111101111100010}. The true a equals
13 and is generated from Binomial(30,1/2). We conducted
the Bayesian two-coin analysis. Setting the prior parameters
as α1 = β1 = α2 = β2 = 1, and assuming all change points are

equally likely, i.e. g(a) = 1
n� 1

. The marginal likelihood for

the model with one coin is P(yobs|one coin) = 2.69 × 10–10

and for the two-coin model P(yobs|two coins) = 5.9 × 10–10.
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Fig. 3. Posterior distributions for the coin-tossing game assume two coins are used. (a) Posterior distribution for the change point from coin #1
to coin #2. (b) Posterior distribution for probability of heads on coin #1. (c) Posterior distribution for the probability of heads on coin # 2. (d)
Sampling approximations for the posterior distribution of the probability of heads on coin #1 and the exact posterior distribution.

Assuming that the two models are equally likely a priori, the
posterior probability that these data were generated by two
coins, P(two coins|yobs) = 0.69. The posterior distributions of
a, θ1 and θ2 are in Figure 3. A Monte Carlo approximation
to the posterior of θ1 is also shown, just to demonstrate that
this approximation can be quite accurate.

Gibbs sampling: a method of Monte Carlo
approximation

As indicated above, it is usually the case in applied statistics
that the computation involved in eliminating the missing data
or a nuisance parameter is so difficult that one needs to use
numerical approximations, Monte Carlo methods, other heu-
ristics or a combination of these to complete the required
sums and integrals. The Gibbs sampling approach is a special
MCMC method that allows one to draw samples of high-di-
mensional random variables in an iterative fashion. While
such approximations are not necessary for the example in the
previous paragraph, we consider the application of Gibbs
sampling to this problem for illustration purposes. The Gibbs
sampler proceeds by drawing samples from each component

at a time from its conditional distribution with the rest of the
components fixed. In particular, the following procedure se-
izes the essence of the Gibbs sampler (Gelfand and Smith,
1990):
• Fix A = a and θ2, draw a new θ1 from its conditional

posterior distribution

p(θ1 | A = a, θ2, yobs) = P(θ1 | A = a, yobs) 
= Beta(θ1; h1(a) + α1, t1(a) + β1)

to substitute for the old θ1.
• Now we move to θ2: fix A = a and the θ1 just drawn,

we sample a new θ2 from

p(θ2 | A = a, θ1, yobs) = p(θ2 | A = a, yobs)
= Beta(θ2; h2(a) + α, t2(a) + β2).

• Given θ1 and θ2, draw A from its conditional distribu-
tion

P(A� a|�1,�2, yobs)� �
h1(a)

1
(1–�1)

t1(a)
�

h2(a)

2
(1–�2)

t2(a)g(a) (14)

This step can be done by computing the right-hand side of
equation (14) for a = 0, 1, …, n and then summing them to
renormalize. Asympotically, this algorithm will converge
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and yield samples from the posterior distribution of (θ1, θ2,
A). After convergence, samples from this distribution can be
used to approximate posterior distributions of interest in a
manner similar to that described at the end of the last section.
The major weakness of MCMC sampling algorithms is that
in general there is no way to guarantee that convergence has
been achieved. Accordingly, such MCMC samples are ap-
proximate. On the other hand, when samples can be shown
to be drawn from the posterior distribution, as is the case in
the previous section, the samples are said to be exact.

A Bayesian bioinformatics paradigm

A probabilistic model is often used as a mechanism through
which one connects observed data with a scientific premise
or hypothesis about the real-world phenomena. Such models
are at the core of all statistical analysis. Since bioinformatics
explicitly or implicitly concerns the analysis of data, such
models are also at the core of bioinformatics. Because no
model can completely represent every detail of reality, the
goal of modeling is to abstract the key features of the un-
derlying scientific problem into a workable mathematical
form with which the scientific premise may be examined.
Families of probability distributions characterized by a few
parameters are often used to achieve the purpose.

When the model is given, some efficient methods should
be used to make inference on the parameters. Both the maxi-
mum likelihood estimation method and the Bayes method
use the likelihood function to extract information from data,
and are efficient. Nearly all bioinformatics methods employ
score functions, which often are functions of likelihoods or
likelihood ratios, at least implicitly. The specification of
priors, required for Bayesian statistics, is less well under-
stood in bioinformatics, although not completely foreign.
Specifically, the setting of parameters for an algorithm can
be viewed as a special case of prior specification in which the
prior distribution is degenerate with probability one for the
set value and zero for all other values. At the other extreme
is the specification of the so-called uninformed priors, which
assigns equal probability to all possible values of the un-
knowns. The introduction of non-degenerate priors can
usually give more flexibility in modeling reality without the
use of a more complicated likelihood.

To obtain desired posterior distributions, we must com-
plete the summations and integrations in equations such as
(2) and (3). Recursions have been employed with great ad-
vantage in bioinformatics as the basis of numerous DP algo-
rithms. In the following, we show by two examples how the
basic principles in Bayesian statistics can be applied and ex-
isting DP algorithms can be adapted to solve bioinformatics
problems.

Bayesian sequence segmentation algorithm

Sequence segmentation models have been developed for
many purposes in bioinformatics. These include models of
protein sequence hydrophobicity (Kyte and Doolittle, 1982;
Auger and Lawrence, 1989), models of protein secondary
structure (Schmidler et al., 1998), models of sequence com-
plexity (Wootton, 1994), models of sequence composition
(Churchill, 1989) and models for gene identification (Krogh
et al., 1994a; Snyder and Stormo, 1995). What is common
to all these methods is that a single sequence is characterized
by a series of models which only involve local properties. To
facilitate the presentation of these concepts, we begin with a
simple case in which each segment is described by an inde-
pendent model. This approach is applicable to studies of se-
quence composition and sequence complexity. In the next
subsection, we outline the approach to a more complicated
case which requires that each segment may be described by
one of several models, e.g. protein secondary structure mo-
dels.

The basic segmentation model. This segmentation model is
a generalization of the two-coin example in the previous sec-
tion. Suppose you are told that a dealer has kmax different
coins available to toss instead of just two. The probabilities
of heads are different from one another, i.e. θ1 ≠ θ2 ≠ … ≠ θ
kmax, and unknown to you. The dealer flips the first coin C1
times and records the results, the second coin C2 times, and
so on until she or he has used κ ≤ kmax, coins with a total of

J = �
�

k�1

C� flips. You are given only the complete sequence

of heads and tails, R = (r1, …, rj), where rj  =  {H,T}, with C1,
C2, …, Cκ and κ unknown. The change points in this se-
quence occur each time a new coin is used, i.e. at

Ak = �
k

v�0

Cv� 1 with C0 =  0 and k = 1, …, κ.

Of interest are the values of all the unknowns. Since the
number of parameters changes with κ, the choice of the
number of change points is a model selection problem. Com-
pared with the two-coin example, the new game is more
complicated: there are more change points and the number
of these changes is unknown. This example will illustrate a
general characteristic of Bayesian bioinformatics: the use of
recursions for completing large summations.

The use of a four-sided or 20-sided coin in the foregoing
game serves as a model for heterogeneity in residue com-
position of DNA or protein sequences. Generally, we assume
that each outcome (or residue) can take values in an alphabet
{1, …, D}. If residue j is in the kth segment, then P(rj  =  d)
= θkd for d =  1, …, D. We let Θk =  (θk1, …, θkD). To facilitate
computation, we introduce the following notations for a seg-
ment of the sequence:
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R[i :j ] = (ri , …, rj ); R(i :j ] = (ri  + 1, …, rj ); R[i :j ) = (ri , …, rj  – 1)

Assuming that the segments are independent of each other
given the change points, the complete data likelihood is again
the product of the likelihoods of the κ segments weighted by
the prior distribution of the change points:

P(R, A|�,�) � �
�

k�1
P(R[Ak–1:Ak) | �k)P(A | �)

where P(A | κ) plays the role of g(a) in the previous section
‘Model selection and Bayes evidence’, and κ are the para-
meters of the prior segmentation model. With this likelihood,
the joint distribution for all the variables can be written as
follows:

P(R, A,�,�) � L(R,A;�; �)�(�,�)

� P(R|A,�)P(A|�)P(�)P(�) (15)

where Θ and κ are assumed independent a priori.

Computations. The unknowns are the number of segments κ,
segmentation A of the sequence, and residue composition Θ
in each segment. The posterior distributions of these quan-
tities can all be derived from equation (15), if the necessary
summations and integrations can be completed.

We assume again, as with the two-coin example, that a
priori all the segmentations with κ change points are equally
likely, and thus have prior probability inversely proportional
to the number of ways to segment the sequence into κ parts,

i.e. P(A | κ) = �N��
�1

. Furthermore, we assign a prior prob-

ability 0.5 to the null model and assume that all of the kmax
models which have κ > 0 change points are equally likely, i.e.

P(κ) =  0.5
�� 1

.

From equation (15), we obtain the marginal likelihood:

P(R) �

kmax

k�1

P(�� k)P(R|�� k)

� 

kmax

k�1

P(�� k) 

A:�A��k

�P(R, A |,�)P(�)d� (16)

where ||A|| is the number of segmentations implied by A. As
in the coin example, we model the residues in each segment
by a product multinomial model and a prior product Dirichlet
model. With the segment independence and model indepen-
dence assumptions, we have:

P(R|�� k) � 

�A�–k

	
k

�(�d�d)
�d�(�d)

�d�(nk,d� �d)
�(nk� �d�d)

(17)

where nk,d is the count of residue type d in the kth segment
R[Ak – 1:Ak). Apparently, a brute-force computation of equa-
tion (17) is prohibitive. Fortunately, the dynamic program-

Fig. 4. Posterior distribution of the number of change points in the
nucleotide composition of the 500 bp upstream of the translational
start site of histone H1 from Saccharomyces cerevisiae (H1: 500bp).

ming approach of Auger and Lawrence (1989) can be
adapted to complete the summation.

Let P(R[i:j ] | k) denote the probability of observing the
subsequence R[i :j ] given that it consists of k segments. These
quantities can be computed using equation (17) with R sub-
stituted by R[i:j ], j = 1, …, N, i =  j, …, N, and stored in ad-
vance. The DP recursion of Auger and Lawrence can then be
adapted as:

P(R[1:j]|k) �

v�j

P(R[1:v]|k� 1)P(R[v:j]|1) (18)

With P(R | κ) computed, we use the Bayes rule to obtain
P(κ | R). Figure 4 gives the distribution of the number of
change points in composition for a fragment of the genome
sequence of Saccharomyces cerevisiae, the 500 base pairs
upstream of the translational start site of the histone H1 gene
(H1: 500bp).

The marginal probability that a change point will occur at
position v can be obtained:

P(Ak � v for some k| R)

� 1
P(R)


�



k

P(R[1:v] | k)P(R(v:j] | �� k) (19)

This distribution is illustrated for H1: 500bp in Figure 5.

Backward sampling. Since the locations of the change points
are mutually dependent, an analytic expression for the dis-
tribution of A is not available. However, we can draw exact
and independent samples from this distribution by using a
recursive backward sampling algorithm.

The first step of the backward sampling algorithm is to
draw κ =  k from its marginal posterior distribution obtained
by inverting equation (17) with the Bayes theorem, and to set
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Ak = J. Then the change points (A1, …, Ak – 1) are obtained
by recursively sampling backward from the following dis-
tribution:

P(Aq� 1� j, | R,Aq� m)�

P(R[1:j] | q� 1)PR(j:m]|1)
P(R[1:m]|q)

This forward/backward process mirrors the usual dynamic
programming in which the forward step finds the optimal
value of the objective function and the backward step traces
the solution corresponding to that optimum. Here, the for-
ward step sums over all segmentation variables to yield
necessary marginal and conditional distributions, and the
backward step samples a solution in proportion to its pos-
terior probability. Averaging over these draws yields a histo-
gram which approaches the distribution of equation (19) to
any desired degree. The posterior distribution of the residue
frequency fj  at each position j, after considering all possible
segmentations, may be examined as well: suppose position
j is covered by the kth segment [u, v] of a given segmentation,
then:

P(fj  | R) = P(Θk | R) = P(R[u:v] | Θk, 1)P(Θk)

Averaging these over the sampled segmentations yields the
desired distribution. Figure 6 shows this distribution for H1:
500bp.

Further analysis and extensions. In the previous subsection,
our development employed the following assumptions: resi-
dues are independent of one another and the same model with
independent parameters is applicable to all segments. Gener-
alization to more complicated segmentation models, e.g.
Markov Chain models of sequence composition or applica-
tion-specific models, e.g. intron/exon models can be ob-
tained through the specification of individual segment mo-
dels (Liu and Lawrence, 1996; Schmidler et al., 1998).

The most well known of these is protein secondary struc-
ture prediction in which any subsequences may be classified
into any of the three models: α helix, β strand or random coil
[simple and useful probabilistic models for the helices and
strands have been proposed by Schmidler et al. (1998)]. In
this case, not only are the locations of the change points un-
known, but also the identity of the model appropriate to each
segment is unknown. The class of a segment can also depend
on the classes of the adjacent segments. Traditionally, these
methods employ fixed parameters which have been esti-
mated using a training set. In the Bayesian context, this corre-
sponds to the specification of priors for each of the classes.
They thus may be described by hidden Semi-Markov models
for which appropriate recursions can be employed
(Schmidler et al., 1998).

The recursive Bayesian approach is also useful when train-
ing data are available. When training data yield exact de-
termination of change points A and model types M, the dis-

Fig. 5. Posterior marginal distribution of the change point positions for H1: 500bp.
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Fig. 6. Posterior distribution of the segmented composition of H1: 500bp.

tribution of the observed data parameters Πk and the missing
data parameters, κ, e.g. length distributions of secondary
structure types, can be inferred by the Bayesian method with-
out the use of advanced computational methods. There are
also situations when the training data are less than perfect.
For example, crystal structures provide good data on the sec-
ondary structure types for each segment and their locations,
but the ends of secondary structure elements are often diffi-
cult to pinpoint exactly. In this case, model type variables M
are observed exactly, but there is some uncertainty in the
change points A, which can be incorporated into training
through the assignment of positive probabilities for residues
near these ends, and zero probabilities elsewhere. Further-
more, data sets with mixed observations of complete data
and incomplete data can be analyzed in one coherent way.
The posterior distributions developed in training become the
informed priors for the testing phase.

Bayesian pairwise alignment

Sequence alignment has been one of the most important
methodologies developed in bioinformatics [see Waterman
(1995) for a review]. In this section, we compare two Baye-

sian alignment algorithms to traditional optimal alignment
methods. One is a gap-based alignment procedure based on
the recursion of Needleman and Wunsch (1970). The other
method is a motif-based alignment algorithm which has been
described in detail by Zhu et al. (1998). Throughout the sec-
tion, the observed data consist of two nucleotide or protein
sequences, R1 and R2, of lengths n1 and n2, respectively. The
observed data parameter, Θ, is a finite set of matrices which
are analogs of scoring matrices, e.g. the PAM (Dayhoff et al.,
1972) or Blosum (Henikoff and Henikoff, 1992) series. The
alignment is characterized by a matrix, A, whose elements ai ,j
are set to one if residue i of sequence 1 aligns with residue
j of sequence 2, and zero otherwise.

Gap-based alignment. Traditionally, the entropic explosion
in the number of alignments has been controlled by using
penalties, log(λo) and log(λe), where λo, and λe are probabil-
ities of gap opening and gap extension, respectively. Here we
show how alignment problems of this type may be treated in
a Bayesian way by using the statistical models pioneered by
Thorne et al. (1991, 1992). For the gap-based alignment al-
gorithm, the parameters of the missing data are the gap pen-
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Fig. 7. Prior (a) and posterior (b) distributions of the gap penalties for the alignment of the hemoglobin α and β chains.

(a) (b)

alties, Λ. The prior for alignment in the motif-based model
will be described later. The joint distribution is defined as:

P(R1, R2, A, Θ, Λ) = P(R1, R2  | A, Θ)P(Θ) P(A | Λ)P(Λ)

Traditional alignment procedures can be seen as optimiz-
ing an objective function, usually a similarity score, which is
often a log-likelihood (Holmes and Durbin, 1998). More pre-
cisely, for a set of fixed values Π = Π0 and Λ = Λ0, one finds
A* so that:

log(P(R, A * |�0,�0)) �

max
all A

�log(P(R | A,�0) � log(P(A | �0))� (20)

The need for setting parameter values Θ0 and Λ0 has been
the subject of much discussion in bioinformatics. A distinc-
tive advantage of the Bayesian procedure is the added model-
ing flexibility in the specification of parameters. Here we can
regard the selection of Θ0 and Λ0 as a special case for the
specification of a prior distribution, i.e. the prior is degener-
ate with probability 1 for the values Θ0 and Λ0, and zero for
all other values.

A full Bayesian procedure uses a non-degenerate prior dis-
tribution for Θ and Λ. Figure 7a shows one such prior dis-
tribution P(Λ) for the affine gap opening and extension para-
meters (λo, λe), which is a product of Beta distributions with
the form Beta(λo; 2,18) × Beta(λe; 1,3). This choice is just
one from a family of distributions described by Beta(λo; αo,
βo) × Beta(λe; αe, βe) which includes degenerate forms and

uninformed forms. In the following, we describe a Bayesian
Needleman–Wunsch algorithm.

Let A be the alignment matrix which can be seen as a ‘path’
in a dynamic programming setting. With given Λ = (λo, λe),
the probability of any allowable path, prior to seeing the con-
tent of the two sequences to be aligned but conditional on
their lengths n1 and n2, is:

P(A | �o,�e) �
�

kg(A)
o �

lg(A) – kg(A)
e

�A��
kg(A�)
o �

lg(A�) – kg(A�)
e

(21)

where kg(A) and lg(A) are the total number and the total
length of the gaps in A, respectively. The summation in the
denominator is over all possible alignment A of the two se-
quences. In the following derivation, we assume that the
length information, n1 and n2, is conditioned on implicitly.
Thus:

P(Π, A, R1, R2 | Λ) = P(R1, R2 | A, Θ)P(Θ)P(A | λo, λe)

where Θ = (Θ(r1,r2)) is the joint distribution of a pair of
aligned residues. The marginal distributions are Θ(r1, ·) and
Θ(·, r2). In this notation, we can write that:

logP(R1,R2|A,�) �

�
n1

j�1

log�(r1
j ,�) ��

n2

k�1

log�(�, r2
k) � aj,k log�

r l
j
,r2

k

where log �
r l
i
,r2

j
� log�(r1

i , r2
j )– log�(r1

i ,�)– log�(�, r2
i ) corresponds to a

scoring matrix, say a PAM or Blosum matrix.
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One can remove two of the three unknowns as follows:

P(R1, R2 | �) �

�
�
�AP(R1, R2 | A,�)P(�)�kg(A)

o �
lg(A)–kg(A)
e

�A	�
kg(A	)
o �

lg(A	)–kg(A	)
e

(22)

where in the numerator the Π is marginalized by summing
over all the scoring matrices in a given set, each with prior
‘weight’ P(Π). Both the numerator and the denominator of
equation (21) can be computed via a recursive algorithm
shown as follows, which is similar to the dynamic program-
ming of Needleman and Wunsch (1970).

As with the traditional alignment algorithm, we can de-
scribe a path as consecutive moves of three types: → (dele-
tion), ↓  (insertion) and � (match). To ensure uniqueness,
one often adds the restriction that an insertion (↓) cannot fol-
low a deletion (→). For example, to obtain the numerator of
equation (21), we define p(k,l), pm(k,l), pi(k,l) and pd(k,l),
where:

pm(k, l) � p(k–1, l–1)�(r1
k, r

2
l )

pi(k, l) � ��epi(k–1, l) � �opm(k–1, l)��(r2
k,�)

pd(k, l) � ��epd(k, l–1)� �opm(k, l–1)� �opi(k, l–1)��(�, r2
l )

p(k, l) � pm(k, l) � pi(k, l) � pd(k, l)

If the model uses only the interaction term, as is traditional
in bioinformatics, instead of the joint distribution, all the
marginal terms Θ (r2

k,�) and Θ (�, r2
l ) can be substituted by

1, and Θ (r1
k, r

2
l ) by Ψ (r1

k, r
2
l ) in the forgoing recursive for-

mulas. The marginal likelihood can be obtained as P(R1, R2)

=  � P(R1, R2 | Λ)P(Λ)dΛ. We know of no ways to complete

this integration analytically. Traditional numerical integra-
tion methods work well for this low-dimensional integration.
With the marginal likelihood, we can have the desirable pos-
terior distribution such as:

P(� | R1, R2) �

A



�

P(�, A,R1,R2 | �)P(�)�P(R1,R2)

To illustrate, we examined the alignment of two sequences:
hemoglobin α and β chains, and use the PAM-80 matrix. The
posterior joint distribution of the gap penalty parameters, i.e.

P(λo, λe | R)

is one of the outputs. As shown in Figure 7b, the posterior
distribution of these parameters differs substantially from the
prior distribution, indicating that the data have a strong influ-
ence on the results. The marginal posterior distributions of λo
and λe are shown in Figure 8.

Motif-based alignment. While the gap penalty-based ap-
proaches have dominated alignment methods for many
years, Bayesian statistics opens up new directions in dealing

with insertions and deletions in alignments. In the procedure
just described, the gap parameters are primarily used to con-
trol the prior distribution for the alignment (e.g. penalizing
exponentially growing number of ways of gap opening). In
contrast, Zhu et al. (1998) attack the problem by directly
specifying a prior alignment distribution: all alignments with
k gaps are equally likely, and the probability on the distribu-
tion of k is uniform. This prior discounts alignment with
many gaps by penalizing it with a factor that is inversely pro-
portional to the number of that type of alignments. Input re-
quirements for the scoring matrices are also more flexible in
the Bayesian setting than in traditional methods. For
example, Zhu et al. (1997, 1998) examine the use of a series
of either the PAM or the Blosum matrices as prior input in
which all the matrices are assigned equal probability a priori.
They report that the posterior distributions of the scoring ma-
trices are often flat and sometimes multimodal, indicating
that no one matrix is clearly more preferable to others when
aligning the two sequences. One multimodal case is shown
in Figure 9, in which there are strong modes at PAM 140 and
PAM 80. This result illustrates two further features of Baye-
sian procedures. To examine these, we consider the express-
ion for the posterior distribution of the scoring matrix.

P(� | R) � 1
P(R)


�



A

P(R1, R2 | A,�)P(�)P(A | �)P(�)

First, we see that this posterior is obtained by averaging
over all alignments. Hence, a ‘good’ alignment is not re-
quired to assess the distances between the sequences. This
feature may be of value to distance methods employed in
molecular evolution studies, since the requirement that a pair
of sequences must be sufficiently close to permit a good
alignment is removed. Furthermore, samples from these dis-
tance distributions can be employed to incorporate alignment
uncertainty into phylogenetic tree construction. Secondly,
this posterior distribution of the sequence distance incorpor-
ates variations in the alignments, which means that varying
levels of sequence conservation in different regions of pro-
tein sequences can be detected. Zhu et al. (1998) show that
bimodality in distance is a reflection of the variable degrees
to which motifs in the GTPase sequences they compared are
conserved.

Relationship to other methods. In many cases of applying the
traditional alignment procedure, one may be tempted to op-
timize simultaneously over all possible alignments and a set
of parameter values of Θ and Λ, but this approach is problem-
atic because it often leads to non-ignorable bias (Little and
Rubin, 1987). An approach that does not share this difficulty
is based on the observed data likelihood, i.e. the one obtained
by summing over (or integrating out) all possible values of
the missing data in the complete-data likelihood:
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Fig. 8. Marginal posterior distributions of the gap penalties for the alignment of the hemoglobin α and β chains.

Fig. 9. Posterior distribution of the PAM distance between LETU
and 1GIA.

P(R | �,�)� �
All A

P(R,A | �,�) (23)

Just as in the Bayesian algorithms described above, these
summations are completed using recursive relations derived

from dynamic programming algorithms. Several authors
have presented algorithms which find the optimal values of
the parameters, Θ*, Λ*, for the observed data likelihood. For
example, Churchill (1989) uses the maximum likelihood
method to characterize the compositional heterogeneity of
nucleotide sequences. Thorne et al. (1991) give a maximum
likelihood method for the alignment of a pair of nucleotide
sequences, and Allison et al. (1992) give a related method to
choose between alternate alignment models. Their pro-
cedures yield point estimates of the Θ and Λ, but provide no
information about uncertainties in these estimates or the ef-
fect of these uncertainties on the other unknowns. Under cer-
tain conditions, confidence limits based on asymptotic nor-
mality of these estimates can be obtained. However, no pro-
cedures are available to assess either the impact of
uncertainties in these parameters, or the effects of using the
optimized values of Θ and Λ, on the alignment.

Discussion

Since bioinformatics concerns the analysis of biopolymer se-
quence data, its main products are inferences about unob-
served variables. As in classical statistics, optimization has



Bayesian inference on biopolymer models

51

been the primary tool for making inference in bioinformat-
ics, in which point estimates of very high-dimensional ob-
jects, obtained by using dynamic programming, are fre-
quently used. Characterizations of uncertainties in these esti-
mates have been very difficult and are mostly limited to a
simple significance test or completely ignored.

We show in this article that the rich history of computation
in bioinformatics can be adapted to meet the requirements of
the Bayesian methods. Specifically, dynamic programming
recursions can be modified to complete the high-dimen-
sional summations required in Bayesian analyses. Through
the use of these recursions, coupled with specific approaches
to integrate out or sum over all other variables, the full power
of the Bayesian methodology can be brought to bear on a
wide range of problems previously addressed by dynamic
programming. The fruits of this Bayesian approach include
the following: (i) full inferences on all unknowns, with all
uncertainties incorporated; (ii) a general and broad relax-
ation of the traditional fixed parameter settings; (iii) asses-
sments of significance through the use of Bayesian model
selection procedures.

The most important limitation on the Bayesian method is
the need for additional computational resources. While
Bayesian algorithms generally have time and space require-
ments of the same order as their dynamic programming
counterparts, the constants are generally larger by an order
of magnitude or more. As a result of the combination of
previously developed efficient algorithms and the availabil-
ity of fast workstations with large memories, this limitation
is not a serious one for most applications. As discussed only
briefly here, for those problems for which no polynomial
time algorithm exists, such as multiple sequence alignment,
Markov Chain Monte Carlo (and perhaps other Monte Carlo
approaches) provide alternative means to implement a full
Bayesian analysis. When this is the case, bioinformatics
joins the majority of the field of applied statistics and statisti-
cal physics in the need to rely on algorithms whose conver-
gence cannot be guaranteed.

Only recently have explicit statistical approaches, in the
form of hidden Markov models and Gibbs sampling algo-
rithms, come to play a significant role in bioinformatics.
While these approaches have brought a number of algo-
rithmic advances to bioinformatics, the potential for statisti-
cal inference has gone largely underexploited. As illustrated
here, because Bayesian statistics is so well suited to bioinfor-
matics, it provides a facile route to unleash the power of stat-
istical inference in bioinformatics.
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