
Statistical Machine Learning 

Methods for Bioinformatics

VII. Introduction to Bayesian 

Network Theory and Applications

Jianlin Cheng, PhD

Computer Science Department and Informatics Institute

University of Missouri

2008

Free for Academic Use. Copyright @ Jianlin Cheng & original sources of some materials.



Opening Statements

• These slides are just a quick introduction to the 

Bayesian networks and their applications in 

bioinformatics due to the time limit. 

• For the in-depth treatment of Bayesian networks, 

students are advised to read the books and papers 

listed at the course web site  and the Kevin 

Murphy’s introduction. 

• Thanks to Kevin Murphy’s excellent introduction 

tutorial: http://www.cs.ubc.ca/~murphyk/Bayes/bnintro.html

http://www.cs.ubc.ca/~murphyk/Bayes/bnintro.html


Definition of Graphical Model

• Probabilistic graphical models are graphs in 

which nodes represent random variables, 

and the (lack of) arcs represent dependence 

(conditional independence).

• It provides a compact representation of joint 

probability distribution



Markov Random Fields

• Undirected graphical models (also called 
Markov networks)

• Two sets of nodes A and B are 
conditionally independent give a third set C 
if all paths between A and B are separated 
by a node C. 

• Popular with the physics and vision 
communities. 



A BC

A  ┴  B  | C



Bayesian Networks

• Directed graphical models (also called 

Belief Networks)

• Popular with AI and statistics communities.

• A model with both directed and undirected 

arcs is called a chain graph



Bayesian Network Example

Cloudy

Sprinklet Rain

WetGrass



Comparison of Directed and 

Undirected Graphical Models

• Independence relationship of directed graph 

is more complicated.

• A -> B can encode causal relationship

• Directed models can encode deterministic 

relationship, and are easier to learn (fit to 

data). 



Advantages of BN

• Compact & intuitive representation

• Captures causal relationships

• Efficient model learning (parameters and 

structure)

• Deals with noisy data

• Integration of prior knowledge

• Effective inference algorithms

N. Friedman, 2005



Conditional Probability Distribution

• Discrete variable: CPT, conditional 

probability table

Cloudy

Sprinklet Rain

WetGrass

P(C=F)     P(C=T)

0.5            0.5

C      P(S=F)    P(S=T)

F      0.5           0.5

T      0.9          0.1

C    P(R=F)  P(R=T)

F    0.8         0.2

T    0.2         0.8

S   R     P(W=F)  P(W=T)

F   F     1.0          0.0

T  F      0.1         0.9

F  T      0.1         0.9

T   T     0.01       0.99



The Simplest Conditional 

Independence in BN

• A node is independent of its ancestors given its 

parents, where the ancestor / parent relationship is 

with respect to some fixed topological ordering of 

the nodes

• The joint probability is the product of the 

conditional probability

• For previous examples: P(C, S, R, W) = P(C) * 

P(S|C) * P(R|C,S) * P(W|C, S, R) = P(C) * P(S|C) 

* P(R|C) * P(W|S,R). 



Compact Representation of Joint 

Probability

• In general, if we had n binary nodes, the full 

joint would require O(2n) space to represent, 

assuming each node has two possible 

values. But the factored form would require 

O(n2k) space to represent, where k is the 

maximum fan-in of a node. 

• Fewer parameters makes learning easier. 



Inference

• Probabilistic inference is one of the most 

common tasks we wish to solve using BN. 

• Question: Suppose we observe the fact that 

the grass is wet. There are two possible 

causes for this: either it is raining, or the 

sprinkler is on. Which is more likely?

• We can use Bayes’s rule to compute the 

posterior probability of each explanation. 



P(W=1) is a normalizing constant, equal to the probability (likelihood)

of the data. So we see it is more likely that the grass is wet because

it is raining. 



Explaining Away

• S and R are the two causes competing to explain 
the observed data. 

• So if w is not observed, S and R are marginally 
independent. 

• If w is observed, S and R become conditionally 
dependent. P(S=1|W=1, R=1) = 0.1945  < 
P(S=1|W=1)

• This is called “explaining away”. In statistics, it is 
known as Berkson’s paradox, or “selection bias”. 



Top-Down and 

Bottom-Up Reasoning

• Bottom up: In the water sprinkler example, 

we had evidence of an effect (wet grass), 

and inferred the most likely cause.

• Top down: We can compute the probability 

that the grass will be wet given that it is 

cloudy. (how causes generate effects). 



Conditional Independence in BN

• Bayes Ball algorithm (due to Ross Shachter)

• Two (sets of) nodes A and B are conditionally 

independent (d-separated) given a set of C if 

and only if there is no way for a ball to get 

from A to B in a graph, where the allowable 

movements of ball are shown in the following 

figures. 



In the first column, when we have two arrows converging on

a node X. If X is hidden, its parents are marginally independent.

But if X is observed, the parents become dependent, and

the ball pass through. Why?



Comments

If the previous graph is 
undirected, the child would 
always separate the parents; 
hence when converting a 
directed graph to an undirected 
graph, we must add links 
between “unmarried” parents 
who share a common child (i.e., 
“moralize” the graph) to prevent 
us reading off incorrect 
independence statements. 

A B

C



Example

A B

C

D

Is A independent B given D?

A B

C

D

Is A independent of B given C



Bayes Nets with Discrete and 

Continuous Nodes

• It is possible to create Bayesian networks with 
continuous valued nodes. The most common 
distribution for such variable is the Gaussian.

• For discrete nodes with continuous parents, we 
can use logistic / softmax distribution. 

• Using multinomial, conditional Gaussians, and 
softmax distribution, we can have a rich toolbox 
for making complex models. 

• For a good review: A Unifying Review of Linear 
Gaussian Models, S. Roweis & Z. Ghahramani. 
Neural Computation, 1999. 



Dynamic Bayesian Networks

• DBNs are directed graphical models of 

stochastic processes. 

• Examples: hidden Markov models and 

linear dynamical systems.



Hidden Markov Model (A New View)

q1 q2 q3 q4 …

x1 x2 x3 x4

We have “unrolled” the model for 4 “time slices”  -- the structure

and parameters are assumed to repeat as the model is unrolled 

further. Hence to specify a DBN, we need to define the intra-slice

topology (within a slice), the inter-slice topology (between two

slices). 





Linear Dynamic Systems (LDSs) 

and Kalman Filters

• A linear dynamical system (LDS) has the 

same topology as an HMM, but all nodes 

are assumed to have linear-Gaussian 

distributions, i.e., x(t+1) = A*x(t) + w(t), w 

~ N(0, Q), x(0) ~ N (init_x, init_v), y(t) = 

C*x(t) + v(t), v ~ N(0, R)



The Kalman filter has been proposed as a model for how the 

Brain integrates visual cues over time to infer the state of the

World, although the reality is obviously more complicated. 

Kalman filter is also used in tacking of objects. 





Efficient Inference Algorithms

• A simple summation of joint probability 
distribution (JPD) over all variables can 
answer all possible inference queries by 
marginalization, but takes exponential time. 

• For a Bayes net, we can sometime use the 
factored representation of the JPD to do 
marginalization efficiently. The key idea is to 
“push sums” as far as possible when 
summing out irrelevant terms. 



Variable Elimination: Water Sprinkler Network



• The principle of distributing sums over 

products can be generalized greatly to apply to 

any commutative summing. This forms the 

basis of many common algorithms, such as 

Viterbi decoding and the Fast Fourier 

Transform.

• The amount of work we perform when 

computing a marginal is bounded by the size 

of the largest term that we encounter. 

Choosing a summation (elimination) ordering 

to minimize this is NP-hard, although greedy 

algorithms work well in practice.  



Dynamic Programming and Local 

Message Passing

• To compute several marginals at the same time, 

we can use DP to avoid redundant computation 

that would be involved if we used variable 

elimination repeatedly. 

• If the underlying undirected graph of the BN is 

acyclic (i.e. a tree), we can use a local message 

passing algorithm due to Perl. It is a generalization 

of the well-known forwards-backwards algorithm 

for HMMs (chains). 



Local Message Passing 

• If the BN has undirected cycles (as in the water sprinkler 
example), local message passing algorithms run the risk of 
double counting (e.g. the information from S and R 
flowing into W is not independent, because it came from a 
common cause, C). 

• The most common approach is therefore to convert the BN 
into a tree, by clustering nodes together, to form what is 
called a junction tree, then running a local message 
passing algorithm on the tree.

• The running time of the DP algorithm is exponential in the 
size of the largest cluster (these clusters correspond to the 
intermediate terms created by variable elimination). The 
size is called the induced width of the graph. Minimizing 
this is NP hard. 



Approximation Algorithms

• Exact inference is still very slow in some 

practical problems such as multivariate 

time-series or image analysis due to large 

induced width. 

• Major approximation techniques: 

Variational methods, Sampling (Monte 

Carlo) methods, loopy belief propagation



Learning  of BN

• The graph topology of BN

• The parameters of each CPD

• Learning structure is much harder than 

learning parameters

• Learning  when some of nodes are hidden 

or we have missing data, is much harder 

than when everything is observed. 



Known Structure, Full Observability

• Maximize log-likelihood 

of training data D is sum 

of terms, one for each 

node: 

• Maximize the contribution 

of the log-likelihood of 

each node independently. 

For discrete variables, we 

just simply count the 

observations. 



Known Structure, Partial Observability

• When some nodes are hidden, we can use 

EM algorithm to find a locally optimal 

Maximum Likelihood Estimate of the 

parameters

• For instance, Welch-Baum algorithm for 

HMM learning. (see slides of HMM theory)



More Complicated Learning

• Unknown structure, full observability (model 
selection, search the best model is NP hard. Number 
of DAGs on N variables is super-exponential in N)

• Unknown structure, partial observability (Search + 
EM algorithm)

• Further reading on learning:

(1) W. L. Buntine, Operations for Learning with 
Graphical Models, J. AI Research, 1994

(2) D. Heckerman, A tutorial on learning with 
Bayesian networks, 1996. 



General Application Examples

• Microsoft Answer Wizard of Office 95, 97 and 

over 30 technical support troubleshooters

• Vista system by Eric Horvitz, a decision-theoretic 

system that has been used at NASA mission 

control center in Houston for several years. 

(provide advices on the likelihood of alternative 

failures of the space shuttle’s propulsion systems)

• Quick medical reference model:  model the 

relationship between diseases and symptoms.



Infer the posterior probability P( disease | symptom )



Discovery of Regulatory Mechanism 

/ Network of Genes

• A long term goal of Systems Biology is to 
discover the causal processes among genes, 
proteins, and other molecules in cells

• Can this be done (in part) by using data from high 
throughput experiments, such as microarrays?

• Clustering can group genes with similar 
expression patterns, but does not reveal structural 
relations between genes

• Bayesian Network (BN) is a probabilistic 
framework capable of learning complex relations 
between genes



Learning BN from Gene Expression 

Data

Measured expression level of

each gene (discretized)

Random variables

Affecting on another

Data + Prior Information

Learn parameters (conditional probabilities) from data

Learn structure (casual relation) from data

Make inference given a learned BN model

N. Friedman, 2005



Gene Bayesian Network 

Gene E Gene B 

Gene D Gene A

Gene C

Qualitative Part:

Directed acyclic Graph (DAG)

• Nodes – random variables

•Edges – direct (causal)

influence

E     B   |   P(A|E,B)

|   1         0

0      1   |   0.9     0.1

1 0   |   0.2     0.8

1      1   |   0.9     0.1

0      0   |   0.01    0.99

Quantitative part

•Local conditional 

probability



Challenges of Gene Bayesian Network

• Massive number of variables (genes)

• Small number of samples (dozens)

• Sparse networks (only a small number of 

genes directly affect one another)

• Two crucial aspects: computational 

complexity and statistical significance of 

relations in learned models

N. Friedman, 2005



Solutions

• Sparse candidate algorithm (by Nir Friedman): 

Choose a small candidate set for direct influence 

for each gene. Find optimal BN constrained on 

candidates. Iteratively improve candidate set. 

• Bootstrap confidence estimate:  use re-sampling 

to generate perturbations of training data. Use the 

number of times a relation (or feature) is repeated 

among networks learned from these datasets to 

estimate confidence of Bayesian network features.



Data: 76 samples of 250 cell-cycle related genes in yeast genome

Discretized into 3 expression levels. Run 100 bootstrap using sparse learning algorithm.

Compute the confidence of features (relations). Most high confident relations make bio-senses.

N. Friedman, 2005



Important References: BN in 

Bioinformatics

• N. Friedman. Inferring cellular networks 

using probabilistic graphical models, 

Science, v303 p799, 6 Feb 2004. 

• E. Segal et al.. Module networks: identifying 

regulatory modules and their condition-

specific regulators from gene expression 

data. Nature Genetics, 2003. 


