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Bayesian Network Software

* http://www.cs.ubc.ca/~“murphyk/Software/
BNT/bnsoft.html
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Research in molecular biology is
undergoing a revolution

MRNA transcript quantities
protein-protein
protein-DNA interactions
chromatin structure
Protein quantities

Protein localization

Protein modification



Challenge

Provide methodologies for transforming high-
throughput heterogeneous data sets into
biological insights about the underlying
mechanisms

Data is noisy
Data integration
Generate Hypothesis



Biological Networks — Gene Regulatory
Networks

Legend: A transcription factor molecule binds to the DNA at its binding site, and thereby
regulates the production of a protein from a gene.

REGULATE

TRANSCRIPTION
FACTOR GENE

WGA |
1

BINDING SITE

T A
v

PROTEIN



Figure 1: Rich media gene modules network
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Signal Transduction Network
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Protein Interaction Network




Model-Based Approaches VS Procedure
Approaches

Procedure: Binding sites — Gene expression.
(a) cluster co-expressed genes to find common
sites (b) group genes with similar binding sites
and test if they are coexpressed

Declarative: design a model that describes
the relations between the two types of data.
Learn parameter from data and make

predictions



Probabilistic Models

Stochasticity for measurement noise
Learning Algorithms

Select model that fits the actual observations
Inference

Make predictions

Generate insights and hypothesis



Modeling Examples

 Hidden Markov Model for sequence analysis

* Probabilistic Graphical Model for cellular
networks



Advantages

Concise language for describing probability
distributions over the observations

Approaches to learning from data that are
derived from basic well-understood principles

Use of observations to fill in model details

Provide principles for combining multiple local
models into a joint global model

Declarative nature provides an advantage to
extend model to account for additional aspects of
the system



Infer Gene Regulatory Network from
Gene Expression Data
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Model for gene expression and cis-
regulatory elements

* Assumptions 1: genes can be partitioned into
clusters of coexpressed genes, and the genes
in each cluster have a typical expression level
in each array.

 Assumption 2: arrays are partitioned into
array clusters, which capture relevant
biological context, and that the expression of a

gene is roughly the same in the arrays that
belong to the same array cluster



Random Variables

X, » Where g is an index over gene and a is an

index over arrays

GeneCluster,: denotes the cluster assignment
of gene g
ArrayCluster, denotes the cluster assignment
of array a.

Assumption: the expression of gene g in array
a depends on the value of GeneClusterg and
ArrayClustera



Regular Bayesian Networks




Conditional Distribution
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Learning Models from Data

e Parameter estimation — maximum likelihood
problem ( P(data| model))

* Model selection: select among different model
structures to find one that best reflects the
dependencies in the domain. P(model | data)



* The model just described can achieve high
ikelihood if the cluster and gene assignment
oartitions the original measurements into
olocks with approximately uniform expression
within each block




e Expectation Maximization procedure that
iterates between an E-step, which uses
current parameters to find the probabilistic
cluster assignment of genes and arrays, and an
M-step, which re-estimates the distribution
within each gene/array cluster combination on
the basis of this assignment.



Reconstruction of Regulatory
Networks

* A key challenge in gene expression analysis is
the reconstruction of regulatory networks.

* Distinguish correlation and regulation
* Direct and in-direct regulation



Challenges of Gene Bayesian Network

Massive number of variables (genes)
Small number of samples (dozens)

Sparse networks (only a small number of
genes directly affect one another)

Two crucial aspects: computational complexity
and statistical significance of relations in
learned models

N. Friedman, 2005



Approach 1: Learning BN from Gene
Expression Data

Measured expression level of . Random variables
each gene (discretized) Affecting on another

R - 77

Learn parameters (conditional probabilities) from data
Learn structure (casual relation) from data
Make inference given a learned BN model

N. Friedman, 2005



Gene Bayesian Network
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Solutions

e Sparse candidate algorithm (by Nir Friedman):
Choose a small candidate set for direct influence for
each gene. Find optimal BN constrained on
candidates. Iteratively improve candidate set.

* Bootstrap confidence estimate: use re-sampling to
generate perturbations of training data. Use the
number of times a relation (or feature) is repeated
among networks learned from these datasets to
estimate confidence of Bayesian network features.



Network Leamed

/N/Friedman, 2005
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Data: 76 samples of 250 cell-cycle related genes in yeast genome
Discretized into 3 expression levels. Run 100 bootstrap using sparse learning algorithm.
Compute the confidence of features (relations). Most high confident relations make bio-sens



Protein biosynthesis | ~0

Amino acid metabolism ] 9x10-¢

Nitrogen starvation response I 2x104

Urea cycle metabolism I 5.4x10%

Nitrogen metabolism | 7.8x 105

Allantoin pathway | 1x103




Co-Regulation

* A key regulation mechanism involves binding

of transcription factors to promoter regions of
genes.

* |dentify the transcription factor binding sites
in the promoter region of genes that can
explain observed co-expression.



Module Network Approach

A regulatory module is a set of genes that are
regulated in convert by a shared regulation
program.

A regulation program specifies the behavior of
the genes in the module as a function of the
expression level of a small set of regulators



Regulatory Model

Promoter

R,; as depending on the
promoter sequence Seq,



Integration of Sequence and
Expression Data

* The parameters of this conditional proba

oility

characterize the specific motif recognized by

the transcription factor. This extension al

OWS

us to learn the characterization of the binding
site while learning how its presence influences

gene expression.



Procedure

* Inputs: a gene expression data set and

a large precompiled set of candidate regulatory
genes for the corresponding organism
(independent of data set) containing both know
and putative transcription factors and signal
transduction molecules

e Goal: search for a partition of genes into modules
and for a regulation program for each module

* QOutput: a list of modules and associated
regulation programs



, Regulator
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* Results: apply the method to Yeast gene
expression data set consisting of 2355 genes and
173 arrays.

* Each inferred modules contained a functionally
coherent set of genes (metabolic pathways,
oxidative stress, cell cycle-related processes, etc)

* Many module has a match between predicted
regulator and its known cis-regulatory binding
motif.



One Example
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Evaluation of Module Content and
Regulation Program

* We evaluate all 50 modules to test whether
the proteins encoded by genes in the same
module had related functions. We scored the
functional/biological coherence of each
module according to percentage of its genes
covered by annotations. Most of modules had
a coherence level above 50%.



_ # Module” #G°C (%)° Req.” M C G Ren.® M C G Req°MC G Reg MC G
1 Respiration and carbon regulation 55 84 Cmk1 Gac1 Xbp1t Msn4
2 Enerqy, osmolarity and cAMP signaling | 64 64 Yer184c Cmk1 Ppt1 Kns1
3 Energy and osmotic stress | 31| 65 Tpk1
4 Energy and osmotic stress Il 42| 38 Gac1 Wscd
5 Giycolysis and fokiing 37| 86 Bmh1 Bas1
6 Galactose metabolism 4 100 Hir3 Ime4
7 Snf kinase requlated processes 74 47 Tos8 Si
8 Nitrogen catabolite repression 29 | 66

9 Amino acid metabolism | 39| 9 Cdc20 Sit2

10 Amino acid metabolism Il 37| 95 Afr1 Uga3 Ppt1

11 Amino acid and purine metabolism 53 92 Rim11

12 Nuclear 47 47

13 Mixed | 23 50 Pph3 Ras2 Tpk1

14 Ribosomal and phosphate metabolism | 32 | 81  Pptt Sip2 Cad1

15 mRNA, rRNA and tRNA processing 43 40 Lsql Tpk2 Ppt1

16 RNA processing and cell cycle 59 | 36 |Ypl230w Ime4 1 Tpk2 | Rho2 Mcm1
17 DNA and RNA processing 77 43 Tpkt Gis1 Ppt1

18 TFs and RNA processing 59 63 Gisl Pph3 Tpk2 Lsg1

19 TFs and nuclear transport 48 56 Ypl230w Met18 Ppt1

20 TFs | 53 92 Cdci14 Mcm1 Ksp1

21 Trs 50 54

22 TFs, cell wall and mating 39 59 (Pte3 Sps1

23 TFs and sporulation 43 60 Rest Ypl133c

24 Sporulation and TFs 74 39 Gen20 Gat1 SteS

25 Sporulation and cAMP pathway 59 | 37 Xbp1 Ypl230w Sip2 Not3

26| Sporulation and cell wall 78 40 Ypl230w Yapb Msn4

27| Cell wall and transport | 23 483 Shp1 Bey1 Gal30 Ime1 Yak1

23 Cell wall and fransport Il 63 46 Ypl230w King2 Msn4

29| Cell differentiation 41 71 Ypl230w Ypk1 Cna1

/30 Cell cycle (G2/M) 30 70 Cdci14 Clb1 Far1

31 Cell cycle, TFs and DNA metabolism 71 85 Gis1 SteS ClbS

32/ Cell cycle and general TFs 64 | 72 |Ime4 Ume1 Xbp1 Prr1 crot | M Arpe

33 Mitochondrial and signalling 87 60 Tpk1t Cmki1 Yer184c Gis1

‘34 Mitochondrial and protein fate 37 73 Ypki Sds22 Rsc3 |

35| Trafficking and mitochondrial 87 | 56 Tpkt Sds22 Etr1 |

36 ER and nuclear 79 | 86 Gen20 Yjl103c Not3 Tup1

37 Proteasome and endocytosis 31 71 Ime4 CupS Bmh2 Hrt1

38 Protein modification and trafficking 62 79 |Ypl230w Ptc3 Cdc42

39 Protein folding 23 87 Bmhi Bey1 Ypl230w

40 Oxidative stress | 15 80 Yap1 Sko1 Far1

41 Oxdative stress |1 15 73 Tos8 Fio8

42 Unkown (sub-telomeric) 82 45 Gen20

43 Unknown genes | 36 42

44 Unknown genes || 29 14 Apql Pcl10

45 Unknown genes 111 39 5 Xbp1 Kard

46 Mixed Il 52 | 42 Gen20 Tos8 Sip2

47 Mixed 111 41 63 Gen20 Ume1 Cnb1

48 Mixed 1V 35 29 Fkh Shot

49 Ty ORFs 16 6

50 Missing values 64 39

B Enrichment for motif known to participate in regulation by respective regulator
M Respective regulator known to have a role under the predicted condition
B Respective regulator known to regulate module genes or their implied process

[ Partial evidence
M Partial evidence
| Partial evidence
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Candidate regulators

* Compiled a set of 466 candidate regulators
annotated in Yeast Genome and Proteome
databases

* Use Yeast gene expression data set consisting of
173 microarrays that measure responses to
various stress conditions.

 We downloaded these data in log (base 2) ratio
to control format from Stanford Microarry
Database. Chose a subset of 2355 genes that
have a significant change in gene expression
under the measured stress conditions



* Protein annotations: downloaded Gene Ontology
and Munich Information center for Protein
Sequence (MIPS) function and KEGG.

* Regulation program: Regression tree (decision
nodes and leaf nodes); the model semantics is
that given a gene g in the module and an array a
in a context, the probability of observing some
expression value for a gene in array is governed
by the normal distribution specified for the
context.




Learning Module Networks

* |n each iteration, the procedure searches for a
regulation program for each module and then
reassigh each gene to the module whose
program best predicts its behavior. Repeated
until it converges.

e Search for the model with the highest score by
using the EM algorithm.



EM Algorithm

 M-Step: given a partition of genes into
modules and learns the best regulation
program (regression tree) for each module.
The regulation program is learned through a
combinatorial search over the space of trees.
The tree is grown from the root to its leaves.
At any given node, the query that best
partitions the gene expression into two
distinct distribution is chosen.



* E-step: given the inferred regulation programes,
we determine the module whose associated
regulation program best predicts each gene’s
behavior. Select the module whose program gives
the gene’s expression profile the highest
probability and re-assigh the gene to this module.

* We initialize our modules to 50 clusters using
Pcluster, a hierahical agglomerative clustering.
We then applied the EM algorithm to this starting
point, refining both the gene partitioin and the
regulatory program.



Evaluating statistical significance of
modules

e All of the statistical evaluations were done and
visualized in GeneXPress. The tool can

evaluate the output of any clustering program

for enrichment of gene annotations and
motifs



Annotation enrichment

* We associated each gene with the processes
in which it participates. Resulted in 923 GO
categories, 208 MIPS categories, and 87 KEGG
pathways. For each module and for each
annotation, we calculated the fraction of
genes in the module associated with that
annotation and used the hypergeometric
distribution to calculate a P-value for this
fraction.




Promoter Analysis

* We search for motifs (represented as Position-
Specific Scoring Matrices) within 500 bp
upstream of each gene. We downloaded
TRANSFAC, containing 34 known function cis-
regulatory motifs. We also use a motif finder
to find 50 potentially novel motifs.



Motif Combination

 We searched for statistically significant
occurrences of motif pairs. We constructed a
motif pair attribute, which assigns a “true” value
for each gene if and only if both motifs of the pair
are found in the upstream region of that gene.
For each module and for each motif pair
attribute, we calculated the fraction of genes in
the module associated with that attribute and
used the hypergeometric distribution to calculate
a P value for this fraction.



Regulator Annotations

* We associate regulators with annotations and
binding sites in the same way we associate
with these attributes to the modules. Because
a regulator may regulate more than one
module, its targets consist of the union of the
genes in all modules predicted to be regulated
by that regulator. We tested the targets of
each regulator for enrichment of the same
motifs and gene annotations as above using
the hypergeometric P value.



