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Prediction of Protein Secondary Structure
at Better than 70% Accuracy
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We have trained a two-layered feed-forward neural network on a non-redundant data base
of 130 protein chains to predict the secondary stracture of water-soluble proteins. A new key
aspect is the use of evolutionary information in the form of multiple sequence alignments
that are used as input in place of single sequences. The inclusion of protein family
information in this form inereases the prediction accuracy by six to eight percentage points.
A combination of three levels of networks results in an overall three state aceuracy of 70-89,
for globular proteins (sustained performance). If four membrane protein chains are included
in the evaluation, the overall accuracy drops to 70-29,. The prediction is well balanced
between a-helix, f-strand and loop: 659% of the observed strand residues are predicted
correctly. The accuray in predicting the content of three secondary structure types is
comparable to that of circular dichroiam spectroscopy. The performance aceuracy is verified
by a sevenfold cross-validation test, and an additional test on 26 recently solved proteins. Of
particular practical importance is the definition of a position-specific reliability index. For
half of the residues predicted with a high level of reliability the overall accuracy increases to
better than 829,. A further strength of the method is the more realistic prediction of
segment length. The protein family prediction method is available for testing by academic
researchers via an electronic mail server.

Keywords: protein secondary structure prediction; multiple sequence alignments;
secondary structure content; neural network
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1. Tntroduction basic hypothesis that the

three-dimensional

Large-scale sequencing projects produee an
exploding number of known protein sequences. The
current number is 26,000 (Bairoch & Boeckmann,
1992) sequences, but before the end of the century
100,000 will have to be dealt with. This is in
contrast to the much slower inerease in the number
of known protein structures, currently at about
1000 (Bernstein et al., 1977). Can theory help to
narrow the widening gap? The most reliable predie-
tion of the strueture of new proteins is done by
detection of significant similarities to proteins of
known structure (Taylor & Orengo, 1989; Sander &
Schneider, 1991; Vriend & Sander, 1991). But only
about one-seventh of new sequences have sequence
similarities to known structures (Bork et al., 1992).
What about the rest? Attempts to prediet structure
from sequence by physical simulation techniques,
such as molecular dynamics (Momany et al., 1975;
Karplus & Petsko, 1990), have fallen far short of
solving the task of finding the “hidden” relation
between the primary and tertiary structure.
Although the folding process may require catalysts
such as chaperonins (Hubbard & Sander, 1991), the
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(tertiary) structure of a protein is uniquely deter-
mined by its sequence of amino acids (primary
structure) appears to remain valid (Anfinsen et al.,
1963; Ewbank & Creighton, 1992). A simple reduc-
tion of the prediction problem is the projection of
the three-dimensional structure onto one dimension,
i.e. onto a string of secondary structure assignments
for each residue.

Secondary structure predictions have been per-
formed by various methods (Szent-Gydrgyi &
Cohen, 1957; Periti et ol., 1967; Ptitsyn, 1969; Pain
& Robson, 1970; Robson & Pain, 1971}, ever since
Pauling sugpested that proteins form certain local
conformational patterns like helices and strands
{Pauling & Corey, 1951; Pauling et al., 1951). The
different algorithms can be approximately grouped
into those using (1) statistical information (Nagano,
1873; Chou & Fasman, 1974; Nagano & Hasegawa,
1975; Garnier e al., 1978; Schulz & Schirmer, 1979;
Levin et al., 1986; Gibrat et al., 1987; Biou et al.,
1988; Kanehisa, 1988; Levin & Garnier, 1988:
Fasman, 1989; Garrett ef al., 1991; Muggleton et al.,
1992}; (2} physico-chemical properties (Lim, 1974;
Ptitsyn & Finkelstein, 1983); (3) sequence patierns
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(Cohen e af., 1983, 1986; Taylor & Thornton, 1983;
Rooman et al., 1989, 1991; Sternberg & King, 1990,
Rooman & Wodak, 1991; Presnell et of., 1992);
{(4) multi-layered (or neural) networks {Bohr et al.,
1988, 1990; Qian & Sejnowski, 1988; Holley &
Karplus, 1989; Bossa & Pascarella, 1990; Kneller et
al., 1990; Hirst & Sternberg, 1992; Maclin &
Shavlik, 1993; Stolorz et al., 1992; Zhang et al.,
1992); and (5) evolutionary conservation (Maxfield
& Scheraga, 1979, Zvelebil ¢t al., 1987; Frampton et
al., 1989; Benner & Gerloff, 1990; Barton et al.,
1991; Niermann & Kirschner, 1991; Ouzounis &
Melvin, 1991; Musacchio et al., 1992; Russell ¢ al.,
1992; Gibson et al., 1993). One of the problems of
these prediction methods is that the formation of
secondary structure elements is only to a certain
degree due to sequentially local interaction of amino
acids (Nagano & Hasegawa, 1975; Taylor, 1988;
Zhong et al., 1992). However, most methods known
to date do rely on local information. For the last
decade these methods have hovered around 60 to
64 9%, in overall three-state aceuracy. Some methods
predicted, e.g. f-strands, only 12 percentage points
better than the chance value of 339, (Biou et al.,
1988). Recently, the reported overall accuracy of
66-59%, (Zhang et al., 1992) and single examples of
predictions of proteins of unknown structure have
generated enthusiasm in the field (Barton et al,
1991; Benner et al., 1992; Rost & Sander, 1992;
Russell ef al., 1992). Yet it was claimed that predic-
tions cannot be better than 65(1+2)%, (Garnier,
1992).

Here, we present the results of an in-depth analy-
gis of the performance of multi-layered (neural)
networks. By appropriately processing the informa-
tion about structure contained in a multiple
sequence alignment, it proves possible to increase
the aceuray of esecondary structure prediction above
709,. Our system of networks outperforms previous
methods in four respects. (1} The overall accuracy

of 70-89%, for globular water-soluble proteins is more -

than four percentage points higher than that of any
other method published {and about 6 percentage
points above a method tested with comparable
rigour on the same data set). (2) The improvement
in per residue accuracy is particularly significant for
B-strands, with 6549, of the observed f residues
correctly predicted (compared to e.g. 46, for the
well-established method GORIII). (3) The length
distribution of predicted secondary structure
elements is much more protein-like than that for
other typical prediction methods. (4) The network
allows the identification of residues predicted with
higher than average reliability. More than one-fifth
of all residues are predicted with an expected
accuracy above 909, more than half of all residues
scare above 829,

2. Materials and Methods

(a) Cross-validation technigue and data set used

It is impossible to accurately know in advance the
accuracy of a prediction tool when applied to a new

protein. How can the data bank of known structures be
used to estimate the performance on new proteins? Two
requirements are essential to derive a reasonable assess-
ment of the method’s generalization ability: (1) the pair-
wise identity of the protein chains used for developing the
prediction tool and those for testing should be lower than
the value sufficient for modelling tertiary structure by
homology, and {2) a multiple cross-validation test (ideally
jack-knife) has to be performed to exclude a potential
dependency of the evaluated accuracy on the particular
test set chosen.

For homologous proteins, alignment procedures predict
secondary structure more accurately than any method
using the sequence information only, Therefore, a tool not
using the homology to a protein of known structure has to
be tested on those cases for which it will be used, ie.
protein chains without significant pairwise homology to
those used for developing the method. What is a signifi-
cant homology? A length-dependent cut-off for relevant
similarity is given by HSSPt (Sander & Schneider, 1991):
e.g. for chains with more than 80 residues the mutual
similarity should be <259,. The restriction in accepted
pairwise similarity reduced the number of protein chains
that can be used from 700 (PDB: Protein Data Bank,
1992) to about 150 (Hobohm et al., 1992). Table 1 gives
the 130 chaina we used. All chains are structures known at
a resolution of at least 2:5 A,

Jack-knife testing means use 129 chains for setting up
the tool (training the network} and 1 for estimating the
performance on new proteins (testing it). This has to be
repeated 130 times until each protein has been used once
for testing. The average over all 130 tests gives a reason-
able estimate of the prediction aceuracy. For networks,
such g strategy is prohibited by the limitations of compu-
tational resources. The extreme contrast to jack-knife
testing is to use only a single test set of, say, 20 proteins.
Our experiences show that such an approach results in
different accuracies for different test sets. The goal of
testing the prediction tool is to assess the accuracy to be
expected for any new protein sequence. Since different
test sets yield different results, it is not sufficient to use
only 1 set. As a compromise between jack-knife and a
gingle test set, we worked with 7-fold cross-validation: 111
chains are taken for training, 19 for testing. This is
repeated 7 times with different sets of 19 until all proteins
have been used for testing exactly once (for one set the
split was 114/16).

(b) Measures of protein secondary structure
prediction accuracy

Once the data set is fixed, the problem arises of how to
define a measure for the quality of a particular prediction.
Most publications on secondary structure prediction
compute ratios that reflect the number of properly
predicted residues. All such coefficients can be derived
from a 3 x 3 (for 3 secondary structure types) accuracy
table A, with:

4;; = number of residues predicted to be in structure
type j and observed to be in type i.

+ Abbreviations used: HSSP, database of Homology-
derived Structures and Sequence alignments of Proteins;
PDB, Protein Data Bank (of known 3-dimensional
structures); DESP, Dictionary of Secondary Structures
of Proteins; PHD, Profile network from HeiDelberg
(3 levels of networks); CD, circular dichroism
spectroacopy.
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Table 1
Representative set of 126 globulur and 4 membrane protein choins with less than 25 % pairwise similarity for
lengths >80 used for training and testing the method (24,395 residues with 32% a, 21% f and 47% L,
resolution <25 A for crystal structures)

256b_A 2aat 8abp Bacn lacx
api_B lazu 3b5e 1bbp_A 1bds
Teat_A lcbh lech 2ccy_A led4
Gepa Gepp 4epv Lern lese I
3ebx ber2_E letu 1fe2_C Hdl_H
4fxn 3gap_A 2ghp 2ger fgdl O
6hir 3hmg_ A 3hmg B 2hmz_A Shvp_ A
1i58 llap 6ldh 2lh4 2lhb
2mev_4 2orl_L lova_A 2pab_A 1paz
lpyp 1r09_2 2mhu Fmrt ippt
3rnt Trsa 2rap_A 4rxn 1501
2stv 2tgp_I 1tgs_1 3tim_A 6tmn_E
2utg_A Jwea_A 2wrp_R lwsy_A lwsy_B

8adh 3ait lak3_A 2alp Oapi_A
1bmv_1 lbmv_2 3blm 4bp2 2cab
ledt_A 3cla 3cln 4cms 4cpa_l
Gots 2eyp Seyt R leca 6dfr
1fdx Hkf 2fnr 2fxh 1fxi_A
2gls A 2gnd lgpl_A 4gri Lhip
2ilh 3ich Tied lil8_A 9ins_B
1ird_3 2ltn_A 2ltn_B 5lyz lmep_L
Opap 2pey 4pfl 3pgm 2phh
Irbp irhd 4rhv_} 4rhv_3 4rhv_4
lsdh A 4sgb_I 1shl 2sns 2s0d_B
2tmv_P Itnf_A 4tsl_A 2se A lubg
dxin_A lpre_{ ipre H Ipre_L Ipre_ M

Protein Data Bank (PDB) identifier (first 4 characters) is followed by the chain identifier.

The sums over the columns of 4 give the number of
residues predicted to be in structure ¢:

3
o =3 Ay, fori=af L
i=1

The sums over the rows give the number of residues
observed to be in structure i:

b, =

1

A

e

fori=ua, B, L.

i

i=1

The sum over all elements of 4 is the number of residues
in the data bank used, abbreviated by &:

The term observed refers to the experimental structure
determined by X-ray or nuclear magnetic resonance as
represented in the Dictionary of Secondary Structures of
Proteins (DSSP: Kabsch & Sander, 1983), which
distinguishes 8 secondary structure classes. These can be
grouped into 3 classes according to the following conven-
tions: H (a-helix), G (3,,-helix), T {n-helix)-»>helix (a), E
(extended strand)—strand (§), and B (residue in isolated
B-bridge), T (turn), 8 (bend), _ (rest, coil)—loop (L), with
the corrections: B_—f8, bur B_B-LLL.) We shall
frequently use the abbreviations:

QE:Q?’nbsz%ﬁ x 100, fori=ea,pB, L, (1)

which describe for class i the percentage of residues
correctly predicted to be in clags i relative to those
observed to be in class i (for simplicity referred to as &;).
The percentages of residues correctly predicted to be in
clags i from all residues predicted to be in i are given by:

Q‘i‘mred = % x 100, fori=ua,f, L. (2)
i

This percentage supplies an estimate of the conditional
probability of correct prediction, given a predicted state.
Most authors use the overall 3-state accuracy:

3

Z Ay

Q(olal = = lb

x 100 (3}

or, in other words, the percentage of all correctly

predicted residues. These percentages describe the
performance accuracy for a prediction tool averaged over
all residues in the data bank. The expected accuracy for a
single protein is best deseribed by averaging over all
chains. The mean accuracy per protein chain is given by:

1 Nebain

<Q>chain = W 2 Qfotal’ (4)
+ c=1

where N2 ig the number of all chains in the data bank,
and @, the accuracy defined by eqn (3) for chain ¢. The
standard deviation ¢ of this per chain accuracy can
supply an ‘estimate of the range of accuracy to be
expected. (@) . tends to be higher than @, if short
chains are predicted more accurately than longer ones.

As the data bank used (Table 1) contains 329 a, 219,
B and 479 L residues, Q,,,, tends to be dominated by the
accuraey for loop prediction. However, since the user is
primarily interested in the performance on the structure
types o and f, the percentages given by eqns (1) and (2)
reveal important additional information. The random
prediction of 3 classes (if weighted by the percentage of
occurrence) would be @, ., = 36:39.

A more complicated measure of accuracy is given by
the correlation coefficient introduced by Matthews
(1976):

Py — W04

O(- = 3
\/(Pi+“i)(Pi+Oi)(ni+ui}(ni+ 0;)
fori=o, B. L, (5)

with p; being the number of properly predicted residues in
conformation #; n; the number of those correctly not
assigned to structure ¢; %; the number of underestimated,
and o; that of overestimated conformations. In terms of
the accuracy table A4:

fori=ua, f§, L,

3 3
=13 A w=3 Ay, fori=« p L.
jri Iy
Here, we should like to introduce an entropy-related
information that merges the different percentages to a
single number with all elements of the accuracy matrix
contributing equally. The information can be defined as:

P
=1 Z_pred
H{Pohs}’
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where P, is the probability for finding one particular
string of b residues with b; residues being in structure 7 out
of all combinatorial possible ones, and P, is the prob-
ability for a particular realization of the prediction
table A:

1 3 !
Pl - 3b. and Pl =H{3b. }
obs Z h‘,* pred i=1 H aj!

=1 F=1

where 2! stands for x factorial. The information ean be
rewritten in the form:

I=1n( b! ) Zm( ) (6)
Blb,. it 'HLAU.

§=

This expression can he approximated by the Stirling
formula (reasonably accurate for 4> 10}

i=1

3
-3 (b+05 ) x Inb;+{2; +05) x Ina,

3
- E (4;+05)xIn Aij)+(b+0'5) xlnb—2xIn2n
i=t

3
= (b,-xlnbﬁ-a,-xlna,-
i=1

3
-3 4;xhn Aij)-i-bxlnb.
=1

For a perfect prediction the second term in egn (6)
vanishes, thus in order to normalize the entropy to 1 for
perfect prediction we redefine:

1=1P

obs

and with the Stirling approximation:

Zaxlna— Z Ayxin 4
I=1-i=t ” ! ) (7)
bxinb—ijxinb;
i1

This information is related to the probability of deviation
of table 4 from a random distribution:

I1=0,i, A4;=1/9, fori j=123,
F=1if: A;=0,for{#jand
Ay=b,4,7=123.

The latter means a completely correct prediction. An
artifact of the construction is that the same deviation of
=1 results if all helices are predicted as loop, and all
loops as helix (for i =1, helix; {=3, loop). This short-
coming is acceptable, since the probability for such a
prediction is very small for any reasonable prediction
method. The advantage of such an entropy is that, e.g.,
over- and underpredictions equally decrease the value of
I. Therefore, a method performing well only for, e.g. loop,
might yield a relatively high level of overall accuracy, but
the entropy I will be low.

Measures for single-residue accuracy do not completely
reflect the quality of a prediction (Thornton ef al.. 1992),
Suppose the following 2 predictions were to be compared:

Obgerved: axxaaeexoxLLL
Prediction I:  LapsLzxaalallL
Prediction 2: LLaccaxoaaaxal

Although prediction 1 results in a higher level of overall
accuracy than prediction 2, the latter better predicts the
occurrence of the long helix. It is important to estimate
the number of helices, strands and loops, their lengths
{number of residues in segment) and locations. Such an
estimate is not covered by single-residue measures, but by
guantities such as the number of predicted secondary
elements, their average length, and the length distribu-
tion. The length distribution of a prediction is given by
counting, e.g., all predicted helices of length n, with n=
1,2,.. ., %y, (length of the longest helix predicted). This
predicted distribution can be compared to the distribu-
tion obtained from the observed structure. A simpler
measure of how good the length of segments is predicted is
the average segment length (L, i=0. 8, Lt

Bum of the lengths over all
_ segments of structure ¢
~ Number of all segments of structure 7’

Lo

{8)

{e) Classifications by a layered network

Vartous pattern recognition-related problems have led
to widespread research on neural networks in general, and
on multi-layered feed-forward networks in particular
{history, Cowan, 1990; theoretical background, Amit,
1989; Hertz e al., 1991; applications, Rumeihart &
McClelland, 1986; Miiller & Reinhardt, 1996). The
simplest network is a perceptron. as shown in Fig. 1
{Minsky & Papert, 1988). The signal from the 3 input
nodes 1s fed forward to the output node, which performs a
2-step procedure: the first is a multiplication of the vector
of junctions I (describing the connections between the
nodes) and the input vector % A =1Js° the second is 2
non-linear trigger, which can be a step function of the
form:

1)L ifk>0
0 ifr<0,

{For our networks we used the sigmoid given in the legend
to Fig. 1 and eqn (11})

An extension of the perceptron is the introduection of
more output nodes (by which J becomes a matrix, and % a
vector) and an additional layer of units that are “hidden”
in the sense that this layer is directly related neither to
the input nor to the output. A further generalization of
the concept is to introduce connections from, e.g., the
output to the input layer (backwards).

A feed-forward network can be regarded as a statistical
method that is able to classify patterns according to their
intrinsic correlation, i.e. the characteristic information
they contam The network performs a simple task: map a
vector 57 of dimension N° (number of input nodes) onto
another one 8 of dimension N {number of output nodes).
The collective effect of an entire network is a classification
of patterns. Provided the number of units and layers of
the network suffices, an arbitrary pattern classification
can be performed.

For applications. a further intrinsic feature of networks
is important: the ability to generalize. Suppose there is a
certain rule according to which a number of examples § is
grouped. This set might be split into two distinet sets
;Smm and Sp,- Suppose St 18 learned by the network,
i.e. the net extracts internal rules for grouping Stuin-
Then, generalization refers to the ability to ecorrectly
classify 81, with the rales {junction) derived from Sp,;,.
The better the classification, the better the hidden rale 1s
deduced by the network. If the number of training
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Figure 1. Function of a perceptron, the simplest neural
network. A simple perceptron has only 1 output unit
(black). Each of the left nodes receives a certain input
signal (e.g. binary, i.e. =0 or 1}. All units are connected to
the output node by the junctions J?, with eg. Ji,
connecting input unit j with output unit 1. The contribu-
tion of each left node (e.g. the jth) to the signal arriving at
the right one is a product of the strength of the junection
connecting the 2 units, and the input: e.g. Ji;sf. All
products (here 3) are summed by the right node (here s}).
This sum is then evaluated by a non-linear trigger func-
tion. The resulting map of the sum onto an interval
between 0 and 1 is the actnal output of the network. The
broken-line nodes show a potential extension of the
perceptron to a 2-layered feed-forward network. Stippled
circles, input units, signal=1 or 0. Black circle, output
unit. Step 1, the input to this unit is summed aceording
to:

TN+
Rl= Y J;s

ii5; (here, i=1)).
i=1

Step 2, the output from this unit is computed by a
sigmoid trigger funetion:
P S—
P 1dexp(—h)
Broken-line cireles, the potential extension to a 2-layered
feed-forward network.

examples is sufficient (and can be learned), generalization
is perfect (Sella, 1991).

(d) First level: sequence-to-structure net

The system of networks we used consists of 3 levels,
The first is a net classifying strings of adjacent residues
{=sequence pattern) into the 3 secondary structure
clagses helix {«), strand (f#) and loop (L} of the central
residue. For represenfation of the input, a multiple
sequence alignment iz used (Fig. 2). The alignments are
taken from the HS8SP data bank {Sander & Schneider,
1991). One pattern is given by a window of w=13 con-
secutive residues (in Fig. 2, w = 7). For each residue the
frequency of occurrence of each of the 20 amino acids at
one position in the alignment is computed. These 20
nurabers represent a basic cell of the input layer in Fig. 2.

Consequently, the whole input for a particular pattern
extends over 20w input units. The target cutput is the
secondary structure class of the central residue. (For the
example of position 4 in Fig. 2, the target output is 1,0,0,
which means that the central asparagine residue {N) is
observed to be in a helix.) The window is shifted residue
by residue through the protein chain, thus yielding N
patterns for a chain with N residues. In order to allow a
window to extend over the N terminus and the C
terminus, a further unit has to be added for each residue.
Suppose the secondary structure of the N terminus of a
protein ig to be predicted. Then this residue must be at
position 4 (for w = 7). The input for the following window
positions is given by the residues of the protein. But there
is no residue before the first. Therefore, an additional unit
has to be added to each of the first 3 basic cells (Fig. 2).
The value of these units is set to 1, those for the other 20
units for the first 3 basic cells are set to 0. Thus, finally
{20+ 1w units are required for the input.

Two cading concepts were investigated: (1) the frequen-
cies were directly used as the values of real input units,
and {2) they were transposed into 4 binary units:

0000 for frequency <002
0001 for 002 < f< (33
0011 for 033 < f < 066 (M
0111 for 066 < f< 098
1111 for =098

The value of output unit ¢ of the network for sampie v is
computed according to:

Wit No+1
s =‘f{ Y JE { )3 J},‘sf"’}}, (10}
j=1 k=1

with /% as the junction between unit j in layer A—1 and
unit ¢ in fayer 4 (for 2 layers of junctions, the layers of
units are counted as: input layer, 1=0; hidden layer,
A=1; output layer, 1 =2), the number of hidden N! and
input N° units, the input of pattern v to the kth input
unit, sP¥, and the sigmoid trigger function chosen as:

1
f(x)=l—+—e:a;- 11)

f determines the slope of the sigmoid function.
The error £ for pattern v (the total error is a sum over
all patterns) can be defined as:

B({J'}, UY) = i (sBy—dy?, (12)
i=1

with s*¥ being the output of the network for output unit ¢
ant sample ¥, df the observed secondary structure for
sample v and unit ¢ (note, this is a binary quantity). The
brackets { } emphasize that the error does not depend on
2 variables, but on 2 sets of variables given by the
junction matrices of the first (J!) and the second (J%)
layer.

A typical network we used contained 5000 to 15,000
junctions, i.e. free variables to be optimized. The number
of examples used for the optimization of these variables
was roughly 25,000.

For the training procedure, the straightforward
gradient. descent (with momentum term) was used (Press
et al., Y986: Rumelhart of al., 1986). At each optimization
time step ¢, the junctions J are changed such that the
error decreases:

AJit+1) = J(t)—a%(t)+nAJ(t—l), (13)
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first level;
Sequence 1o structure
in: profiles,
out; units for
helix (o), strand (8}
and loop(L)

profile generation
from a multiple
sequence alignment
(here: B-lactamase: 3bla)

number of
cxample: input

protein  DSSP aligned
sequence

1: K=.75, H=.25

K,.HK
EDAE
FFFF
SAAS
QKKQ
LLLL
EEEE
KEKK
KQEK
FFYF
DDND
AARA
RKKR
LLLL
GGGG

8: K=.8,E=.2

.50
.07
15

D H @D P Z <R N ®BCO0ZC @R
R RAR/R/K RN

“« TR T

second level: third level: prediction
structure to structure Jury decision winner take all
in: output of first in: putput of (given here N
level, out: o, B, L different networks for the N at
out: arithmetic position 4)

average for o, B, L

N
°
-
E

——

l 2000 @00
o] ]
e e
54

—

Figure 2. Our network system for secondary structure prediction. Our network system for predicting secondary
structure consists of 3 layers: 2 network layers and 1 layer averaging over independently trained networks. §, Basic cell
containing 20+ 1 units to code residues at position 1 to w of the input window; here, w = 7. 8, Hidden units. Circled g, B
and L, output units for helix, strand and loop. Stippled circles, output from architectures not shown here. @, Example:

residue N at position 4 predicted to be in helix @—.

with the following choices: learning strength (step width
of gradient descent) &=005, momentum term =02,
initial junctions J{0) chosen at random e[—0-1,01].
Training a network means trying to minimize the error £
for all training examples. The partial derivative can easily
be derived analytically. Suppressing the sample index v,
the iteration formulae for an arbitrary number of layers
become, for the last layer L:

dE(t) B}
ot =t —ddst—shya " (14)
for all previous layers A=1, L—1:
akit) N2 BE(

S = (1-sf)s}? JEL 15
aJ:lJ ( z) i k;] 6J£i+1 ki ( )
Usually, the patterns are picked at random from the stack
of all training examples. Since the 3 secondary structure
types are not equally distributed, a balanced training was
also tested. For each time step, a pack of 3 patterns was
picked at random with 1 example for each structural class
{«, 8, L). This implies a substitution of 0F in eqns (13) to
{15) by a sum over the error for each of the 3 samples.
Thus, for 100 time steps of unbalanced training, 479,
samples for loop, 329, for helix and 219 for strand, and
for balanced training, 33 samples for each class are
presented. The optimization procedure (eqn (13)) was
terminated once the accuracy was higher than 709, for all
training samples (75%, for the second level network).
Terminating in a minimum, i.e. running the minimization
to completion, risks the deterioration of generalization by
overtraining {unpublished data).

(&) Second level: structure-to-structure nef

The first level network is trained to classify mutually
independent segments of residues in terms of the state of a

single central residue. There is no explicit representation
of the fact thai consecutive patterns are correlated, like
for a helix consisting of at least 3 consecutive patterns.
The correlation can be taken into account, at least in part,
by using a second level, a structure-to-structure network.
For this network the input is given by a window of w=17
basic cells (Fig. 2). Bach of these basgic cells codes the
output from the sequence-to-structure network for 1
example (i.e. the 3 output values for the prediction of
secondary structure for the central residue). The target
output is again the secondary structure class of the
central cell (Fig. 2: output for the segment of position 4).

As in coding the sequence profiles, the output units of
the first level sequence-to-structure net can be encoded by
either input units with real values, or by several binary
input units for each. Here, we report only data for binary
coding of the second level input, using 8 bits/real number.
(The coding was done as in eqn (9}.)

(f) Third level: jury decision

Training the network is a walk through a relatively
complex space. The gradient descent is sensitive to minor
changes in parameters: it is, for instance, important how
the initial junctions are chosen, and how the parameters
for the training dynamics (eqns (12) to (13)) are adjusted
(such as step width &, inertia parameter #, definition of the
error E, slope and form of sigmoid decision function f).
A particular realization of the classification task {which
for simplicity will be referred to as a particular architec-
ture) iz associated with a particular error (corresponding
to a particular local minimum). This error is caused,
partly, by a random neoise in the strength of the junetions
J. Combining y different. architectures resuits in a reduc-
tion of the noise provided the networks are nmot com-
pletely correlated. The simplest way to combine



590 Better Protein Secondary Structure Prediction

independent networks is to compute an arithmetic
average {jury decision):

]
8Dy = % Z &, fori=u, B, L. (16)
a=1
&% is the value of output unit ¢ for architecture a. For
simple problems, the benefit of a jury decision has been
shown {(Hansen & Salamon, 1990; Linceln & Skrzypek,
1990). A concept similar to the jury is to combine
different secondary structure predictions. This combina-
tion has been claimed to be successful for non-network
methods (Biou et al., 1988; Nishikawa & Noguchi, 1991).
A more elaborate approach was used by training a
network to combine different secondary structure predic-
tion methods (Zhang ef al., 1992).

We generated the different architectures in the
following way: the training was done in a balanced and in
an unbalanced fashion on the first and second level of the
network system. In this way, 2 x 2 different architectures
were trained independently. One such quartet was trained
with a real coding of sequence profiles, another by adding
conservation weights (next section). This led to the first 8
or 9 networks used for the jury decision. The other
network was trained with coding the profiles by 4 bits {in
balanced fashion).

(g) Adding conservation weights to the sequence profiles

The sequence profiles differ in the number of sequences
in the family and in the similarity of the aligned
sequences to the input sequence. The additional informa-
tion about the alignment can be exploited by placing a
higher weight on positions that are particularly well
conserved. Such a weight is contained in the HSSP data
base (Sander & Schneider, 1991). For position { in the
sequence it is defined by Schneider & Sander (unpublished
results):

jal
Z w?sslimi!

_ hs=1
CW,- - Nohi

PR

rs=1
with . . (17)
w,, = (1 — g x Y identity,,),

where A" is the number of alignments, %identity,, the
percentage of sequence identity (over the entire length of
the sequence) of sequence r and s in the alignment, sim}, a
value from the similarity matrix between these 2
gequences at position ¢ (e.g. the Dayhoff matrix: Dayhoff,
1978). The conservation weight is scaled such that the
mean value averaged over all residues in any particular
protein becomes unity: {CW, juence = 1-

We used this quantity as an additional input unit for
each residue. (The value defined by eqn (17) was divided
by 2, the maximal size of CW, we found in the datsa base,
to make it smaller than L.) Thus, for the networks using
conservation weights, the input layer is extended to
(204 1+ 1) x 13 units for the first and to (3+141) x 17 for
the second level network.

(h) Reliability index for the prediction

The vector algebra given in eqn (10} describes a separa-
tion of the input vectors (a classification of the patterns).

<Ct):-)hs’r x wrred,r} _ <w?bs,c> X <m§;red,c>

Two patterns can be separated more easily if they have a
large mutual distance. The final step of the prediction is a
winner-take-all decision (Fig. 2), i.e. the highest ocutput
value is chosen as the prediction. Tf the difference between
the output values proves to be correlated to the prob-
ability of a correct prediction, such a quantity could be
rather useful in practice. We define a reliability index as:

RI = INTEGER(10 x {oul,,, — 0utlyey,)), (18)

where out,,,, is the output of the unit with highest value,
and out,.,, that of the unit with the next highest value.
The factor 10 normalizes RJ to integer values from 0 to 9,
as the sigmoid trigger function (eqn (1)) permits maximal
output values of 1. BRI =9 should correspond to a rather
reliable prediction.

(i) Filtering the prediction

Helices have a minimum length of 3 (Kabsch & Sander,
1983). Although the second level structure-to-structure
net corrects the tendency of the first level sequence-to-
structure net to predict too short helix fragments, the
final jury prediction still contains single Hs. The simplest
way to exclude such an unrealistic prediection is to convert
all helices of length 1 or 2 into loop. A slightly more
elaborate alternative makes use of the reliability index
{eqn (18)), according to the following preseription:

if length of helix <3, and RI for all residues in that
helix <4, then helix—loop;

if length of helix <3, and at least for | residue in the
helix R > 4, then extend helix up to a final length of
3 (in the direction of the residue flanking the helix
with lowest RI).

In practice, the precise details of the filter do not matter
much,

{)) Secondury structure conlent

The knowledge of secondary structure content can
contribute to the assessment of the folding type of a new
protein. One experimental way to estimate secondary
structure content is ecircular dichroism spectroscopy
{Johnson, 1990). The accuracy of the secondary structure
content predicted by the network system for protein
chain ¢ can simply be calculated as the difference between
observed and predicted content averaged over all N<""
chains:

1 Achain

—__ abs, ¢ pred, c|
Qr’ ~ "Ajchain Z |wl’ —w; I,
. N e=1

with: (19)

3 AS, )
Wi =1 and eftt =2 fori=epfL,
Als Al
where - ig the content of secondary structure ¢ as

observed for chain ¢, wf™%° is the one predicted (the

accuracy matrices A° are determined for each protein
chain), € is a measure for the success of predicting
structure content in general, and in particular for the
correctness of grouping proteins into structural classes.
An alternative measure, the Pearson correlation coeffi-
cient, is sometimes used when assessing the success of
circular dichroism estimates (Johnson, 1990; Perczel ef al.,
1941, 1992; Bohm et al., 1992).

Corrf), =

\/((w‘qbs.c)I’.) _ (w?bs.c>2 % \/<(m?rcd.c)2> — <w=_)red,c>2

(20)
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Table 2
Set of 24 all-helical protein chains containing pairwise similarities above 25% (3468 residues with 64% o,
3% B and 33% L)

155¢ leeh leer ledp leca
lpmb Ipre_A ipre_B tpre_C lwsy_C
3hhb_B dich 3mba Stne

lhmz
256b

1ths
2cey_B

1123
Zeey_A

lrd_A
2wrp_A

lird_B
3hhb_A

A chain is labelled all-a if more than 85%, of repetitive secondary structure is helix and the length of the chain is > 74 residues

(Kneller et al., 1990}

with the abbreviation (x stands for any variable in
eqn (20) enclosed by ... )

Nehain

!
<x‘>=j\mr§l u

For proteins of unknown structure, the structural class is,
of course, also not known. Three questions arose. Is the
network prediction acenrate enough to sort the proteins
into structural classes? Can the performance of a network
be increased by training only on one structural class? If
the prediction accuracy can be increased by the classifica-
tion into structural clagses, does the increase vanish if the
proteins are classified, not according to the experi-
mentally known content of secondary structure, but
according to the predicted one? To help answering these
questions, we have looked at a list of helical proteins. We
used the prediction of the network system to classify the
proteins as helical. Not only proteins with exclusively
helix {Levitt & Chothia, 1976} were classified as all-

helieal, but according to the rules used by, e.g., Kneller ef
al. {1990), all chains were classified as all-helical if the
sequence length iz >74 residues and, if at least 859, of
the repetitive secondary structure (helix, strand} is helix
(Kneller et al., 1990). A jack-knife test on 24 all-helical
chains (Table 2) was performed, i.e. in this case a 24-fold
eross-validation check.

3. Results

(a) More than six percentage points gained by use of
sequence profiles

Four results can be summarized: multiple cross-
validation shows that some of the previous work on
the performance of neural networks in secondary
structure prediction overestimated the expected
accuracy; use of sequence profiles in binary coding
increases the overall accuracy by about three

Table 3
Prediction accuracies, average segment lengths and information for various networks

Qrosat e epres C, Ly @ Qg C'y {Lg»  Information

Type of network (4) 1) (2) {5 (8) H (2) (5) (8) (7
Reference 1st 61-7 56 59 -39 42 41 52 034 29 12
Reference 2nd 626 57 62 042 62 42 53 0-35 38 013
Balanced 2nd 60-6 58 62 043 69 57 45 036 46 013
Prof binary 653 69 67 053 73 63 51 044 48 019
Prof real unbal 68-2 64 72 055 9-2 55 59 046 48 0-20
Prof real bal 674 70 68 054 81 63 55 047 49 021
Prof cons 680 7l 71 057 83 68 54 048 51 022
Jury 702 71 72 059 92 66 58 051 51 024
Juryt 70-8 72 3 OG0 a3 66 o0 052 50 25
Observed 90 51

Given are averages over 7 test sets chosen such that each chain of Table 1 is used exactly once for testing, and that the ratio of
helixfstrand/loop is not the sume as for all 130 chains. (References to the equation numbers in the text are given in parentheses.) The

networks can be described by the following Table.
t Results excluding the membrane protein 1pre.

Conservation

Type of network Number of levels Profiles? Coding of input weight? Balanced training?
Reference st 1 No Binary No No
Reference 2nd 2 No Binary No No
Balanced 2nd 2 No Binary No Yes

Prof binary 2 Yes Binary Ne Yes

Prof real unbal 2 Yes Real/binary No No

Prof real bal 2 Yes Reel/binary No Yes

Prof cons 2 Yes Real/binary Yes Yes

Jury 2 Yes Mixed Mixed Mixed

The column headed Coding of input refers to the alternatives of coding real numbers either by binary or by real input units.
Real/binary means that the first level network is coded with real numbers, the second level net with binary ones.
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percentage points; the real coding of profiles results
in an additional increase of about three percentage
points; and using conservation weights adds a
further half percentage point to the overall
accuracy.

When applying a sevenfold cross-validation test
on a data set without significant pairwise similarity
(Table 1), we found that a network comparable to
those used in earlier studies reached an overall
accuracy of 61-79, (Table 3) instead of 63-6 to 659
(Qian & Sejnowski, 1988; Holley & Karplus, 1989;
Kneller et al., 1990; Stolorz ef al., 1992). For the
final network system with three levels, the accura-
cies for the seven different test sets are shown in
Figure 3. The differences between the best and the
worst of the seven sets (each comparable in size to
those used in previous publications not performing
multiple cross-validation) is about seven percentage
points. Therefore, a fortuitous choice of a single test
set is a probable cause of overestimate. The conelu-
sion is that a simple network is not as good in
predicting secondary structure as empirical-
statistical methods such as COMBINE (Biou et al.,
1988). However, the same network when trained on
muitiple sequence alignments outperforms all
previously published methods (Fig. 4).
Evolutionary information is extremely useful in
predicting secondary structure. Sequence profiles
are one way of using evolutionary information {and
the simplest).

The question of whether to code the real valued
profiles by four bits or real numbers is answered
clearly by the comparison of the overall accuracy of
the first level networks: 6499, {(binary) to 6599
{real). For the coding of the input to the second
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accuracy in %
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Figure 3. Variation of prediction accuracy with choice
of test set. The accuracies are given for each of the 7 test
sets used for the 7-fold cross-validation analysis. The last
column in each zet gives the arithmetic averages over all
residues in all 7 test sets. The sets were chosen to be of
about the same size (18 chains with some 3500 residues).
The content of secondary structure differed between the
sets (&, 25 to 399%,; B, 16 to 279, and L, 42 to 529%) to
reflect the fact that this ratic is known for the current
data bank but not for structurally unknown proteins.
Qperix and Q. are the percentages of observed strue-
tures (eqn (1}). Filled bars, @,..; stippled bars, @y,
hatched bars, @ .na.
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Figure 4. Overall accuracy of various methods. The
methods shown used multiple cross-validation. The first 3
methods used data sets with similarities > 309, between
test and training sets (seq. hom.): Maclin {Maclin &
Shavlik, 1993), and Salzberg (Salzberg & Cost, 1992)
multi-layered network approach, Zhang (Zhang et al.,
1992) an approach combining networks in combination
with other methods. Of the middle 4 methods, Combine
{Biou et al., 1988), SIMPA (Levin & Garnier, 1988) and
GORIII (Gibrat et al., 1987) are reported to have had no
significant similarities between test and training sets (no
seq. hom.); ALB (Ptitsyn & Finkelstein, 1983) was
evaluated on the data set of Table 1. The last 5 bars show
our networks; for the abbreviations, see Table 3. Stippled
bars, network methods, seq. hom.; hatched bars, non-
network methods, no seq. hom.; filled bars, our network
methods, no seq. hom.

level, the binary coding proves to be superior:
66-79, (real) wversus 6749, (binary). Thus, the
strategy used in the end is to code the profiles on the
first level (sequence-to-structure} by real numbers,
the input to the second level (structure-to-structure)
by eight bits per unit.

A further half percentage point can be gained by
using the conservation weight CW (eqn (17)) as
additional input unit (Table 3). Overall, the first
two levels of the sequence profile networks reach
more than 689, in three-state accuracy.

(b) Further thwo percentage points by the
Jury decision

How does the expected overall accuracy depend
on: the choice of the test sets; the details of the
training procedure; and on the particular protein to
be predicted?

Seven-fold cross-validation yields an estimate for
the overall accuracy to be expected that is relatively
independent on the choice of the test sets (Fig. 3).

The average over all seven test sets depends on
the particular type of neural network used:
networks trained in balanced or alternatively in
unbalanced fashion differ in the overall accuracy by
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ahout one to three percentage points (Table 3). The
use of conservation weights does not produce a
substantial increase in overall accuracy (0-5 percent-
age point), but it helps to extract the information
given by the training samples in a different way
from a network without conservation weights (the
increase in information for the conservation weight
net is more clear than that in overall accuracy,
Table 3). An arithmetic combination of different
architectures (11 f) improves the performance if the
architectures are not fully correlated in the error of
their predictions. The jury decision over nine
networks we used as the third level of the network
gystem improves the overall accuracy by two
percentage points. The final network system is the
first tool ever to exceed the “magical” 709, in
overall three-state accuracy: 70089 (for soluble
chains). (The final 3-level network system will be
referred to as PHD for Profile network from
HeiDelberg.)

What is to be expected as accuracy for a single
new protein? The accuracy averaged over chains
{rather than single residues, eqn (4) reaches
71-0(£93)%, (% standard deviation). This means
that the expected three-state acenracy most likely
lies between 62 and 809, (Fig. 5). The fact that the
per chain average is slightly higher than the average
over the whole data bank indicates that shorter
chains are predicted slightly more accurately (the
average length of the chains in Table 1 is about 190
residues).

(c) Performance worse for membrane proteins and
single sequences

Membrane proteins have a different physical
environment from water-soluble globular proteins
and, hence, different rules have to be learned to
predict: the structure. We included four chains of the
membrane protein photosynthetic reaction centre
(1pre_C, lpre_H, lpre_L and lprc_M) in our data
set to see how accurately these chains are predicted.
The prediction accuracy was, as expected, below
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Figure 5. Expected variation of prediction accuracy
with protein chain. The distribution of the per chain
3-state accuracy {eqn (4)) can be interpreted as the
expected variation of prediction accuracy for protein
sequences of unknown structure. The standard deviation
is 9-39,. The chains predicted worst are lern, 1fe2 C and
2mev_4; those predicted best are 9api_ B, lppt and
Zutg_A.
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number of sequences in the protein Family
Figure 6. Improvement of accuracy with increasing
family size. The points give the 3-state accuracy averaged
over protein chains for which the number of sequences in
the sequence profile falls into a certain interval. The
intervals have been chosen such that each point repre-
sents an average over some 6 protein chains. The broken
line gives a simple fit as a visual guide. The overall trend
toward higher aceuracy with inereasing size of the protein
family is partly masked by the strong variation of

accuracy for individual protein chains.

average. The conclusion is that the results presented
in this study apply strictly only to water-soluble
globular proteins. However, an interesting side
result of the inclusion of Ipre in training is that the
four membrane chains are predicted with an overall
accuracy of 589,. The network tends to overpredict
strands and to underpredict helices (data not
explicitly shown here). When lpre is included in the
computation of the overall three-state accuracy, the
result drops from 70-89 to 70-29%,.

The network using sequence profiles scores six to
eight percentage points higher than a network using
single sequences. What is to be expected if a
network trained on sequence profiles is tested
without providing the information of the multiple
alignment? It turns out that the gain is almost
completely lost. This leads to the guestion of how
the increase in overall accuracy gained by using
sequence profiles depends on the number of
sequences in the multiple alignment. The increase of
accuracy versus the number of sequences in the
multiple alignments {Fig. 6) is partially obscured by
the +109, standard deviation of the per chain
averages. The more sequences in the alignment the
better, but how does the similarity of the aligned
sequence to the input sequence influence the predic-
tion? There is as well an effect of the distribution of
the similarities of the alignments. Our experience is
that it is best for the prediction if the alignment has
a large number of sequences ranging from 30 to
1009, similarity to the target sequence.

{4) Reliability index helps to evaluate the prediction

All results reported use the final winner-take-all
projection of the three real output units onto one
secondary structure (Fig. 2). A part of a protein
cannot be in a helix, say, 659, of the time. But the
prediction that the part is in a helix ean have a
probability of being accurate of 659%,. The results
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Figure 7. Expected prediction accuracy for residues
with a reliability index above a given cut-off. Plotted are
averages of the 3-state accuracy over all those residues
with reliability index BRI >n, n=0,...,9 (eqn (18)). For
comparison, the reliability is given for the well-known
GORIIT method, which uses 5 rather than 10 reliability
intervals. For example, about 289, of all residues have
RI>'7 and of these 929, are correctly predicted in PHD;
for GORIII, 239, have RIgopm> 4, 839 of these are
correctly predicted.

shown in Figure 7 prove that the differences
between the real output values (eqn (18)) supply an
effective measure for the reliability of a prediction.
The higher the difference between highest and next
highest output unit, the more reliable the predic-
tion, e.g. 579, of the residues have an accuracy of
829, (RI =5), and 229, score at 919 (R = 8). The
averages of Figure 7 are cumulative, i.e. averages
over all residues with R/ > n.

Suppose a residue is predicted to be in a strand
with BRI =5. How many of all residues predicted to
be in the strand with RI = 5 are predicted correctly?
To answser this question, an alternative non-
cumulative average has to be computed: only the
residues are averaged that have Rf=wn, with
n=1,...,9 Figure 8 shows that, e.g., the expected
aceuracy for a strand residue with R/ =5 is 76 9.

accuracy in %
-3
(=]

60

504~

40
refiability index | z 3 4 5 o
% of residues: 10 1 1 I 11 12 13 15 7

Figure 8. Expected prediction accuracy for residues
with a reliability index equal to a given value. Similar to
Fig. 7, except that here the non-cumulative accuracies are
given, i.e. the accuracy of all residues with reliability
index RI=n, n=1,...,9. The fraction of residues that
are predicted with RI =n are also given. For example,
7%, of all residues have BRI =9 and 959, of these are
correctly predicted, 109, of all residues have Bf =1 and
only 46%, of these are correctly predicted. The linearity of
this function and of that in Fig. 7 is surprising. (S Q e’
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Figure 9. Comparison of helix/strand accuracies for
various methods. Separate accuracies for helix and strand
(eqn (1)) are not available for all methods. Here, 4 of
these are compared to the performance of various
networks tested by us. For the abbreviations, see Fig. 4
and Table 3.

(e) Bealanced prediction by balanced training

The three-state accuracy ., poorly reflects the
quality of predicting strand, since there are only
2197 strand residues in the data banks. For most
methods and for the reference network the percent-
age of the observed strands that were predicted
correctly @ {eqn (1)} is below 459% (Fig. 9, note
that the probability of correctly predicting strand
residues at random in a 3-state prediction is 339).
The balanced training procedure provides an
elegant way to correct the poor performance in
predicting strand {Table 3). The final system PHD
correctly predicts two-thirds of all observed strand
residues, which is about ten percentage points
superior to previous methods. Q%% (eqn (1)) is
about ten percentage poinis better than that of,
e.g., ALB, and Q%P (eqn (2)) is about six percent-
age points better than that of ALB. However, this
gain is obtained at the expense of overprediction for
strand.

The result of a more balanced prediction suggests
that the low level of aceuracy of previous methods
in predicting strand residues, possibly, was not only
caused by the experimental fact that strand forma-
tion is more dominated by long-distance inter-
actions than, e.g., helix formation. The network
technique reveals that the particular representation
of the data might have been another reason for a
poor performance on strand.

() Substantial tmprovement in predicting
segment lengths

Computing per residue scores is only one way to
evaluate the quality of a prediction. A detailed
analysis of a few particular examples, like the
cAMP-dependent protein kinase lcpk {Benner &
Gerloff, 1990; Thornton et al., 1992; Rost et al.,
1993) or the Src-homology 3/2 domains SH3/SH2
{Barton et al., 1991; Benner et al., 1992; Musacchio ef
al., 1992; Rost & Sander, 1992; Russell et al., 1992)
indicates that single-residue comparisons do not
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Figure 10. Comparison of length distribution of
obgerved and predicted segments. Given are the differ-
ences between the number of helix and strand segments
observed and predicted to have a certain length. The first
level reference network {(reference 1st) has much stronger
deviations than the final network systen PHD (PHD).
Helices of length 1 or 2 are artifacts (no filter was
applied).

capture the possibility of using a secondary struc-
ture prediction for predicting some main features of
the protein’s tertiary structure. An alternative to
single-residue scores is the comparison between the
average length of the predicted and that of the
observed segments. The reference net, e.g., predicts
by far too short segments {Tabie 3, Fig. 10). The
predictions of this network appear fragmented
compared to typical giobular proteins. The second
level of the structure-to-structure network proves to
be successful in learning the correlation between
congecutive residues. The PHD prediction impres-
sively reproduces the length distribution of
secondary structure elements (Fig. 10), the average
lengths (Table 3).

Here, we use two components for evaluation of
the prediction quality: the per residue scores
(summarized in a single number by the entropy,
eqn (7)) and the length distribution of the predicted
segments. However, this is still not sufficient. The
ends of secondary structure elements cannot be
defined uniquely. Different assignments according
to the three-dimensional co-ordinates differ in the
length of the assigned segments (Woodeock et al.,
1992). In addition, variation in segments between
different crystal forms is non-negligible (Brandén &
Jones, 1990). For example, a method predicting all
strands correctly except that all are one residue too
long, is worse in terms of average length than PHD,
although the prediction is almost perfect.
Unfortunately, a convincing measure for assessing
how well the main secondary structure elements are

predicted is missing still (Rost ef af., 1993). Such a
measure has to reflect the potential to predict main
features of the protein’s tertiary structure, given the
secondary structure prediction (B. Rost, C. Sander
& R. Bchneider, unpublished resalts).

{g) Secondary structure content predicted successfully

How accurately does PHD predict the content of
secondary structure? The answer is: with less than
109 error. The error in predicting secondary struc-
ture content (eqn (19)) is: Q, = 859 (6 =83%) and
Q, =817, (o ="T78%,). This is not as good as what
was reported by using an alternative theoretical
prediction by a “‘tandem-network’ specialized on
predicting secondary structure content {(Muskal &
Kim, 1992). The result of the elaborate “tandem’ is;
Q,=50% (6=34%) and Qy=569% (6=49%).
Unfortunately, however, that analysis did not
perform multiple cross-validation. Moreover, the
data set contained pairwise similarities. Thus, it is
difficult to fully evaluate the result. For the best of
the seven test sets used here, the performance was:
Q,=55% (6=48%) and Q;=709% (6=65%),
comparable to the result of Muskal & Kim (1992).

How does the prediction of secondary structure
content compare to experimental methods like
circular dichroism (CD)? The comparison is compli-
cated because there is no analysis of CD on a
comparable data set at hand, and since the CD
results we used are evaluated on the basis of
distinguishing five structure types: helix, anti-
parailel sheet, parallel sheet, turn and iocp. On a set
of 15 or 16 proteins, CD reaches wvalues of
CorrQ =095 to 1-0 (helix), 0-4 to 09 {strand), 0-61
to 096 (loop). The ranges are due to different
frequency ranges in CD in different publications
(Bohm et al., 1992), On all 130 chains, PHD resulted
in CorrQ =084, 073, 0-73. On a smaller set of 26
new protein chains with recently solved structure
(see next paragraph, and Fig. 11), the values were:
092, 0-86, 0-90. To compare equal daba sets, we
checked the performance on a set of 22 proteins
used by Perczel et al. (1992). We used either the
same protein, or those in our data set (Table 1)
similar to that used by Perczel et al. (1992). CD
spectroscopy yields CorrQd = (-84 (helix), 0-41 {anti-
parallel sheet}, 0-37 (parallel sheet), 0-56 (loop).
PHD does better with: CorrQ =086 (helix}, 0-88
(sheet), 0-68 (loop). The conclusion is that the PHD
prediction of secondary structure content is compar-
able, at least, to an intermediate level of CD analy-
sis (not measuring the entire frequency range).
Therefore, the theoretical prediction of secondary
structure content is competitive with CD in some
cases, in particular for strand.

What can be profited by predicting secondary
structure content? Is the network accurate enough
ta clagsify the proteing correctly into structural
classes like, e.g., all-helical chains? PHD correctly
classified [4 of the 24 chaing of Table 2 as helical.
Two were falsely classified as all-helical. Does it pay
off to train a network only on all-belical proteins!
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The network trained on 24 all-helical protein chains
performed for these about three percentage points
(Qyorar) better than a comparable network trained on
all chains of Table 1. The conclusion is that if the
structural class is known, specialized training on ali-
helical proteins increases the overall accuracy.
{Note: this result should not be confused with that
of reports published on the advantage of learning
secondary structure prediction for, e.g., exclusively
ali-helical proteins that use a 2-state overall
aceuracy {Kneller et al., 1990; Muggleton et al.,
1992; Rost & Sander, 1993). A 2-state accuracy
scores generally higher than a 3-state accuracy
(Maxfield & Scheraga, 1976). To investigate the
benefit of restricting a prediction method to one
structural subelass, two metheds have to be
compared on the same testing set and the same
number of secondary structure states: the one
extracting rules from all proteins and the one
extracting the rules from, e.g., exclusively all-helical
proteins.} Is this conclusion valid if the class is not
given a priori but has to be determined by predic-
tion with some error! PHD identifted two chains
falsely as helical. For these the helix net performed
substantially worse than the general one. Due to
these misclassifications, the resulting overall
average aver all helical chains (including the mis-
classified ones, excluding those not having been
identified as helical) was about the same for the
helix net as for the general one. Using a network
specialized on helical chains might slightly improve
the performanee, but the risk is that the acenraey is
substantially reduced for proteins misclassified as
all-helical.

What about S-chains, or alternative structural
classes? We did not further investigate this problem
because PHD misclassified eight chains as all-f§
(according to the definition used by Kneller et al.,
1990}, and only one-half of the observed f-chains
were identified by PHD as being all-§. Circular
dichroism spectroscopy is not superior to PHD in
estimating the content of p-strand. Thus, it appears
not to be of practical interest to investigate the
performance of a profile network on f-chains before
more accurate prediction methods or experimental
techniques for the assessment of f-strand content
are available.

(h) No decrease in overall accuracy by filtering
the prediction

Filtering the prediction by substituting one or
two-residue helices by loops does not effect the
overall accuracy. Tt yields @) = 70-39 (compared
to 70-29, without filter}. The increase in informa-
tion to { =0-24 ((-238) stems from the fact that the
tendency of overpredicting helices is slightly
reduced. Alternative filtering procedures were
tested without any significant difference. As a
consequence, we apply the filtering procedure by
default when the secondary structure of a new pro-
tein is predicted. Since the effect is small and has
nothing to do with the principal technique of PHD,

Q> =
T21%

aocuracy per chiail clative 16 the
mean accuracy over all chains

(7
el

-25

protein:

Figure 11. Prediction accuracy for 26 new protein
chains. The 26 protein chains chosen from a Protein Data
Bank prerelease have less than 25% (for length >80)
similarity to any of the chains used for training PHD
(Table 1), Given is the deviation of per chain accuracy
from the mean value (eqn (4)) over all 26 chains (72:19).
The proteins are: acetylcholinesterase {lace); cholesterol
oxidase (lcox); cAMP-dependent protein kinase (lepk);
defensin (ldfn); enclase (5enl); phosphocarrier (1f3g);
basic fibroblast growth factor (3fgf); protein ¢gB1 domain
(2gbl); glucoamylase (lgly); granulocyte-macrophage
colony-stimulating factor (lgmf); 16th complement
control protein of factor h (1hee); engrailed homeodomain
complex (lhdd); high potential iron sulphur protein
(2hip); intestinal fatty acid binding protein (1ifb),
mannose binding protein A (lectin domain) {1msb); neura-
minidase sialidase (lnsb); e-h-ras p21 protein (5p2l);
Bowman Birk proteinase inhibitor pi-ii (1pi2); human
plasminogen kringle (2pk4); rop: ColEl repressor of
primer (lrop); hydrolase-ribonuclease sa (lsar); sarco-
plasmic caleium binding protein (2sep); Sindbis virus
capsid protein (lsnv); thioredoxin (3trx); zinc. finger
(3znf); gend leucine zipper (2zta).

all results presented, except in this paragraph, are
related to the performance without filter.

i} Marginal influence of free parameters and
q p
potential improvements

The large number of tests we performed leads to a
certain experience in how to choose the free para-
meters of the network (window size w, number of
bits used to code real values, number of layers and
hidden units, criterion for stopping the optimization
procedure, dynamical constants g, #, interval and
distribution of the junctions used as the starting
point, slope of the sigmoid trigger function f, and
definition of the error ¥). How does the choice of
these parameters influence the performance of the
network? We were surprised by the simple answer:
not much. Therefore, we recommend spending less
time on optimizing such parameters than on
attempts to reformulate the problem. An optimal
choiee of the free parameters might increase the
result by of the order of one percentage point. In
comparison, the usage of multiple sequence align-
ments instead of single sequences is a straight-
forward change by which more than six percentage
points are gained.
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4. Discussion

The overall three-state accuracy above 709, by
uging multiple sequence alignments as input to
multi-layered networks is rather convincing. It is
reflected in an average overall accuracy of at least
four percentage points, and a strand accuracy ten
percentage points better than that of any previous
method. Moreover, the network reproduces well the
length of the observed secondary structure
elements, although these variables were never
explicitly used for training the system. The differ-
ence between the observed and the predicted length
distribution is a kind of consistency check for how
well the network learned to extract the relevant
features of the problem. A further consistency check
was the use of the reliability index, which promises
to be rather useful in practice: residues predicted
more reliably than others can be identified. The fifth
of all residues with highest reliability is predicted
with an accuracy >909%. Four chains of the
membrane protein photo-reaction centre (1pre) were
included in testing and training. The prediction for
these four is about 12 percentage points below the
average performance. But since the physical
environment for such proteins is completely
different from that of water-soluble ones, it is
surprising that the prediction yields a reasonable
result at all. Whether this result will persist for
future membrane proteins is not clear.

For the date set of 130 protein chains, the magic
barrier of 709 overall three-state accuracy has
been broken. But will the method score as high for
the next 130 proteins? After having performed all
analyses, we investigated the performance on 26
new proteins with a recently solved structure
(Fig. 11). They were selected so that none had
significant sequence similarity to any protein in the
training set used. For these 26 chains the results
were: Q= T1'59%, with @, =71%, @, =64 %, (and
@t =749, @FEret=599). The per chain
average was (>, =7219, (Fig. 11). This success
indicates that the quality of the network system
described here is probably not overestimated. What
about the next 100 chains? Further tests will show,
Publically particularly effective are blind tests, i.e.
predictions of proteins with yet unknown structure
{Benner & Gerloff, 1990; Benner e al., 1992; Rost &
Sander, 1992; Russell ¢f al., 1992). A better check
will be the long-term use of PHI as an everyday
prediction tool. The PHD method is available for
fully automatic use. Send the word help by elec-
tronic mail to the internet address PredictProtein
@ Embl-Heidelberg de tor detailed instructions on
how to automatically obtain a predicted secondary
structure for your sequence.

We emphasize our gratitude to three colleagues from
our group who contributed substantial ideas and help:
Reinhard Schneider, Michael Scharf and Gerrit Vriend.
Further thanks to Christos Ouzonis (EMBL, Heidelberg),
Sara Solla (AT&T, Holmdel), Francoise Fogelman-Soulie
{Mimetics, Chatenay-Malabry), Pierre Nadal (ENS,
Paris), Seren Brunak (Techn. Univ., Copenhagen) and
Andreas Herz (Caltech, Pasadena).
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