

Computational Modeling of Molecular Structure

Jianlin Cheng, PhD
Computer Science Department
Informatics Institute
University of Missouri, Columbia
Spring, 2016

The Genomic Era

Collins, Venter, Human Genome, 2000

DNA Sequencing Revolution

A Topic of Big Bio Data Analysis

Science enters \$1,000 genome era

By Paul Rincon

Science editor, BBC News website

The HiSeq X Ten is capable of sequencing five human genomes a day, Illumina claims

Objectives

- Properties of molecular structures (proteins, RNA, genome / DNA)
- Computational representation of molecular structures
- Computational modeling of molecular structures
- Application of modeling of molecular structures

Significance of Studying Molecular Structures

- One foundation of life sciences
- Personal healthcare and medicine
- One major topic of bioinformatics and computational biology – an important field of computer science
- A great application area of computer algorithms and data structures
- A great application area of engineering
- A very interdisciplinary field (CS, math, biology, chemistry, physics)

A Good Career for CS Graduates

- Two PhD graduates are assistant professors of bioinformatics
- One PhD student secured a AP position of bioinformatics
- One PhD student secured a scientist position in a bioinformatics company

 Numerous other graduate students received good training and worked in data-intensive fields.

Three Kinds of Structures

Protein Structure

Genome Structure

RNA Structure

Representation of Molecular Structures

- X, Y, Z coordinates
- Euclidean grid
- Vector and angles
- Computer graphics

Algorithms

- Grid-based simulation (random walk)
- Vector-based simulation
- Angular-based simulation
- Gradient descent simulation and variants
- Simulated annealing
- Markov Chain Monte Carlo
- Probabilistic modeling
- Constraint-based optimization

Software Packages

- RasMol, Jmol, PyMol, Chimera
- Modeller, Rosetta, I-TASSER, MULTICOM, CNS, etc
- Your own algorithm, implementation, and practice

Course Format

- Course web site: http://calla.rnet.missouri.edu/cheng_courses/cscmms2016/
- Problem solving
- Active learning by practicing
- Syllabus (see details)

Teaching Format of Each Topic

Group:

4/5 students per group

Rotate as topic coordinator

Each member participates in every topic

All members present the whole project

Grading

- Class discussions (15%)
- Literature reviews (10%)
- Topic plan presentation (20%, group)
- Topic implementation and report (45%, group)
- Final presentation (10%, group)
- Grade scale: A+, A, A-, B+, B, B-, C+, C, C-, and
 F.

Introduction to Molecular Biology for Computer Science and Engineering Students

Introduction to Molecular Biology

 Cell is the unit of structure and function of all living things.

Two types of cells: eukaryote (higher organisms) and prokaryote (lower organisms)

Phenotype

Central Dogma of Molecular Biology

Genotype

Central Dogma of Molecular Biology

Replication

Information flow

DNA (Deoxyribose Nucleotide Acids)

CGAATGGGAAA......

DNA is a polymer. The monomer units of DNA are nucleotides, and the polymer is known as a "polynucleotide." Each nucleotide consists of a 5-carbon sugar (deoxyribose), a nitrogen containing base attached to the sugar, and a phosphate group.

A is for adenine G is for guanine C is for cytosine T is for thymine

Base Pairs:

A-T (2 H-bonds)

C-G (3 H-bonds)

Hydrogen bonds: non-covalent bonds mediated by hydrogen atoms

Uncoiled DNA Molecule

Source: Dr. Gary Stormo, 2002

James Watson & Francis Crick

Maurice Wilkins

Rosalind Franklin

Linus Pauling

Erwin Chargaff

Fundamental Problems: How genetic information pass from one cell to another and from one generation to next generation

DNA Replication

RNA (Ribose Nucleotide Acids)

Different Kinds of RNA

- mRNA: messager RNA carry genetic information out of nucleus for protein synthesis (transcription process: RNA polymerase)
- rRNA: ribosomal RNA constitute 50% of ribosome, which is a molecular assembly for protein synthesis
- tRNA: transfer RNA decode information (map 3 nucleotides to amino acid); transfer amino acid
- snRNA: small RNA molecules found in nucleus involve RNA splicing
- Non-coding RNA

Transcription of Gene into RNA

Genetic Code and Translation

Three Nucleotides is called a codon.

Protein Sequence

A directional sequence of amino acids/residues

Amino Acid Structure

Lysine

Amino Acids

Amino acid	Abbrev.	Side chain	Hydro- phobic	Polar	Charged	Small	Tiny	Aromatic or Aliphatic	van der Waals volume	Codon	Occurrence in proteins (%)
Alanine	Ala, A	-CH ₃	X	-	-	X	К	-	67	GCU, GCC, GCA, GCG	7.B
Cysteine	Cys, C	-CH ₂ SH	X	-	-	Х	-	-	86	UGU, UGC	1.9
Aspartate	Азр, D	-CH₂COOH	-	К	negative	х	-	-	91	GAU, GAC	5.3
Glutamate	Glu, E	-CH ₂ CH ₂ COOH	-	X	negative	-	-	-	109	GAA, GAG	6.3
Phenylalanine	Phe, F	-CH ₂ C ₆ H ₅	X	-	-	-	-	Aromatic	135	UUU, UUC	3.9
Glycine	Gly, G	-H	х	-	-	х	к	-	48	GGU, GGC, GGA, GGG	7.2
Histidine	His, H	-CH ₂ -C ₃ H ₃ N ₂	-	Х	positive	-	-	Aromatic	118	CAU, CAC	2.3
Isoleucine	lle, I	-CH(CH ₃)CH ₂ CH ₃	X	-	-	-	-	Aliphatic	124	AUU, AUC, AUA	5.3
Lysine	Lув, K	-(CH ₂) ₄ NH ₂	-	K	positive	-	-	-	135	AAA, AAG	5.9
Leucine	Leu, L	-CH ₂ CH(CH ₃) ₂	x	-	-	-	-	Aliphatic	124	UUA, UUG, CUU, CUC, CUA, CUG	9.1
Methionine	Met, M	-CH ₂ CH ₂ SCH ₃	X	-	-	-	-	-	124	AUG	2.3
Asparagine	Asn, N	-CH ₂ CONH ₂	-	K	-	х	-	-	96	AAU, AAC	4.3
Proline	Pro, P	-CH ₂ CH ₂ CH ₂ -	X	-	-	Х	-		90	CCU, CCC, CCA, CCG	5.2
Glutamine	Gln, Q	-CH2CH2CONH2	-	Х	-	-	-	-	114	CAA, CAG	4.2
Arginine	Arg, R	-(CH ₂) ₃ NH-C(NH) NH ₂	-	к	positive	-	-	-	148	CGU, CGC, CGA, CGG, AGA, AGG	5.1
Serine	Ser, S	-CH ₂ OH	-	х	-	х	Х	-	73	UCU, UCC, UCA, UCG, AGU,AGC	6.B
Threonine	Thr, T	-CH(OH)CH ₃	Х	K	-	х	-	-	93	ACU, ACC, ACA, ACG	5.9
/aline	Val, V	-CH(CH ₃) ₂	X	-	-	X	-	Aliphatic	105	GUU, GUC, GUA, GUG	6.6
Tryptophan	Trp. W	-CH ₂ C ₈ H ₆ N	X	-	-	-	-	Aromatic	163	UGG	1.4
Tyrosine	Tyr, Y	-CH ₂ -C ₆ H ₄ OH	X	К	-		-	Aromatic	141	UAU, UAC	3.2

Central Dogma of Proteomics

Sequence

Structure

Function

The Genomic Era

Personal Genome's Implications

- Personalized Disease Prevention
- Personalized Disease Diagnosis
- Personalized Medicine
- Personalized Health Care
- Precision Medicine

Genome Implications to Information Sciences and Life Sciences

Elements and Systems

Assignment One

Read an article and write a half page summary: A. Sali. T. Blundell. Comparative Protein Modeling by Satisfaction of Spatial Restraints. JMB, 1993.

Submit your review summary to mumachinelearning@gmail.com. Due by Feb. 3 (Wednesday).

Acknowledgements

images.google.com and all the authors providing valuable images