Hill Climbing and Simulated Annealing

Jianlin Cheng, PhD
Computer Science Department

University of Missouri, Columbia
Fall, 2013

References of the Theory

e Andrew Moore’s slides
* Xiaojin Zhu'’s slides

An Optimization Problem

e Each state s has a score f(s) (or cost, energy)
that we can compute

* The goal is to find the state with the highest
score (or lowest cost, energy) — low / high
should be obvious.

 Enumerating all the states is intractable (e.g.
NP hard problem)

Examples

® N-queen: f(s) = number of conflicting queens

in state s N

Note we want s with the lowest score f{s)=0. The techniques
are the same. Low or high should be obvious from context.

Examples

® N-queen: f(s) = number of conflicting queens [¥E_E_=_=

in state s N S .z.-
.

L
Note we want s with the lowest score f{s)=0. The techniques ‘
are the same. Low or high should be obvious from context. -.....5

¢ Traveling salesperson problem (TSP)
= Visit each city once, return to first city
= State = order of cities, f(s) = total mileage

Examples

® N-queen: f(s) = number of conflicting queens [¥E_E_=_=

in state s N e
e

Note we want s with the lowest score f{s)=0. The techniques e EEE
are the same. Low or high should be obvious from context. EE my

® Traveling salesperson problem (TSP)

= Visit each city once, return to first city

= State = order of cities, f(s) = total mileage
® Boolean satisfiability (e.g., 3-SAT)

= State = assignment to variables

_ Av-BvC
= f(s) = # satisfied clauses AVCYD

BvDv—=E
—(Cv—-=DVv—-E
—Av-CvVE

Iterative Optimization Methods

Start at a random configuration; repeatedly consider
various moves; accept some & reject some. When you’re

stuck, restart.

We must invent a moveset that describes what moves we
will consider from any configuration. Let’s invent movesets

for out four sample problems.

1. HILL CLIMBING

Hill Climbing

® Very simple idea: Start from some state s,
= Move to a neighbor t with better score. Repeat.
® Question: what’s a neighbor?
* You have to define that!
* The neighborhood of a state is the set of neighbors
= Also called ‘move set’
= Similar to successor function

Neighbors: N-Queen

Example: N-queen (one queen per column). One
POSSib“ ity: tie breaking more promising?
= Pick the rlg\h/t-most most-conflicting column;

= Move the queen in that column vertically to a

different location. -~

1=

Neighborhood
of s

Neighbors: TSP

* state: A-B-C-D-E-F-G-H-A g
® f=length of tour
® One possibility: 2-change

A-B-C-D-E-F-G-H-A

flip

>

E-D-C-B-F-G-H-A

Neighbors: SAT

¢ State: (A=T, B=F, C=T, D=T, E=T)
® f= number of satisfied clauses
® Neighbor:

Av—-BvC
—-AvCvD
BvDv—-E
—Cv—-DvVv—-E
—Av—-CVE

Neighbors: SAT

¢ State: (A=T, B=F, C=T, D=T, E=T)
® f= number of satisfied clauses
® Neighbor: flip the assignment of one variable

(A:F, B:F, C:T, D:T, E=T) A\/ﬁB v C
(A=T, B=T, C=T, D=T, E=T) ~AVCOVD
(A:T, B=F, C=F, D=T, E=T) BgD V;E E

_ _ _ _ _ —CL V — V —
(A=T, B=F, C=T, D=F, E=T) _AVACVE
(A:T’ B=F, C=T, D=T, E=F)

Hill Climbing

® Question: What's a neighbor?

= (vaguely) Problems tend to have structures. A small
change produces a neighboring state.

* The neighborhood must be small enough for
efficiency

= Designing the neighborhood is critical. This is the
real ingenuity — not the decision to use hill climbing.

® Question: Pick which neighbor?

® Question: What if no neighbor is better than the
current state?

Hill Climbing

® Question: What's a neighbor?

= (vaguely) Problems tend to have structures. A small
change produces a neighboring state.

* The neighborhood must be small enough for
efficiency

= Designing the neighborhood is critical. This is the
real ingenuity — not the decision to use hill climbing.

® Question: Pick which neighbor? The best one (greedy)

® Question: What if no neighbor is better than the
current state? Stop. (Doh!)

Hill Climbing Algorithm

Hill-climbing: Attempt to maximize Eval(X) by moving to
the highest configuration in our moveset. If they're all
lower, we are stuck at a “local optimum.”

_et X = initial config
_et E = Eval(X)
_et N = moveset_size(X)
For(1i=0;I<N;1:=i+1)
Let E; := Eval(move(X,i))
If all E/s are < E, terminate, return X
Else let I = argmax; E;
X = move(X,I¥)

E=E.
Goto 3 (Not the most sophisticated algorithm in
the world.)

N =

© 00N O

Hill Climbing Issues

Trivial to program
Requires no memory (since no backtracking)

MoveSet design is critical. This is the real ingenuity — not the
decision to use hill-climbing.

Evaluation function design often critical.
— Problems: dense local optima or plateaux

If the number of moves is enormous, the algorithm may be
inefficient. What to do?

If the number of moves is tiny, the algorithm can get stuck easily.
What to do?

It's often cheaper to evaluate an incremental change of a previously
evaluated object than to evaluate from scratch. Does hill-climbing
permit that?

What if approximate evaluation is cheaper than accurate evaluation?
Inner-loob ontimization often possible. —— -

0

Major Problems

® Not the most sophisticated algorithm i
® Very greedy.
¢ Easily stuck.

your enemy:

local
optima

Local Optima in Hill Climbing

¢ Useful conceptual picture: f surface = ‘hills’ in state

Space \ Global optimum,
f where we want to be

state

® But we can’t see the landscape all at once. Only see
the neighborhood. Climb in fog.

/ fog

state

Local Optima in Hill Climbing

¢ Local optima (there can be many!)

Declare top- /
of-the-world?

¢ Plateaux
Where shall I go?

® Local optima (there c \9\9/

Declare
the wor
The rest of the lecture 1s
about
- Escaping

o e shall I go?
local optima "

Randomized Hill Climbing

1. Let X := Initial config
2. LetE = Eval(X)
3. Leti=random move from the moveset
4. LetE,:= Eval(move(X,i))
5. IfE <E, then
X = move(X,)
E=E,

6. Goto 3 unless bored.
What stopping criterion should we use?

Any obvious pros or cons compared with our previous hill
climber?

Repeat Hill Climbing with Random
Start

® Very simple modification

1. When stuck, pick a random new start, run basic
hill climbing from there.

2. Repeat this k times.

3. Return the best of the k local optima.

¢ Can be very effective
® Should be tried whenever hill climbing is used

Variations of Hill Climbing

® We are still greedy! Only willing to move upwards.
® Important observation in life:

Sometimes one Sometimes one
needs to needs to move to an
temporarily step — | Inferior neighbor In
back in order to order to escape a

move forward. local optimum.

Hill Climbing Example: SAT

_ o Moveset.
Av-BveC 1 Maximize: flip any 1 variable
-AvCvD 1 Eva:c(conﬁ)d=
of satisfie
BvDv—-E 0O clauses Example Configuration:
—|CV —IDV —lE 1 (1IOI1I011)
-Av-CvE 1

WALKSAT (randomized GSAT):
Pick a random unsatisfied clause;
Consider 3 moves: flipping each variable.
If any improve Eval, accept the best.
If none improve Eval, then 50% of the time, pick the move that is the

least bad; 50% of the time, pick a random one.

This is the best known algorithm for satisfying Boolean formulae! [Selman]

2. SIMULATED ANNEALING

Simulated Annealing
anneal

® To subject (glass or metal) to a process of heating
and slow cooling in order to toughen and reduce
brittleness.

Perturb

A~

f(x) Perturb

Cost

Solution X ———-

http://ashakhov.files.wordpress.com/2011/01/6725437-0-large.jpg

Simulated Annealing

1. Let X :=Initial config
2. Let E := Eval(X)
3. Leti =random move from the
moveset
4. Let E, ;= Eval(move(X,))
5. If E<E,then
X = move(X,i)
E =E,
Else with some probabillity,
accept the move even though
things get worse:
X = move(X,i)
E = E,
6. Goto 3 unless bored.

Simulated Annealing

1. Let X :=Initial config
2. Let E := Eval(X)
3. Leti =random move from the

moveset
4. Let E, := Eval(move(X,i))

5. If E <E, then
X = move(X,i)
E =E,

Else with some probabillity,
accept the move even though
things get worse:
X = move(X,i)
E = E,
6. Goto 3 unless bored.

This may make the search
fall out of mediocre local
minima and into better local
maxima.

How should we choose the
probability of accepting a
worsening move?

» /dea One. Probability =
0.1

» /dea Two. Probability
decreases with time

» |dea Three. Probability
decreases with time, and
also as E — E, increases.

Simulated Annealing

It E,>= E then definitely accept the change.
If E, < E then accept the change with probability
exp (-(E - E)/T))
(called the Boltzman distribution)
...where T, is a “temperature” parameter that
gradually decreases. Typical cooling schedule:
T,=T,-r
High temp: accept all moves (Random Walk)
Low temp: Stochastic Hill-Climbing

When enough iterations have passed without improvement,
terminate.

This idea was introduced by Metropolis in 1953. It is “based” on “similarities”
and “analogies” with the way that alloys manage to find a nearly global minimum energy
level when they are cooled slowly.

Aside: Analogy-based algorithms

Your lecturer predicts that for any natural phenomenon you can think
of, there will be at least one Al research group that will have a
combinatorial optimization algorithm “based” on “analogies” and
“similarities” with the phenomenon. Here’s the beginning of the list...

« Metal cooling annealing

 Evolution / Co-evolution / Sexual Reproduction
* Thermodynamics

» Societal Markets

 Management Hierarchies

» Ant/Insect Colonies

* Immune System

« Animal Behavior Conditioning

* Neuron / Brain Models

« Hill-climbing (okay, that’s a stretch...)
- Particle Physics

« Inability of Elephants to Play Chess

Simulated Annealing Issues

MoveSet design is critical. This is the real ingenuity —
not the decision to use simulated annealing.

Evaluation function design often critical.
Annealing schedule often critical.

It's often cheaper to evaluate an incremental change of a
previously evaluated object than to evaluate from
scratch. Does simulated annealing permit that?

What if approximate evaluation is cheaper than accurate
evaluation?

Simulated Annealing Discussions

Simulated annealing is sometimes empirically much better
at avoiding local minima than hill-climbing. Itis a
successful, frequently-used, algorithm. Worth putting in
your algorithmic toolbox.

Sadly, not much opportunity to say anything formal about it
(though there is a proof that with an infinitely slow cooling
rate, you'll find the global optimum).

There are mountains of practical, and problem-specific,
papers on improvements.

SA for Minimization

http://www.youtube.com/watch?v=iaq_Fpr4KZc

SA for TSP Demo

* http://www.youtube.com/watch?
v=rsGOB80v0-k

GENETIC ALGORITHM

http://www.genetic-programming.org/

Evolution

Survival of the fittest, a.k.a. natural selection

Genes encoded as DNA (deoxyribonucleic acid), sequence of
bases: A (Adenine), C (Cytosine), T (Thymine) and G (Guanine)

The chromosomes from the parents exchange randomly by a
process called crossover. Therefore, the offspring exhibit some
traits of the father and some traits of the mother.

= Requires genetic diversity among the parents to ensure
sufficiently varied offspring

A rarer process called mutation also changes the genes (e.qg.
from cosmic ray).

= Nonsensical/deadly mutated organisms die.
= Beneficial mutations produce “stronger’” organisms
= Neither: organisms aren’t improved.

Natural selection

Individuals compete for resources

Individuals with better genes have a larger chance to
produce offspring, and vice versa

After many generations, the population consists of
lots of genes from the superior individuals, and less
from the inferior individuals

Superiority defined by fithess to the environment
Popularized by Darwin

Mistake of Lamarck: environment does not force an
iIndividual to change its genes

Genetic algorithm

Yet another Al algorithm based on real-world analogy
Yet another heuristic stochastic search algorithm

Each state s is called an individual. Often (carefully)
coded up as a string.

H N
|

= NW HA,OO 0

m
" (32752411)
B om b owy

.l-l
|
N v
W H N
W jmym W
The score f(s) is called the fithess of s. Our goal is to
find the global optimum (fittest) state.

At any time we keep a fixed number of states. They
are called the population. Similar to beam search.

Individual encoding

® The “DNA”
¢ Satisfiability problem Av—-BvC
(ABCDE)=(TFTTT) AV
* TSP —~Cv—-Dv—E
—-Av-CVE

A-E-D-C-B-F-G-H-A

Genetic algorithm

® Genetic algorithm: a special way to generate

neighbors, using the analogy of cross-over, mutation,
and natural selection.

24748552

327752411

24415124

32543213

(a)
Initial Population

Genetic algorithm

® Genetic algorithm: a special way to generate

neighbors, using the analogy of cross-over, mutation,
and natural selection.

24748552 | 24 31% 327552411

327752411 24748552

i

24415124 0 26% 32752411

32543213 1 14% 24415124

(a) (b) (c)
Initial Populati Fitness Func Selection

Number of non- prob. reproduction
attacking pairs o fitness

Genetic algorithm

® Genetic algorithm: a special way to generate

neighbors, using the analogy of cross-over, mutation,
and natural selection.

24748552 | 24 31% [32752411 >"< 32748552

327752411 247?48552 247752411

i

24415124 | 20 26% | 32752411 >"< 32752124

/

24415411

32543213 | 11 14% 244155124

(a) (b) (c) : (d)

7

Initial Populati Fitness Func Selection E Cross—Over
Number of non- prob. reproduction
attacking pairs o fitness

- Next generation

® Genetic algorithm: a special way to generate

Genetic algorithm

neighbors, using the analogy of cross-over, mutation,
and natural selection.

247748552

24 31%

32752411

i

24415124

20 26%

32543213

/

11 14%

(a)
Initial Populati

Number of non-
attacking pairs

(b)

Fitness Func

32752411

24748552

32752i411

24415124

7

(c)

Selection

prob. reproduction

o fitness

32748552

3274152

24752411

247752411

32752124

370252124

24415411

(d)

Cross—Over

2441541[7]

(e)

Mutation

- Next generation

WON —

Genetic algorithm (one variety)

. Lets,, ..., s be the current population
. Let p; = f(s;) I Z; f(s;) be the reproduction probability
. FOR k=1; k<N; k+=2

 parent1 = randomly pick according to p
* parent2 = randomly pick another

 randomly select a crossover point, swap strings
of parents 1, 2 to generate children {[k], {[k+1]

. FOR k =1; k<=N; k++

« Randomly mutate each position in f[k] with a
small probability (mutation rate)

. The new generation replaces the old: { s }&{ t}.

Repeat.

Proportional selection

°pi=1(s) /2 1(s)
* Xf(s) = 5+20+11+8+6=50

* p,=5/50=10%

Individual | Fithess | Prob.
A 5 10%
B 20 40%
C 11 22%
D 8 16%
E 6 12%

Variations of genetic algorithm

Parents may survive into the next generation

Use ranking instead of f(s) in computing the
reproduction probabillities.

Cross over random bits instead of chunks.

Optimize over sentences from a programming
language. Genetic programming.

Genetic algorithm issues

State encoding is the real ingenuity, not the decision
to use genetic algorithm.

Lack of diversity can lead to premature convergence
and non-optimal solution

Not much to say theoretically

= Cross over (sexual reproduction) much more
efficient than mutation (asexual reproduction).

Easy to implement.
Try hill-climbing with random restarts first!

Demo of GA

* http://www.youtube.com/watch?
v=uxourrlPIf8

