Quadratic Programming and Kernel
Methods

Jianlin Cheng, PhD
Computer Science Department

University of Missouri, Columbia
Fall, 2013

Reference

* C. Campbell. An Introduction to Kernel
Methods

* Reading assighment: read the paper and
submit a one page summary.

Quadratic Optimization

Optimization Approaches?

Kernel Methods

A systematic and principled approach to training
learning machines

Achieve good generalization performance using
statistical learning theory or Bayesian arguments

Kernel methods for classification, regression and
novelty detection

Optimization of a convex cost function (quadratic
programming)

Applications

Classification Problem

 Diabetes data set:
nttp://www.csie.ntu.edu.tw/~cjlin/
ibsvmtools/datasets/binary/diabetes

* First 10, 20, 30, ..., 50, or all the data points

Diabetes Data Example

-1 1:6.000000 2:148.000000 3:72.000000 4:35.000000 5:0.000000 6:33.599998 7:0.627000 8:50.000000
+#1 1:1.000000 2:85.000000 3:66.000000 4:29.000000 5:0.000000 6:26.600000 7:0.351000 8:31.000000
-1 1:8.000000 2:183.000000 3:64.000000 4:0.000000 5:0.000000 6:23.299999 7:0.672000 8:32.000000
41 1:1.000000 2:89.000000 3:66.000000 4:23.000000 5:94.000000 6:28.100000 7:0.167000 8:21.000000
-1 1:0.000000 2:137.000000 3:40.000000 4:35.000000 5:168.000000 6:43.099998 7:2.288000 8:33.000000
+1 1:5.000000 2:116.000000 3:74.000000 4:0.000000 5:0.000000 6:25.600000 7:0.201000 8:30.000000

Lilt)eel -1 1:3.000000 2:78.000000 3:50.000000 4:32.000000 5:88.000000 6:31.000000 7:0.248000 8:26.000000
+1 1:10.000000 2:115.000000 3:0.000000 4:0.000000 5:0.000000 6:35.299999 7:0.134000 8:29.000000
-1 1:2.000000 2:197.000000 3:70.000000 4:45.000000 5:543.000000 6:30.500000 7:0.158000 8:53.000000
-1 1:8.000000 2:125.000000 3:96.000000 4:0.000000 5:0.000000 6:0.000000 7:0.232000 8:54.000000
41 1:4.000000 2:110.000000 3:92.000000 4:0.000000 5:0.000000 6:37.599998 7:0.191000 8:30.000000
-1 1:10.000000 2:168.000000 3:74.000000 4:0.000000 5:0.000000 6:38.000000 7:0.537000 8:34.000000
+1 1:10.000000 2:139.000000 3:80.000000 4:0.000000 5:0.000000 6:27.100000 7:1.441000 8:57.000000
-1 1:1.000000 2:189.000000 3:60.000000 4:23.000000 5:846.000000 6:30.100000 7:0.398000 8:59.000000
-1 1:5.000000 2:166.000000 3:72.000000 4:19.000000 5:175.000000 6:25.799999 7:0.587000 8:51.000000
-1 1:7.000000 2:100.000000 3:0.000000 4:0.000000 5:0.000000 6:30.000000 7:0.484000 8:32.000000
-1 1:0.000000 2:118.000000 3:84.000000 4:47.000000 5:230.000000 6:45.799999 7:0.551000 8:31.000000
-1 1:7.000000 2:107.000000 3:74.000000 4:0.000000 5:0.000000 6:29.600000 7:0.254000 8:31.000000
+1 1:1.000000 2:103.000000 3:30.000000 4:38.000000 5:83.000000 6:43.299999 7:0.183000 8:33.000000
-1 1:1.000000 2:115.000000 3:70.000000 4:30.000000 5:96.000000 6:34.599998 7:0.529000 8:32.000000
+1 1:3.000000 2:126.000000 3:88.000000 4:41.000000 5:235.000000 6:39.299999 7:0.704000 8:27.000000
+1 1:8.000000 2:99.000000 3:84.000000 4:0.000000 5:0.000000 6:35.400002 7:0.388000 8:50.000000

-1 1:7.000000 2:196.000000 3:90.000000 4:0.000000 5:0.000000 6:39.799999 7:0.451000 8:41.000000

-1 g

yi -1 (1:11.000000 2:143.000000 3:94.000000 4:33.000000 5:146. 000000 6:36.599998 7: 0 254000 8:51.000000 xi} <d1} (LLY) d8>
-1 1:10.000000 2:125.000000 3:70.000000 4:26.000000 5:115.000000 6:31.100000 7:0.205000 8:41.000000
-1 1:7.000000 2:147.000000 3:76.000000 4:0.000000 5:0.000000 6:39.400002 7:0.257000 8:43.000000
+1 1:1.000000 2:97.000000 3:66.000000 4:15.000000 5:140.000000 6:23.200001 7:0.487000 8:22.000000
+1 1:13.000000 2:145.000000 3:82.000000 4:19.000000 5:110.000000 6:22.200001 7:0.245000 8:57.000000
+1 1:5.000000 2:117.000000 3:92.000000 4:0.000000 5:0.000000 6:34.099998 7:0.337000 8:38.000000
+1 1:5.000000 2:109.000000 3:75.000000 4:26.000000 5:0.000000 6:36.000000 7:0.546000 8:60.000000
-1 1:3.000000 2:158.000000 3:76.000000 4:36.000000 5:245.000000 6:31.600000 7:0.851000 8:28.000000
+1 1:3.000000 2:88.000000 3:58.000000 4:11.000000 5:54.000000 6:24.799999 7:0.267000 8:22.000000
+1 1:6.000000 2:92.000000 3:92.000000 4:0.000000 5:0.000000 6:19.900000 7:0.188000 8:28.000000
+1 1:10.000000 2:122.000000 3:78.000000 4:31.000000 5:0.000000 6:27.600000 7:0.512000 8:45.000000
+1 1:4.000000 2:103.000000 3:60.000000 4:33.000000 5:192.000000 6:24.000000 7:0.966000 8:33.000000
+1 1:11.000000 2:138.000000 3:76.000000 4:0.000000 5:0.000000 6:33.200001 7:0.420000 8:35.000000
-1 1:9.000000 2:102.000000 3:76.000000 4:37.000000 5:0.000000 6:32.900002 7:0.665000 8:46.000000
-1 1:2.000000 2:90.000000 3:68.000000 4:42.000000 5:0.000000 6:38.200001 7:0.503000 8:27.000000

Input Feature
Vector

-1 1:4.000000 2:111.000000 3:72.000000 4:47.000000 5:207.000000 6:37.099998 7:1.390000 8:56.000000
+1 1:3.000000 2:180.000000 3:64.000000 4:25.000000 5:70.000000 6:34.000000 7:0.271000 8:26.000000
+1 1:7.000000 2:133.000000 3:84.000000 4:0.000000 5:0.000000 6:40.200001 7:0.696000 8:37.000000

+1 1:7.000000 2:106.000000 3:92.000000 4:18.000000 5:0.000000 6:22.700001 7:0.235000 8:48.000000
-1 1:9.000000 2:171.000000 3:110.000000 4:24.000000 5:240.000000 6:45.400002 7:0.721000 8:54.000000
+1 1:7.000000 2:159.000000 3:64.000000 4:0.000000 5:0.000000 6:27.400000 7:0.294000 8:40.000000

-1 1:0.000000 2:180.000000 3:66.000000 4:39.000000 5:0.000000 6:42.000000 7:1.893000 8:25.000000
41 1:1.000000 2:146.000000 3:56.000000 4:0.000000 5:0.000000 6:29.700001 7:0.564000 8:29.000000

+1 1:2.000000 2:71.000000 3:70.000000 4:27.000000 5:0.000000 6:28.000000 7:0.586000 8:22.000000

-1 1:7.000000 2:103.000000 3:66.000000 4:32.000000 5:0.000000 6:39.099998 7:0.344000 8:31.000000
+#1 1:7.000000 2:105.000000 3:0.000000 4:0.000000 5:0.000000 6:0.000000 7:0.305000 8:24.000000

41 1:1.000000 2:103.000000 3:80.000000 4:11.000000 5:82.000000 6:19.400000 7:0.491000 8:22.000000
+#1 1:1.000000 2:101.000000 3:50.000000 4:15.000000 5:36.000000 6:24.200001 7:0.526000 8:26.000000

+1

1:5.000000 2:88.000000 3:66.000000 4:21.000000 5:23.000000 6:24.400000 7:0.342000 8:30.000000

A Classification Learning Task

The learning task. Let us consider a binary classification task with dat-
apoints x; (2 = 1,..., m) having corresponding labels y; = +1 and let

J J

the decision function be:
f(x) =sign (w-x+b) (1)

If the dataset is separable then the data will be correctly classified if
yi(w - x; + b) > 0 Vi. Clearly this relation is invariant under a positive
rescaling of the argument inside the sign-function, hence we can define a
canonical hyperplane such that w-x+ 0 = 1 for the closest points on one
side and w - x + b = —1 for the closest on the other. For the separating

Visualization of Binary Classification

y=w.x+b=0
+ y=wx+b=1 y=wx+b=-1
+
T O
Xj X2
+ o O
O

o+

O

Separating Hyperplane

Figure 1. The margin 1s the perpendicular distance between the separating hy-
perplane and a hyperplane through the closest points (these are support vectors).
The region between the hyperplanes on each side 1s called the margin band. x,
and x, are examples of support vectors of opposite sign.

Visualization of Binary Classification

y=w.x+b=0
+ y=wx+b=1 y=wx+b=-1
+
T O
Xj X2
+ o O
O

o+

O

Separating Hyperplane

Figure 1. The margin 1s the perpendicular distance between the separating hy-
perplane and a hyperplane through the closest points (these are support vectors).
The region between the hyperplanes on each side 1s called the margin band. x,
and x, are examples of support vectors of opposite sign.

Visualization of Binary Classification

be1 y=w.x+b=0
y=w.x+b = / _
=w.x+b=-1
+ %
+
+
O
X OLRY;
+ o O
O
O
U \
Support Vector

Figure 1. The margin 1s the perpendicular distance between the separating hy-
perplane and a hyperplane through the closest points (these are support vectors).
The region between the hyperplanes on each side 1s called the margin band. x,
and x, are examples of support vectors of opposite sign.

Visualization of Binary Classification

y=w.x+b=0
y=wx+b=1

y=wXx+b=-1

Figure 1. The margin 1s the perpendicular distance between the separating hy-
perplane and a hyperplane through the closest points (these are support vectors).
The region between the hyperplanes on each side 1s called the margin band. x,
and x, are examples of support vectors of opposite sign.

Maximize Margin

If the dataset is separable then the data will be correctly classified if
y;(w - x; +b) > 0 Vi. Clearly this relation is invariant under a positive
rescaling of the argument inside the sign-function, hence we can define a
canonical hyperplane such that w-x+b = 1 for the closest points on one
side and w - x + b = —1 for the closest on the other. For the separating
hyperplane w - x+ b = 0 the normal vector is clearly w/ ||w||. Hence the
margin is given by the projection of x; — x5 onto this vector where x;
and x, are closest points on opposite sides of the separating hyperplane
(see Figure 1). Since w - x; + b = 1 and w - Xy + b = —1 this means the
margin is v = 1/ ||w||. To maximize the margin, the task is therefore:

1 ‘
min [5 HWHZI (2)

subject to the constraints:

Y (W-x;+0) >1 W) 3)

Minimize Weights is Equivalent to
Reducing the Function Complexity —
Bayesian Perspective

* Smaller weights make function simpler
* Smaller weights make function smoother

* Pursuing smaller weights become a general
paradigm in function optimization

Minimization of Primal Objective

Function

L:%(w-w)—Zai(yi(w-xi—i—b)—l) 4)

1=1
where «; are Lagrange multipliers (hence «; > 0). Taking the derivatives
with respect to b and w gives:

m

1=1

W = Z QG YiX; (6)

1=1

Maximization of Dual Objective
Function

m m

W(Z o; — — Z o0y (X - X)) (7)

1,)=1
which must be maximized with respect to the «; subject to the constraint:

m

a; > () Z ;Y = 0 (8)

This is a constrained quadratic optimization problem.

Questions: what if there are only two examples (one positive x* and one negative x’)?

Karush-Kuhn-Tucker (KKT) Condition

* W= 2a)X. (1)
* 2ay; =0 (2)
* y.(X,wtb)—-1>=0,1=1, ...,/ (3)
* a;>=0 (4)
+ @y (W.x;+b)-1) =0 (5)

(5) 1s called complementary slackness due to the
Lagrange theory and can be explained in
intuition.

Name
AIMMS
AMPL
APMonitor
CPLEX

EXCEL
Solver
Function

GAMS
Gurobi
IMSL

Maple

MATLAB
Mathematica

MOSEK

NAG
Numerical
Library

OpenOpt
OptimJ

TOMLAB

Quadratic Programming Solver

Brief info
A popular modeling language for large-scale mathematical optimization.

Popular solver with an API (C,C++,Java,.Net, Python, Matlab and R). Free for academics.

Solver with parallel algorithms for large-scale linear programs, quadratic programs and mixed-integer programs. Free for academic use.
A set of mathematical and statistical functions that programmers can embed into their software applications.
General-purpose programming language for mathematics. Solving a quadratic problem in Maple is accomplished via its QPSolve & command.

A general-purpose and matrix-oriented programming-language for numerical computing. Quadratic programming in MATLAB requires the Optimization
Toolbox in addition to the base MATLAB product

A general-purpose programming-language for mathematics, including symbolic and numerical capabilities.
A solver for large scale optimization with API for several languages (C++,java,.net, Matlab and python)

A collection of mathematical and statistical routines developed by the Numerical Algorithms Group for multiple programming languages (C, C++, Fortran,
Visual Basic, Java and C#) and packages (MATLAB, Excel, R, LabVIEW). The Optimization chapter of the NAG Library includes routines for quadratic
programming problems with both sparse and non-sparse linear constraint matrices, together with routines for the optimization of linear, nonlinear, sums
of squares of linear or nonlinear functions with nonlinear, bounded or no constraints. The NAG Library has routines for both local and global
optimization, and for continuous or integer problems.

BSD licensed universal cross-platform numerical optimization framework, see its QP & page and other problems & involved. Uses NumPy arrays and
SciPy sparse matrices.

Free Java-based Modeling Language for Optimization supporting multiple target solvers and available as an Eclipse plugin./¥I10]

Supports global optimization, integer programming, all types of least squares, linear, quadratic and unconstrained programming for MATLAB. TOMLAB
supports solvers like Gurobi, CPLEX, SNOPT and KNITRO.

m l m

Z(}, - — Z ooy (X - X5)
Kernel Substututuon

Kernel substitution. This constrained quadratic programming (QP)
problem will give an optimal separating hyperplane with a maximal mar-
gin if the data is separable. However, we have still not exploited the sec-
ond observation from theorem 1: the error bound does not depend on
the dimension of the space. This feature enables us to give an alternative
kernel representation of the data which is equivalent to a mapping into a
high dimensional space where the two classes of data are more readily
separable. This space is called feature space and must be a pre-Hilbert or
inner product space. For the dual objective function in (7) we notice that
the datapoints, x;, only appear inside an inner product. Thus the mapping
1s achieved through a replacement of the inner product:

X+ Xj = ¢ (X;) - O(x5) ©)

The functional form of the mapping ¢(x;) does not need to be known
since it is implicitly defined by the choice of kernel:

K(xi,x;) = o(xi) - d(x;5) (10)

Common Kernels

K(x;,x;) = e X200 (11)
Other choices of kernel are possible, e.g.:

K(x;,%xj) = (xi - x; + 1) K (x;,x;) = tanh(8x; - x; + b)
(12)

Kernel-Based Quadratic Optimization

m m

Z(){z ——— Z o0y y, K (X5, X5) (13)

zgl

subject to the constraints of Equation (8). The associated Karush-Kuhn-
Tucker (KKT) conditions are:

Yy (w-x;4+0)—1 > Vi
o > \4)
@ (yi(w-x;+0) — 1) = Vi (14)

which are always satisfied when a solution i1s found. Test examples are
evaluated using a decision function given by the sign of:

m
flz) =Y i K(xi,2) + b (15)
1=1
Can weight vector w be explicitly represented?

Allow for Training Error

a positive slack variable &;:

m

and the task 1s now to minimize the sum of errors)", §; in addition to
2
[wl]™:

1 m
min [§W -w+ C Z fi] (21)
i=1
This 1s readily formulated as a primal objective function:
1 m
Liw,b,a, &) = oW W + CZ&Z-
i=1

=Y oy (wexg +0) —14+&] =) r& (22)

1=1 1=1

Quadratic Optimization Function
Tolerating Training Errors

oL dk
. W — Z o y;X; = 0 (23)
=1

OL m

= Do =0 (24)
i=1

oL

9% = C—-a;—1;=0 (25)

W)=Y o — 5 > yiyjoias K (x4, %)
i=1

ij=1

KKT Conditions

1.0“7£P=0 -7 \V—ZQ,U,X, —O

2.0,Lp =0 — Za,u, =0

3()£L‘p:0 — C-‘—ai—;zi=0
4.constraint-1 'z/.- ('WTx.,- —b)—14+& =0

5.constraint-2 > ()
> ()

|.\/ I\/

6.multiplier condition-1 v
7.multiplier condition-2 pi =0
8.complementary slackness-1 «; [y,-(wai —b)—1+ {1-] —
9.complementary slackness-1 ;& =0
How can we identify the data points needing slackness? Max Welling, 2005

Novelty Detection

* Novelty detection: identification of new or
unknown data that a machine learning system
has not been trained with and was not
previously aware of.

* Application: detection of a disease or
potential fault whose class may be under-
represented in the training data.

An Novelty Detection Approach

* Find a hypersphere with a minimal radius R
and center a which contains most of the data:
novel test points lie outside the boundary of
this hypersphere.

* The effect of outliers is reduced by using slack
variables ¢ to allow for data points outside the
sphere and the task is to minimize the volume
of the sphere and number of data points
outside.

Minimization of Objective

, 1
min [Rz + — Z fi]

my <
subject to the constraints:

(x; —a)' (x; —a) < R* + &

Primal and Dual Objective Function

primal objective function is then:

m

: 1
L(Raa: Ozizgi) - RZ + —Zfz

mv

m m

—Zai (R2 +& — (x;-x; —2a-x; +a- a)) — Z%’fi (28)
1=1

1=1

with o; > 0 and ~; > 0. After kernel substitution the dual formulation
amounts to maximization of:

m m

W(a) = Z(xiK(xi,xi) — Z oo K (x;, %) (29)
1=1

1,7=1

Outlier Detection Function

with respect to «; and subject to >, «; = 1l and 0 < «; < 1/mw.
If mv > 1 then at bound examples will occur with o; = 1/mv and
these correspond to outliers in the training process. Having completed
the training process a test point z 1s declared novel if:

m m

(z,2) — 220{2 Z,X;) + Z o K (x5, %) — R? >0 (30)

1,7=1

Algorithms to Train SVM

For classification, regression or novelty detection we see that the learn-
ing task involves optimization of a quadratic cost function and thus tech-
niques from quadratic programming are most applicable including quasi-
Newton, conjugate gradient and primal-dual interior point methods. Cer-
tain QP packages are readily applicable such as MINOS and LOQO.
These methods can be used to train an SVM rapidly but they have the dis-
advantage that the kernel matrix is stored in memory. For small datasets
this 1s practical and QP routines are the best choice, but for larger datasets

alternative techniques have to be used. These split into two categories:

Gradient Descent

algorithm [15]. For binary classification (with no soft margin or bias) this
1s a simple gradient ascent procedure on (13) in which «; > 0 initially
and the «v; are subsequently sequentially updated using:

«; < [0 (B;) where 3; = a; +1n (1 — Y; Z(t y; K (%, x7)> (54)

1=1

and 6(3) is the Heaviside step function. The optimal learning rate 7) can
be readily evaluated: 7 = 1/ K (x;, x;) and a sufficient condition for con-
vergence is 0 < nK (x;,X;) < 2. With the given decision function of

T T

W) => o, — = Z yiyjoio K (%, x5)

1—1 z1_1

Decomposition and Sequential
Minimal Optimization

Decomposition method provide a better approach:
only use a fixed size subset of data, with a, for the
remainder for fixed.

The limiting case of decomposition is the Sequential Minimal Optimiza-
tion (SMO) algorithm of Platt [33] in which only two «; are optimized
at each iteration. The smallest set of parameters which can be optimized

m

with each iteration is plainly two if the constraint Z «;y; = 0 1s to hold.

Remarkably, if only two parameters are olltmd_zmd_thgmst_kepl_ﬁ.xe.d

then it 1s possible to derive an analytical solution which can be executed
using few numerical operations. The algorithm therefore selects two La-

SMO Algorithm

Consider a binary classification problem with a dataset (x4, y4), ..., (X», ¥n), where x;is an input vector and y; e {-1, +1}is a binary label
corresponding to it. A soft-margin support vector machine is trained by solving a quadratic programming problem, which is expressed in the dual
form as follows:

n n n
m‘gxz Q; — § z ZyiyjK(x,-,xj)aiaj,
i=1 i=1j=1

subject to:

0<ae; £C, fori=1,2,...,n,
Z.%’CY:'=
i=1

where Cis an SVM hyperparameter and K(x; x) is the kernel function, both supplied by the user; and the variables (¥; are Lagrange multipliers.

Algorithm

SMO is an iterative algorithm for solving the optimization problem described above. SMO breaks this problem into a series of smallest
possible sub-problems, which are then solved analytically. Because of the linear equality constraint involving the Lagrange multipliers
(v;, the smallest possible problem involves two such multipliers. Then, for any two multipliers (¥1 and (Y9, the constraints are reduced
to:

0 S Qry, (ig S Ca

Y101 + Yot =k,
and this reduced problem can be solved analytically: one needs to find a minimum of a one-dimensional quadratic function. [is the
sum over the rest of terms in the equality constraint, which is fixed in each iteration.
The algorithm proceeds as follows:

1. Find a Lagrange multiplier (¥1 that violates the Karush-Kuhn-Tucker (KKT) conditions for the optimization problem.

2. Pick a second multiplier (vo and optimize the pair (vy , iy)

3. Repeat steps 1 and 2 until convergence.

When all the Lagrange multipliers satisfy the KKT conditions (within a user-defined tolerance), the problem has been solved. Although
this algorithm is guaranteed to converge, heuristics are used to choose the pair of multipliers so as to accelerate the rate of
convergence.

Illahz 0 — — Z Zy,yJI\ T, T) 050,

1_1] 1

0<a,m<C,
Y10q + Yoy = K

Keep all other terms except a,, a, fixed, get a new function like

a, + (k-a,) + other_as - % (y,y,a,a,K(x;,x,)+ y,y,a,a,K(x,,x,) 2y,y,a,a,(k-a;)K(x,,x,) * y,a,*Other

Optimize Single Variable Quadratic
Function

/_\ Check three values:

0, C, and x-coordinate of vertex

