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Distribution of Random Variables

Random variables: GPA, wage, age, ???

-4
-
—

104+
; Multivariate Normal Distribution
s H=0, 0°=02, ==
H=0, 0°z10, =— -
e | y=0, 0?=50,—"] 0.0012
H=-2, 0°=05, = 0.001
0.0012
o~ 00 0.0008
Ke? 0.001 0.0006
é s 0.0008 [ 0.0004
) . 0.0002
[ N 0.0006 [
) 0
azb— 0.0004
. \ -1 0.0002
{—
ao e —t 0o
e | L o | | PR PR Y | | |
-5 -2 -3 -2 -1 3] 1 2 3 4 5
X
1 (z—p)?

o\ 2 T http://en.wikipedia.org/wiki/Normal_distribution

http://en.wikipedia.org/wiki/
Multivariate_normal_distribution



Distribution of multiple variables can
be very complicated

* Fever, gender, cough, chest pain, lung cancer
* Alarm, earthquake, burglary, neighbors’ call
 GRE, TOEFL, GPA, gender, ideal job offer

e Color (R, G, B)in an image

¢ 777

Problem: most likely values, expected values,
probability / frequency



Sampling (Simulation)

e Generate data from a distribution
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How to sample data from it using a computer?
How to sample a random number between 0 and 1?



Monte Carlo Methods

Draw random samples from the desired distribution

Yield a stochastic representation of a complex distribution

marginals and other expections can be approximated using sample-
based averages

E[f (x)]= Z f(x")

Asymptotically exact and easy to apply to arbitrary models

Challenges:

how to draw samples from a given dist. (not all distributions can be
trivially sampled)?

how to make better use of the samples (not all sample are useful, or
eqally useful, see an example later)?

how to know we've sampled enough?



Bayesian Network (BN)
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A concise, graphic representation
of joint distribution and
dependency of a set of

variables.




Example: naive sampling

e Construct samples according to probabilities given in a BN.

Burglary Earthquake ) EO BO A0 MO Jo
EO BO A0 MO JO
T =0 BO AO MO J1
Fl %
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AT P T EO BO A0 MO JO
— AR E1 BO A1 M1 J1
Alarm example: (Choose the right sampling sequence) EO BO A0 MO JO
1) Sampling:P(B)=<0.001, 0.999> suppose it is false,
BO. Same for EO. P(A|BO, E0)=<0.001, 0.999> suppose EO BO A0 MO JO
t is false...
2) Frequency counting: In the samples right, EO BO A0 MO JO

P(JJA0)=P(J,A0)/P(A0)=<1/9, 8/9>.




Example: naive sampling

e Construct samples according to probabilities given in a BN.

Alarm example: (Choose the right sampling
sequence)

3) what if we want to compute P(J|A1) ?
we have only one sample ...
P(J|A1)=P(J,A1)/P(A1)=<0, 1>.

4) what if we want to compute P(J|B1) ?
No such sample available!
P(J|A1)=P(J,B1)/P(B1) can not be defined.

For a model with hundreds or more variables,
rare events will be very hard to garner evough
samples even after a long time or sampling ...

EO BO AO MO JO
EO BO AO MO JO
EO BO AO MO J1
EO BO AO MO JO
EO BO AO MO JO
EO BO AO MO JO
E1 BO A1 M1 J1
EO BO AO MO JO
EO BO AO MO JO
EO BO AO MO JO




Monte Carlo Methods
Direct Sampling

e We have seen it.
e Very difficult to populate a high-dimensional state space

Rejection Sampling

e Create samples like direct sampling, only count samples which is
consistent with given evidences.

Likelihood weighting, ... (Importance Sampling)

e Sample variables and calculate evidence weight. Only create the
samples which support the evidences.

Markov chain Monte Carlo (MCMC)

e Metropolis-Hasting
e Gibbs



Rejection Sampling

e Suppose we wish to sample from dist. II(X)=I1"(X)/Z.
e TII(X) is difficult to sample, but IT'(.X) is easy to evaluate
e Sample from a simpler dist Q(.X)
e Rejection sampling

x ~Q(X), accept ¥ w.p.IT'(x )/ AQ(x")
e Correctness:
Py = LX) AQUOIR(X)
[T o)/ AQUR(x)dx
SR LA ) _Ti(x)
e Pitfall ... _[H (x)dx kq(x,) kq(x)

“o p(x)

What kind of X is more likely accepted?



20 samples , 19 accepted

Pk x)

cQxix) —
rejected
accepted

What is the potential pitfalls of rejection sampling?



Rejection Sampling

o Pitfall: 5
e Using Q=N (u,cql) to sample P=W (u,cp/)
o If 4 exceeds o, by 1%, and dimensional=1000, 2
e The optimal acceptance rate k=(csq/cp)dz1/20,000
e Big waste of samples!




Importance sampling

e Suppose sampling from A-) is hard.

e Suppose we can sample from a "simpler” proposal distribution
Q") instead.

o |f Q@dominates AP(i.e., QXx) > 0 whenever Ax) > 0), we can
sample from @ and reweight:

(f (X)) = [ fx)P(x)ax

P(x)
= d
[rix )Q Q(x)ax

—Zf(
ZZ;f(Xm)Wm

P(X )

where x” ~ Q(X)




p(x)

Importance Sampling
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Question

 What is the main difference between rejection
sampling and importance sampling?



Markov Chain Monte Carlo (MCMC)

Importance sampling does not scale well to high
dimension

MCMC is an alternative

Construct a Markov chain whose stationary
distribution is the target density = P(X)

Run for T samples until the chain converges /
mixes / reaches stationary distribution

Then collect M samples.

Key issues: designing proposals so that the chain
mixes rapidly, diagnosing convergence.



Markov Chains

e Definition:
e Given an n-dimensional state space
e Random vector X = (x;,...,x;)
e x(U=xattime-stept
e xU transitions to x(*1) with prob
P(xt) | x®)  x(1) = T(xtD | x®) = T(x® > x(t+1)

e Homogenous: chain determined by state x©, fixed transition
kernel T (rows sum to 1)

e Equilibrium: #(x) is a stationary (equilibrium) distribution if

n(x') = 2 _mx) T(x>x").

l.e., Is a left eigenvector of the transition matrix ZZT = ZT.  o.25 0.7

025 0 075
(0.2 05 0.3)=(02 05 03] 0 07 03
05 05 O




Markov Chain Example

Another example
of Markov Chain?




Markov Chain Examples

PageRank -



Markov Chains

An MC is irreducible if transition graph connected
An MC is aperiodic if it is not trapped in cycles

An MC is ergodic (regular) if you can get from state x to x
In a finite number of steps.

Detailed balance: prob(x->x(-1)) = prob(x(t1)>x®)
p(x(f))r(x(f—l) | X(7‘)) _ p(x(f—l))r(x(f) | X(7‘—1))

summing over x{1)

p(x(f)) _ Zp(x(f—l))r(x(f) |X(f—1))

<D

Detailed bal - stationary dist exists



Markov Chain Examples

Irreducible?
Aperiodic?

Ergodic?

Detailed balance?



Metropolis-Hastings
e Treat the target distribution as stationary distribution

e Sample from an easier proposal distribution, followed by an
acceptance test

e This induces a transition matrix that satisfies detailed balance

e MH proposes moves according to @Q(x |x) and accepts samples with
probability A(x |.x).

e The induced transition matrixis 7(x — x') = Q(x'| X)A(x'| x)
e Detailed balance means
T(X)Q(X'| X)AX'| x) =7(x")Q(x | x)A(Xx | x")

e Hence the acceptance ratio is

o[ T XDQMx | X))
Ax'| x) —mm(l, 2COQX| %) J




MCMC algorithm

1. Initialize X9

2. While not mixing 7 burn-in
o x=xV \
o F+=1,
e sample v~ Unif(0,1)
e sample x* ~ Q(x*|x)

-If v <A(x*| x)=min| 1, 7R | X*)] > Function
7(X)Q(x*| x) Draw sample (x(t))

XV = x* // transition
- else
XU = x // stay in current state

e Reset t=0, for #=1:N
e Xx(t+1)) €« Draw sample (x(t))
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MCMC Example
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Summary of MH

Random walk through state space
Can simulate multiple chains in parallel

Much hinges on proposal distribution @
e Want to visit state space where p(X) puts mass
e Want A(x*|.x) high in modes of p(X)

e Chain mixes well

Convergence diagnosis
e How can we tell when burn-in is over?

e Run multiple chains from different starting conditions, wait until they start
“behaving similarly”.

e \Various heuristics have been proposed.



Gibbs Sampling is a Special Case of
MH

e Gibbs sampling is a special case of MH

e The transition matrix updates each node one at a time using
the following proposal:

Q((Xi’ X—/') — (X/"’ X—/')) - p(X/"| X—/')

e [his is efficient since for two reasons

e [t leads to samples that is always accepted

0 PO x )0 x) o (x.x)
A((x,.x_,v) - (X,‘.X-i))_ mm{l. P x)0(0 3 = (xx) ]

_ min(l p(x';|x ) p(x_;) p(x; | x_;) ] _ min(l.l)

.

plx; [ x_) p(=_;) p(x's|x_;)
ThUS T((X,-,X_,~) _)(X/"ax—/)):p(xi'lX—/’)

e ltis efficient since p(x;|x_;) only depends on the values in X’s Markov
blanket



Gibbs Sampling

e Gibbs sampling is an MCMC algorithm that is especially |

appropriate for inference in graphical models.

e The procedue

we have variable set X={x,, x,, x;,... x,} for a GM ESFE o
at each step one of the variables X is selected (at random or according
to some fixed sequences), denote the remaining variables as X,, and its

current value as x (*1)

Using the "alarm network" as an example, say at time t we choose Xz, and we
denote the current value assignments of the remaining variables, X ¢,

i i -1 -1 -1 -1 -1
obtained from previous samples, as x4 = {x{ x§D x¢V x )}

the conditonal distribution p(.X] x f*1)) is computed
a value x(7 is sampled from this distribution

the sample x(") replaces the previous sampled value of X.in X.

() (-1 ()

e, X =X UXxg



Gibbs Sampling of an Alarm Network

Burglary

Earthquake
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To calculate P(J|B1,M1)

Choose (B1,E0,A1,M1,J1) as a
start

Evidences are B1, M1,
variables are A, E, J.

Choose next variable as A

Sample A by
P(AIMB(A))=P(A|B1, EO, M1,
J1) suppose to be false.

(B1, EO, A0, M1, J1)

Choose next random variable
as E, sample E~P(E|B1,A0)



A General Gibbs Sampling Algorithm

* Given a target distribution p(X), where X = (x,,
Xy, -y Xp)-

e Criterion: (1) have an analytic (mathematical)
expression for the conditional distribution of
each variable given all other variables. P(x. |
X1y Xoy weey Xigy Xirqy -er Xp)-

e (2) Be able to sample a variable from each
conditional distribution



Algorithm

e Sett=0
e Generate an initial state X(©
* Repeatuntilt=M
sett=t+1
for each dimensioni=1..D
draw x, from P(x; | X;, X,, ..., X..1, Xi4q,
ey Xp)-



Gibbs Sampling for Gaussian Distribution
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plxy|xs

and

Conditional Sampling

1}) = N1 +F’21(41’*(5t_1} — pi2). \/1 ~ Fa




Matlab
Implementation

WONOMTLEWNM

% EXAMPLE: GIBBS SAMPLER FOR BIVARIATE NORMAL
rand('seed' ,12345);
nSamples = 50€0;

mu = [@ @]; % TARGET MEAN
rho(1) = ©.8; % rho_21
rho(2) = ©.8; % rho_12

% INITIALIZE THE GIBBS SAMPLER
propSigma = 1; % PROPOSAL VARIANCE
minn = [-3 -3];

maxx = [3 3];

% INITIALIZE SAMPLES

X = zeros(nSamples,2);

x(1,1) = unifrnd(minn(1), maxx(1));
x(1,2) = unifrnd(minn(2), maxx(2));

dims = 1:2; % INDEX INTO EACH DIMENSION

% RUN GIBBS SAMPLER
t=1;

2’
while t < nSamples
t=1t+1;
T = [t-l,t]j

for iD = 1:2 % LOOP OVER DIMENSIONS
% UPDATE SAMPLES
nIx = dims~=iD; % *NOT* THE CURRENT DIMENSION
% CONDITIONAL MEAN
muCond = mu(iD) + rho(iD)*(x(T(iD),nIx)-mu(nIx));
% CONDITIONAL VARIANCE
varCond = sqrt(1l-rho(iD)"2);
% DRAW FROM CONDITIONAL
x(t,iD) = normrnd(muCond,varCond);

end

end

% DISPLAY SAMPLING DYNAMICS
figure;
hl = scatter(x(:,1),x(:,2),'r.");

% CONDITIONAL STEPS/SAMPLES

hold on;

for t = 1:50
plot([x(t,l),x(t+1,1)],[x(t,z),x(t,z)],'k-');
p1°t([x(t+111)3x(t+111)]J[x(tlz)lx(t+132)]J'k-');
h2 = plot(x(t+1,1),x(t+1,2), 'ko");

end

h3 = scatter(x(1,1),x(1,2),"'go", 'Linewidth',3);

legend([h1,h2,h3],{ 'Samples', '1st 5@ Samples','x(t=0)'}, 'Location’, 'Northwest"')

hold off;
xlabel('x_1');
ylabel('x 2');
axis square



Gibbs Sampling Example

4 N
2! 5 .
0 i
XN
2F
s sSamples
4 ‘ | o 1st 50 Samples
X(t=0)
8 - . . . -
4 2 0 > 4 6

http://theclevermachine.wordpress.com/
2012/11/05/mcmc-the-gibbs-sampler/
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Reading Assignment

C. Andrieu et al. An Introduction of MCMC for
machine learning.

http://www.cs.princeton.edu/courses/
archive/spr06/cos598C/papers/
AndrieuFreitasDoucetlordan2003.pdf

Werite a half-page summary
Due August 28 (Wednesday)




A Real-World Optimization Problem

* Find the common substring in multiple DNA
sequences

* Gibbs sampling approach

* Your group info (5 — 6 students) to me by
August 30 (Friday).



