

MCMC for Sequence Motif Search

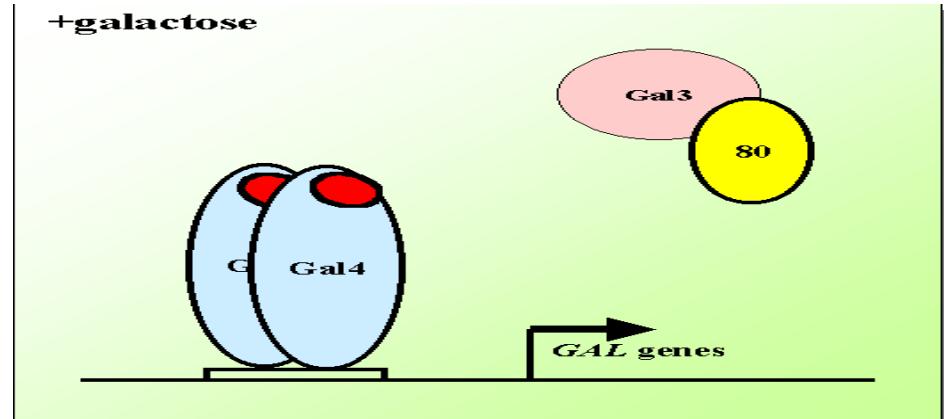
Jianlin Cheng, PhD

Department of Computer Science
University of Missouri, Columbia

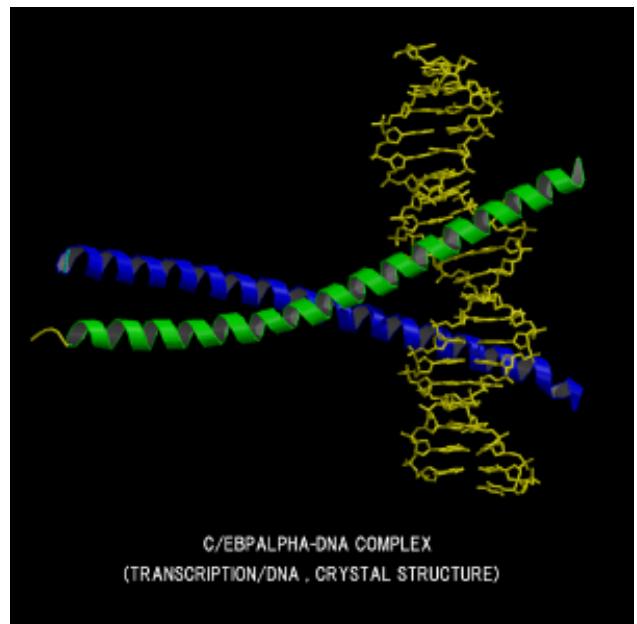
Fall, 2013

Free for academic use. Copyright @ Jianlin Cheng & original sources for some materials

Sequence Motif Search Problem


- Find a set of sub-sequences of multiple sequences whose alignment has maximum alignment score (highest similarity).
- It is NP-hard.
- Biologically find highly conserved regions (motifs) of related genes or a protein family

A Motif Example


0 5 10 15 20 25 30 35 40 45
TCTCATCCGGTGGGAATCACTGCCGCATT**GGAGCATAAA**CAATGGGGGG
TACGAAGGACAAACACTTAGAGGTAATGGAAACACAACC**GGCGCATAAA**
ATACAAACGAAAGCGAGAAGCTCGCAGAAGCAT**GGGAGTGTAA**TAAGTG
GGCGCCTCATTCTC**GGTTTATAAG**CCAAAACCTGTCGAGGCAACTGTCA
TCAAATGATGCTAGCCGTCGGAATCTGGCG**AGTGCATAAA**AAGAGTCAAC

Examples: Transcription Factors

- yeast: Gal4
- drosophila
- mammal


```
1: actcgtcggggcgtacgtacgtaacgtacgtacgtacGGACAACTGTTGACCG  
2: cgagactgtttagcgacaagtaCGGAGCACTGTTGAGCGtacgtac  
3: ccccgtaggCGGCACCTCTGCCCGggcgtacgtacgtaacgtacgtac  
4: agggcgctacgctaccgtcgacgtcgCGGCCGCAC TGCTCCGacgct
```


Motif Model

Data: Upstream sequences from co-regulated/co-expressed genes.

Assumption: Binding site occurs in most sequences

1: actcgtcggggcgtacgtacgtaacgtacgtacggacaactgttgaccg
2: cggagcactgtttagcgacaaagtacggagcactgtttagcgccgtacgtac
3: cccccgttaggcggcgcactctcgccccggcgtacgtacgtaacgtacgtac
4: agggcgcgtacgctaccgtcgacgtcgccgcactactccaaacqct

Goals: 1) Estimate motif
2) Predict motif locations

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	
A	0	0	0	$\frac{3}{4}$	0	$\frac{1}{4}$	$\frac{1}{2}$	0	$\frac{1}{4}$	0	$\frac{1}{4}$	$\frac{1}{4}$	$\frac{1}{4}$	$\frac{1}{2}$	0	0	0	
C	$\frac{4}{4}$	0	0	$\frac{1}{4}$	$\frac{1}{4}$	$\frac{1}{4}$	$\frac{1}{4}$	$\frac{1}{2}$	0	$\frac{1}{4}$	0	$\frac{1}{4}$	0	$\frac{1}{4}$	$\frac{3}{4}$	$\frac{4}{4}$	0	
G	0	$\frac{4}{4}$	$\frac{4}{4}$	0	$\frac{3}{4}$	$\frac{1}{4}$	$\frac{1}{2}$	$\frac{1}{4}$	0	0	$\frac{3}{4}$	0	0	$\frac{3}{4}$	0	$\frac{1}{4}$	0	$\frac{4}{4}$
T	0	0	0	0	0	0	0	$\frac{1}{2}$	$\frac{3}{4}$	0	$\frac{3}{4}$	$\frac{1}{2}$	0	$\frac{1}{4}$	0	0	0	

1: actcgtcggggcgtacgtacgtaacgtacgtac **CGGACAACTGTTGACCG**
2: cggagcactgtttagcgacaaagtac **CGGAGCACTGTTGAGCGG**gtacgtac
3: cccccgttagg **CGGCGCACTCTCGCCCG**ggcgtacgtacgtaacgtacgtac
4: agggcgcgtacgctaccgtcgacgtcg **CGCGCCGCACTGCTCCG**acgtac

Initialization of Locations (variables)

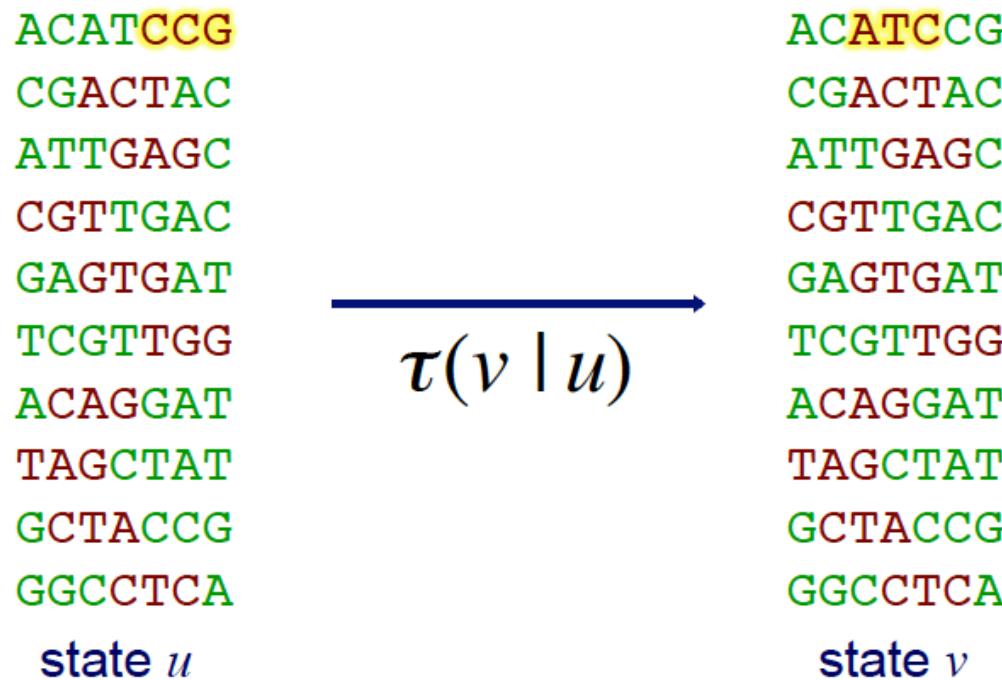
Motif Size: 17

Construct a probability matrix (profile)

Conditional Probability of a Position

actcgtcggggcgtacgtacgtaacgtacgt**CGGACA**ACTGTTGACCG
cggagcactgtttagcgacaagta**CGGAGC**ACTGTTGAGCGtacgtac
ccccgtagg**CGGCGCA**CTCTCGCCCCggcgtacgtacgtaacgtacgt
agggcgcgtacgtaccgtcgacgtcg**CGCGCCGCA**CTGCTCCGacgct

Find the best position in each sequence
That maximize product of probability

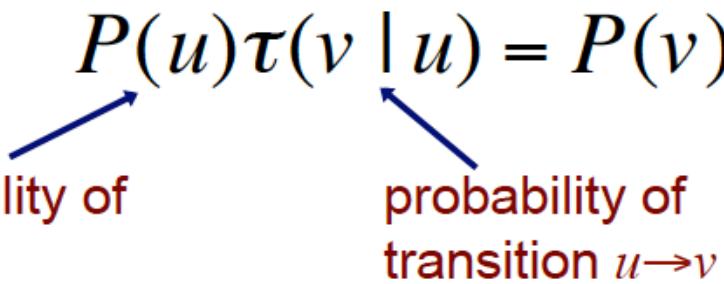

Prob (posi_i) = 2/4 * 2/4 * ...

Position Resampling

Construct a probability matrix (profile) from new positions

Markov Chain Monte Carlo (MCMC)

- we can view the motif finding approach in terms of a Markov chain
- each state represents a configuration of the starting positions (a_i values for a set of random variables $A_1 \dots A_n$)
- transitions correspond to changing selected starting positions (and hence moving to a new state)



Markov Chain Monte Carlo

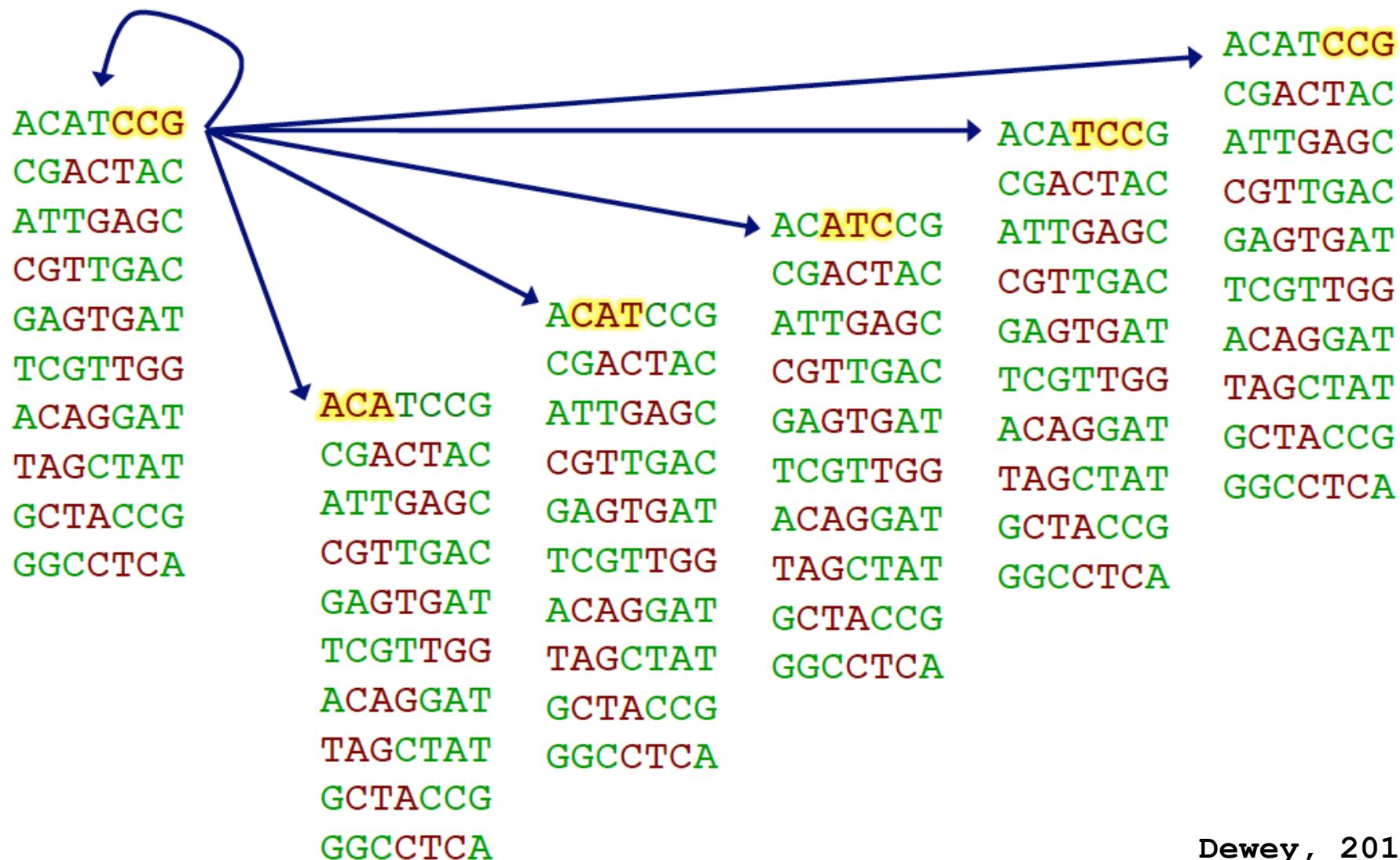
- for the motif-finding task, the number of states is enormous
- key idea: construct Markov chain with stationary distribution equal to distribution of interest; use sampling to find most probable states
- detailed balance:

$$P(u)\tau(v|u) = P(v)\tau(u|v)$$

probability of state u probability of transition $u \rightarrow v$

- when detailed balance holds:

$$\frac{1}{N} \lim_{N \rightarrow \infty} \text{count}(u) = P(u)$$


MCMC with Gibbs Sampling

Gibbs sampling is a special case of MCMC in which

- Markov chain transitions involve changing one variable at a time
- transition probability is conditional probability of the changed variable given all others
- i.e. we sample the joint distribution of a set of random variables $P(A_1 \dots A_n)$ by iteratively sampling from $P(A_i | A_1 \dots A_{i-1}, A_{i+1} \dots A_n)$

Gibbs Sampling Approach

- possible state transitions when first sequence is selected

Project I

- **Objective:** Design and develop a MCMC method to find a motif from a group of DNA sequence
- **Other tools and data:**
<http://biowhat.ucsd.edu/homer/motif/> ; Download the package to find the data in one of sub directories?
- MEME tool: <http://meme.nbcr.net/meme/>
- Motif Visualization tool (weblogo):
<http://weblogo.berkeley.edu/logo.cgi>

Project Discussion

Group 1: Kishore, Sairam, Abhimanyu, Maruthi, Shravya, Rajni

Group 2: Xiaokai, Xiao, Rui, Linfei, Pei, Zhiluo

Group 3:

Group 4

Others: participating in discussion

Items to Discuss

Group Discussion (25 minutes)

- Problem definition
- Algorithm
- Implementation
- Evaluation
- Visualization
- Task Assignment
- Select Coordinator

- **Informal Presentation (5 minutes per group)**

- **To do:**

Present your plan (PPT): 15 minutes per group
(Wednesday)

Create group accounts on server (email notification)

Gibbs Sampling Algorithm for Motif Finding

given: length parameter W , training set of sequences

choose random positions for a

do

pick a sequence X_i

estimate p given current motif positions a

(using all sequences but X_i) (predictive update step)

sample a new motif position a_i for X_i (sampling step)

until convergence

return: p, a

Gibbs Sampling Algorithm II

Assumption: size of motif is fixed

Initialization:

Make an initial guess of the motif locations and compute a probability matrix

Repeat:

Select one sequence randomly

Use the matrix to evaluate the probabilities of all positions in the sequence (product of probability)

Select (or sample) a position in the sequence according to their probability

Recalculate the motif probability matrix with the new position

Until matrix converges.

Sample a position according to probability

actcgctggggcgtacgtacgtaacgtacgt*i* **CGGACAACTGTTGACCG**
cgagcactgtttagcgacaagta **CGGAGCACTGTTGAGCG**gtacgtac
ccccgtagg **CGGCGCACTCTCGCCCG**ggcgtacgtacgtacgtacgtac
agggcgctacgctaccgtcgacgtcg **CGCGCCGCACTGCTCCG**acgct

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17
A	1/4	1/4											
C	2/4	1/4															
G	0	2/4															
T	1/4	0															

Compute $P_i = 2/4 * 2/4 * \dots$ $1 \leq i \leq n$)

Select a position according to its
Normalized probability.

$$\frac{p_i}{\sum_{i=1}^n p_i}$$

Sample probability of $i = \sum_{i=1}^n p_i$

Menu

- Submit A Job
- Resources
- Alternate Servers
- Other Tools

MEME

Multiple Em for Motif Elicitation

MAST

Motif Alignment & Search Tool

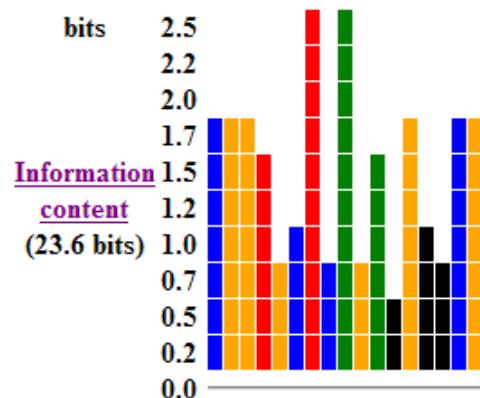
THE MEME/MAST SYSTEM

Motif Discovery and Search

Version 3.5.3

The MEME/MAST system allows you to

- discover motifs (highly conserved regions) in groups of related DNA or protein sequences using [MEME](#) and,
- search sequence databases using motifs using [MAST](#).


- The MEME/MAST system was developed by Timothy Bailey, Charles Elkan, and Bill Noble at the UCSD Computer Science and Engineering department with input from Michael Gribskov at Purdue University.
- MEME and MAST are described in detail in the [papers](#) available here.
- Answers to Frequently Asked Questions about MEME and MAST are given in the [GENERAL FAQ](#).
- Visit the [MEME user forum](#) for online discussions with the MEME support team members and other MEME users.
- You can see [sample MEME output](#) or [sample MAST output](#).
- Differences between the current release of the MEME/MAST system and earlier releases are described in the [release notes](#).
- You can download the MEME/MAST software and install it on your own computer. This will allow you to use many features that are not available with the interactive versions of MEME and MAST.
- [Meta-MEME](#) combines motif models from MEME into a hidden Markov model framework for use in searching sequence databases.
- MEME and MAST are copyrighted software and can be licensed for commercial use.

P
N

MOTIF 2 width = 17 sites = 4 llr = 65 E-value = 1.4e+000

Simplified A :: 8: 3 a: :: :: 5 ::
pos.-specific C a :: 338: 8: 333: 55 a:
probability G : aa: 8: : 3: 8: 3 a: 5: a
matrix T :: :: :: :: a: 85: :: ::

Multilevel consensus sequence CGGAGCACTGTTGACCG
CCA G CCC CG
G

NAME STRAND START P-VALUE

				<u>SITES</u>
seq2	+	1	2.44e-10	CGGAGCACTGTTGAGCG ACAAGTACGG
seq1	+	33	5.18e-09	AACGTACGTA CGGACAACTGTTGACCG
seq4	-	28	1.08e-07	AGCGT CGGAGCAGTGCGGCGCG CGACGTCGAC
seq3	+	10	1.08e-07	CCCCGTAGG CGGCGCACTCTCGCCCCG GGC GTACGTA

Motif 2 block diagrams

Gibbs Motif Sampler

<http://bayesweb.wadsworth.org/gibbs/gibbs.html>

The Gibbs Motif Sampler

(for DNA)

[Show advanced](#)

[How to enter data?](#)

[options](#)

Email Address:

Please enter the data sequence: ([FASTA](#) format) *

[Browse...](#)

[Prokaryotic
Defaults](#)

[Prokaryotic Defaults](#)

[Sampler Mode:](#)

Site Sampler

[No. of different
motifs \(patterns\):](#)

[Motif Width\(s\):*](#)

[Eukaryotic
Defaults](#)

[Eukaryotic Defaults](#)

Motif Sampler

Recursive Sampler

[Max sites per seq:
\(recursive sampler\)](#)

[Est. total sites for
each motif type:](#)

[Submit](#)

[Clear](#)

Gibbs Motif Sampler

<http://bayesweb.wadsworth.org/gibbs/gibbs.html>

Email Address:

Please enter the data sequence: (FASTA format) *

```
>seq1
actcgtcggggcgtaacgtacgtaacgtacgtacgtacGGGACAACTGTTGACCG
>seq2
cgaggactgtttagcgacaagtaCGGAGCACTGTTGAGCGgtacgtac
>seq3
ccccgtaggCGGCGCACTCTCGCCCGggcgtaacgtacgtaacgtacgtac
>seq4
agggcgcgtacgctaccgtcgacgtcgCGCGCCGCACTGCTCCGacgct
```

Prokaryotic Defaults

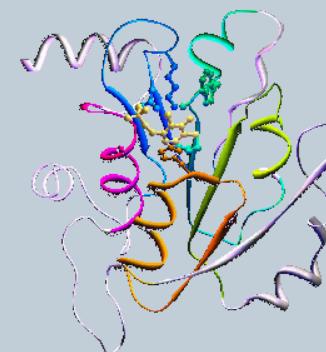
Sampler Mode: Site Sampler

No. of different motifs
(patterns):

Motif Width(s):*

Prokaryotic Defaults

Eukaryotic Defaults


Motif Sampler

Max sites per seq:
(recursive sampler)

Est. total sites for each
motif type:

Eukaryotic Defaults

Recursive Sampler

[Browse the Gibbs Motif Sampler Manual](#)

Output of Gibbs Sampler

actcgctggggcgtacgtacgtaacgtacgtaCGGACAACTGTTGACCG
cgagcacgttggcgacaagtaCGGAGCACTGTTGAGCGtacgtac
ccccgttaggCGGCGCACTCTGCCCGggcgtagtacgtaacgtacgta
agggcgctacgtacccgtcagtcgCGCGCCGCACTGCTCCGacgtac

Motif probability model

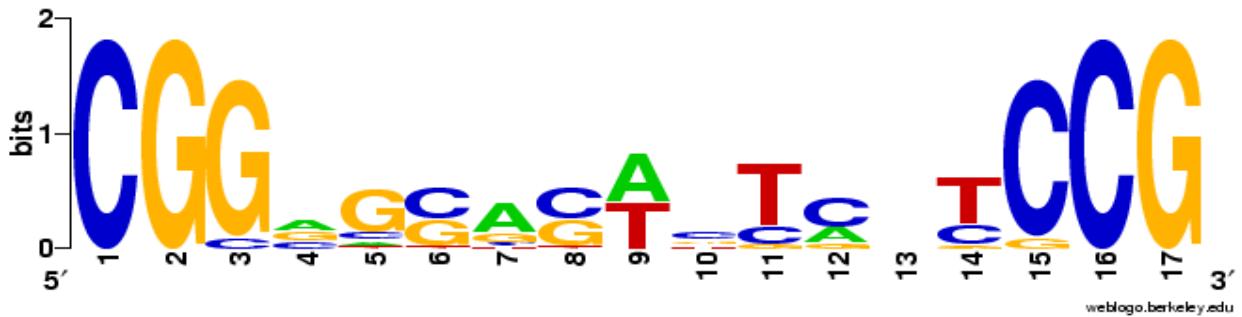
Pos. #	a	t	c	g
1	0.014	0.013	0.949	0.024
2	0.014	0.013	0.023	0.950
3	0.014	0.013	0.023	0.950
4	0.755	0.013	0.209	0.024
5	0.014	0.013	0.209	0.765
6	0.199	0.013	0.764	0.024
7	0.940	0.013	0.023	0.024
8	0.014	0.013	0.764	0.209
9	0.014	0.939	0.023	0.024
10	0.014	0.013	0.209	0.765
11	0.014	0.754	0.209	0.024
12	0.014	0.568	0.209	0.209
13	0.014	0.013	0.023	0.950
14	0.570	0.013	0.394	0.024
15	0.014	0.013	0.394	0.579
16	0.014	0.013	0.949	0.024
17	0.014	0.013	0.023	0.950

Prob Matrix

Confidence

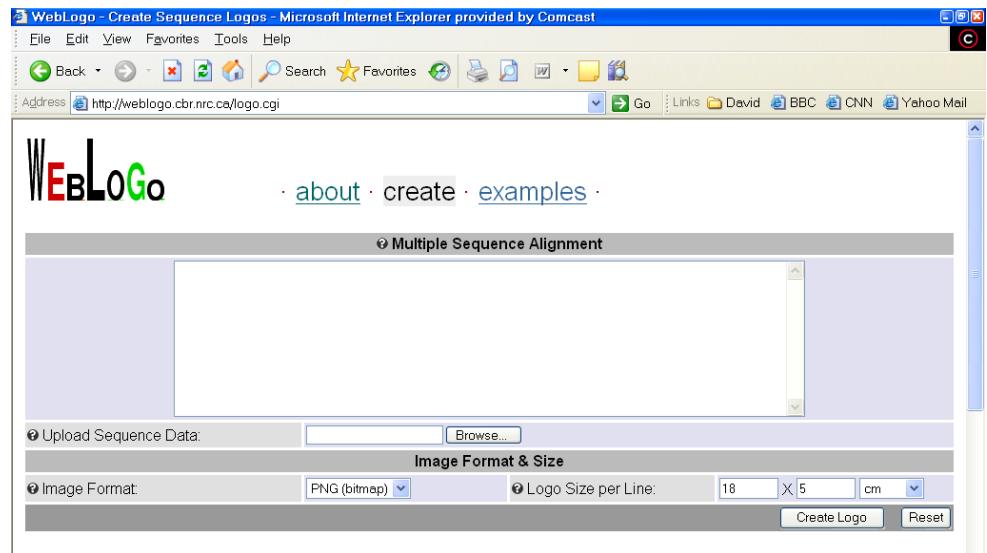
Motif

End pos


Start pqS

Background probability model
0.225 0.189 0.279 0.306

~~17 columns~~


~~Num Motifs: 5~~

1, 1	33	acgt	CGGACAACTGTTGACCG	49	1.00	F	seq1	
2, 1	1		CGGAGCACTGTTGAGCG	acaag	17	0.49	F	seq2
2, 2	25	aagta	CGGAGCACTGTTGAGCG	gtacg	41	0.51	F	seq2
3, 1	10	gtagg	CGGCGCACTCTGCCCG	ggcgt	26	1.00	F	seq3
4, 1	44	agcgt	CGGAGCAGTGCGGCGCG	cgacg	28	1.00	R	seq4

- Graphical representation of nucleotide base (or amino acid) conservation in a motif (or alignment)
- Information theory
$$2 + \sum_{b=\{A,C,G,T\}} p(b) \log_2 p(b)$$
- Height of letters represents relative frequency of nucleotide bases

<http://weblogo.berkeley.edu/>

Entropy and Information

Visualization goals

- (1) The height of the position is proportional to the information contained at the position
- (2) The height of a letter is proportional to the probability of the letter appearing at the position

Two new concepts related to probability matrix:

Entropy

Information

- Entropy is a measure of uncertainty of a distribution $\sum_i -p_i \log_2 p_i$

	A	C	G	T
1	1/4	1/4	1/4	1/4
2	0	1	0	0
3	1/2	1/2	0	0
4				
:				

What is the entropy of positions 1, 2, 3?

- Information is the opposite of entropy. It measures the certainty of a distribution
- Information = maximum entropy – the entropy of a position (or distribution)

Maximum entropy for n characters is the Entropy when n characters are uniformly Distributed. $\log_2 n$

$$\text{Info. Of pos 1} = 2 - 2 = 0$$

$$\text{Info. Of pos 2} = 2 - 0 = 2$$

$$\text{Info. Of pos 3} = 2 - 1 = 1$$

· [about](#) · [create](#) · [examples](#) ·

Multiple Sequence Alignment

```
>seq1
CGGACAACTGTTGACCG
>seq2
CGGAGCACTGTTGAGCG
>seq3
CGGCAGCACTCTCGCCCG
>seq4
CGCGCCGCACTGCTCCG
```

Upload Sequence Data:

 [Browse...](#)

Image Format & Size

Image Format:

PNG (bitmap)

Logo Size per Line:

18 X 5 cm

[Create Logo](#)

Advanced Logo Options

Sequence Type:

amino acid DNA / RNA Automatic Detection

First Position Number:

1

Logo Range:

-

Small Sample Correction:

Frequency Plot:

