Linear and Integer Programming Project

Jianlin Cheng, PhD
Computer Science Department
University of Missouri, Columbia
Fall, 2013

Problem 1: Network Flow

Network Flow on a Directed Graph

- Source(s) s, sink (consumers) t
- Capacity (bottom number)
- · Flow (top number)
- Maximize flow from s to t obeying
 - Capacity constraints on edges
 - Conservation constraints on all nodes other than s,t

Problem 1: Min Cut

Min Cut Problem on a Undirected Graph

- Special nodes s and t
- Each edge e has capacity u_e . Set of edges S has capacity $\sum_{e} u_e$
- Partition vertex set V into S,T where s∈ S and t∈ T
- A cut is the edges (u,v) such that u∈ S and v∈ T
 Find a cut with minimum capacity

Discussions

- Use IP & LP to solve the network flow problem
- Use IP to solve the min-cut problem
- Design algorithms (variables, objective, constraints)
- Compare the results of IP and LP
- Implementation (language and tools)
- Evaluation of results
- Visualization of results
- Presentation of Plan (Friday, Oct. 25)
- Presentation of Results (next Friday, Nov. 1)