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Dynamic Programming History

* Bellman: pioneered the systematic
study of dynamic programming in
the 1950s.

* Etymology:

Dynamic programming = planning over time

Secretary of Defense was hostile to
mathematical research

Bellman sought an impressive name to avoid

confrontation



Algorithmic Paradigms

* Greed: build up a solution incrementally,
myopically optimizing some local criterion (hill
climbing)

* Divide-and-conquer: Break up a problem into
two sub-problems, solve each-sub problem
independently, and combine solutions to sub-

problems to form solution to original problem
(binary search)

* Dynamic programming: break up a problem into
a series of overlapping sub-problems, and build
up solutions to larger and larger sub-problems.



Dynamic Programming Applications

Areas

* Bioinformatics

* Control theory

* Information theory
* Operations research

 Computer science: theory, graphics, Al,
systems...



Some famous dynamic programming
algorithms

Unix diff command for comparing two files
Viterbi for hidden Markov models
Smith-Waterman for sequence alignment

Bellman-Ford for shortest path routing in
networks

Cocke-Kasami-Younger for parsing context
free grammars



Dynamic Programming - A First Example

Fibonacci Numbers

« 0,1,1,2,3,5,8,13,21, 34,55, 89, ..
« F(0O)=0,F(1)=1

« F(n) = F(n-1) + F(n-2)



Dynamic Programming - A First Example

Fibonacci Numbers

« 0,1,1,2,3,5,8,13,21, 34,55, 89, ..
« F(0O)=0,F(1)=1

« F(n) = F(n-1) + F(n-2)

Computing the Fibonacci Numbers
. Each n*h number is a function of previous solutions
» A recursive solution:

Fib (n)

1. if n < 0 then RETURN “undefined”
2. if n £ 1 then RETURN n

3. RETURN Fib(n-1) + Fib(n-2)

What's the drawback to this solution?
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Fibonacci Numbers

« 0,1,1,2,3,5,8,13,21, 34,55, 89, ..
« F(0O)=0,F(1)=1

« F(n) = F(n-1) + F(n-2)

Computing the Fibonacci Numbers
. Each n*h number is a function of previous solutions
» A recursive solution:

Fib (n)

1. if n < 0 then RETURN “undefined”
2. if n £ 1 then RETURN n

3. RETURN Fib(n-1) + Fib(n-2)

What's the drawback to this solution?
« Complexity is exponential



Dynamic Programming - A First Example

Computing Fibonacci Numbers - Can we do better than exponential?
« Yes - "Memoization”
» Each time you encounter a new subproblem and compute the result,
store it so that you never need to recompute that subproblem

» Each subproblem is computed just once, and is based on the results
of smaller subproblems
- This leads naturally to converting the recursive solution to an
iterative solution

FibDynProg(n)

1. Fib[0] = 0

2. Fib[1l] =1

3. for i=2 to n do

4 Fib[i] = Fib[i-1] + Fib[i-2]
5. RETURN Fib[n]



Knapsack Problem

Knapsack problem.
« Given nobjects and a "knapsack."
« Item i weighs w; > O kilograms and has value v; > 0.
« Knapsack has capacity of W kilograms.
« Goal: fill knapsack so as to maximize total value.

Ex: {3, 4} has value 40.

1 1 1
W=l 2 6 2
3 18 5
4 22 6
5 28 7

Greedy: repeatedly add item with maximum ratio v, / w..
Ex: {5, 2,1} achieves only value = 35 = greedy not optimal.



Dynamic Programming: False Start

Def. OPT(i) = max profit subset of items 1, ., i.

« Case 1: OPT does not select item .
- OPT selects best of { 1,2, ..., i-1}

« Case 2: OPT selects item i.
- accepting item i does not immediately imply that we will have to
reject other items
- without knowing what other items were selected before i, we
don't even know if we have enough room for i

Conclusion. Need more sub-problems!



Dynamic Programming: Adding a New Variable

Def. OPT(i, w) = max profit subset of items 1, ..., i with weight limit w.

« Case 1: OPT does not select item i.
- OPT selects best of { 1, 2, ..., i-1 } using weight limit w

« Case 2: OPT selects item i.
- new weight limit = w - w,
- OPT selects best of { 1, 2, ..., i-1} using this new weight limit

0 if 1=0
OPT(G,w)={0OPT(i-1,w) if w,>w
max{OPT(i-Lw), V; + OPT(i—Lw—w,-)} otherwise



Dynamic Programming: Adding a New Variable

Def. OPT(i, w) = max profit subset of items 1, ..., i with weight limit w.

« Case 1: OPT does not select item i.
- OPT selects best of { 1, 2, ..., i-1 } using weight limit w

« Case 2: OPT selects item i.
- new weight limit = w - w,
- OPT selects best of { 1, 2, ..., i-1 } using this new weight limit

0 if 1=0
OPT(G,w)={0OPT(i-1,w) if w,>w
max{OPT(i—Lw), V; + OPT(i-l,w-w,-)} otherwise

Solve OPT(i, w) for every i and w gradually, starting from lowest i and w
Until reaching the largest i and w.



Knapsack Problem: Bottom-Up

Knapsack. Fill up an n-by-W array.




Knapsack Algorithm

W+1 »

ol1]2lalals]e]7]8lololn]
000 0 0o 0o 000 0 0 0 O

¢

{1} B : 1 1 1 1 1 1 1 1 1 1
(Le2y [0 1 6 7 7 7 7T 7T 7T 7T 7T 7
{(L23y 0 1 6 7 7 [18/ 19 24 25 25 25 25
{1,2,3,4) 0 1 6 7 7 18 22 24 28 29 29 |40
{1,2,3,45) 0 1 6 7 7 18 22 28 29 34 34 40
1 1 1

OPT: {4,3} 2 6 2

value = 22 + 18 = 40 W=l 3 18 5

4 22 6

5 28 7

Fill the matrix row by row



Shortest path from one node to all
other nodes in a directed graph

3

1 2

A directed graph Linearization of the graph: nodes

Find shortest path from S to are arranged on a line and all edges go
other nodes from left to right.



Find shortest path to D

e dist(v): the distance of the shortest path to
any node v.

* Find dist(D) assuming the shortest distances
to all the nodes listed before D are known

 Then dist(D) =7



Find shortest path to D

e dist(v): the distance of the shortest path to
any node v.

* Find dist(D) assuming the shortest distances
to all the nodes listed before D are known

 Then dist(D) = min{dist(B) + 1, dist(C) + 3}.



Algorithm

initialize all dist(-) values to

dist(s) =0

for each v € V\{s}, in linearized order:
dist(v) = ming, ,\epidist(u) + l(u,v)}



Example
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Application

TRIVIAL EXAMPLE OF BELLMAN’S OPTIMALITY PRINCIPLE




String Alignment

A natural measure of the distance between two strings is the extent to which they can be
aligned, or matched up. Technically, an alignment is simply a way of writing the strings one
above the other. For instance, here are two possible alignments of SNOWY and SUNNY:

S — N O W Y — S N O W — Y
S U N N — Y S U N — — N Y
Cost: 3 Cost: 5

Mismatch cost: 1; gap cost: 1

Widely used in bioinformatics, natural language processing, speech recognition



Edit Distance and Alighment

* The - indicates a gap; any number of these can
be placed in either string. The cost of an
alignment is the number of columns in which
the letters differ.

* And the edit distance between two strings is
the cost of their best possible alignment.

* Do you see that there is no better alignment
of SNOWY and SUNNY than the one shown

here with a cost of 37 S - N O W Y
S U N N — Y



Meaning of Edit Distance
e Edit distance is so named because it can also
be thought of as the minimum number of
edits: insertions, deletions, and substitutions
of characters needed to transform the first
string into the second.

* Forinstance, the alignment shown on the left
corresponds to three edits: insert U,
substitute O -> N, and delete W.

S — N O W Y
S U N N — Y



Dynamic Programming

When solving a problem by dynamic programming, the
most crucial question is, What are the subproblems? As
long as they are chosen so as to have the property as
follows.

There is an ordering on the subproblems, and a relation
that shows how to solve a subproblem given the answers
to smaller subproblems, that is, subproblems that appear
earlier in the ordering.

it is an easy matter to write down the algorithm: iteratively
solve one subproblem after the other, in order of
Increasing size.

Our goal is to find the shortest edit distance between two
strings x[1,m] and y[1,n]. What is a good subproblem?



Dynamic Programming

* How about looking at the edit distance
between some prefix of the first string, x[1, i],
and some prefix of the second, y[1, j]? Call this
subproblem E(i; j) Our final objective, then, is
to compute E(m; n).



The subproblem E(7,5).

E X P ONZENT I A L

P OL Y NOMTI AL




For this to work, we need to somehow express F(i,j) in terms of smaller subproblems.
Let’'s see—what do we know about the best alignment between z[1---i] and y[1 - - j]? Well, its
rightmost column can only be one of three things:

2]
i

7]

x[i] or —
— ylJ]

=

or

<



For this to work, we need to somehow express F(i,j) in terms of smaller subproblems.
Let’'s see—what do we know about the best alignment between z[1---i] and y[1 - - j]? Well, its
rightmost column can only be one of three things:

|i] - |i]

= or y[]] or y[

The first case incurs a cost of 1 for this particular column and it remains to align 2[1---7 — 1]
)! We seem to be gettmg somewhere.
In the second case, also with cost 1, we still need to align 2[1---i] with y[1---j — 1]. This is
again another subproblem, F£(i, j — 1). And in the final case, Which either costs 1 Gf x[i] # y[j])
or 0 (if «[i] = y[j]), what’s left is the subproblem E(i — 1,j — 1). In short, we have expressed
E(i, 7) in terms of three smaller subproblems FE(i —1,j), E(i,j —1), E(i—1,j—1). We have no
idea which of them is the right one, so we need to try them all and pick the best:

E(i,j) = min{l+ FE(i—1,j), 1+ E(i,j—1), diff(é,j) + E(i— 1,5 — 1)}

where for convenience diff(i, j) is defined to be 0 if 2[i| = y[j| and 1 otherwise.
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The first case incurs a cost of 1 for this particular column and it remains to align 2[1---7 — 1]
1)! We seem to be gettmg somewhere.

In the second case, also with cost 1, we still need to align x[1---i] with y[1---7 — 1]. This is
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An Example

For instance, in computing the edit distance between EXPONENTIAL and POLYNOMIAL,
subproblem F'(4,3) corresponds to the prefixes EXPO and POL. The rightmost column of their
best alignment must be one of the following:

O —

or or
— L

£ O

Thus, E(4,3) = min{1 + E(3,3), 1+ E(4,2), 1+ E(3,2)}.



Figure 6.4 (a) The table of subproblems. Entries E(i — 1,57 — 1), E(i —1,j), and E(i,j — 1) are

needed to fill in E(i, j). (b) The final table of values found by dynamic programming.
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An Example

And in our example, the edit distance turns out to be 6:



Underlying DAG

* Every dynamic program has an underlying dag
structure: think of each node as representing
a subproblem, and each edge as a precedence
constraint on the order in which the
subproblems can be tackled.



The underlying dag, and a path of length 6.
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* |n our present edit distance application, the nodes of the
underlying dag correspond to subproblems, or
equivalently, to positions (i; j) in the table. Its edges are
the precedence constraints, of the form (i-1; j) -> (i; j), (i; j
-1) ->(i; j), and (i-1; j-1) -> (i; )

The underlying dag, and a path of length 6.

POLYNOMTIAL

e > == 2 Z2 0 9 X H




* |In fact, we can take things a little further and put weights
on the edges so that the edit distances are given by
shortest paths in the dag!

* To see this, set all edge lengths to 1, exceptfor (i-1;j-1) -
> (i; j) : x[i] = y[j] (shown dotted in the figure), whose
length is O.

The underlying dag, and a path of length 6.
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* The final answer is then simply the distance between
nodes s =(0; 0) and t = (m; n).

* One possible shortest path is shown, the one that yields
the alignment we found earlier.

The underlying dag, and a path of length 6.

POLYNOMTIA AL
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More Advanced Shortest Path

* Suppose then that we are given a graph G
with lengths on the edges, along with two
nodes s and t and an integer k, and we want

the shortest path from s to t that uses at most
k edges.



Find shortest path from S to T with at most 3 edges, 4 edges?




Updating Rule

In dynamic programming, the trick is to choose subproblems so that all vital information
is remembered and carried forward. In this case, let us define, for each vertex v and each
integer i < k, dist(v.i) to be the length of the shortest path from s to v that uses i edges. The
starting values dist(v,0) are oo for all vertices except s, for which it is 0. And the general
update equation is, naturally enough,

dist(v,i) = ( m%nE{dist(u,z' —1) + {(u,v)}.
u,v)e

How to implement it?



Updating Matrix
-

U2



Shortest Paths Between All Pair of
Nodes

One idea comes to mind: the shortest path v — w; — -+ — w; — v between u and v
uses some number of intermediate nodes—possibly none. Suppose we disallow intermediate
nodes altogether. Then we can solve all-pairs shortest paths at once: the shortest path from
u to v is simply the direct edge (u,v), if it exists. What if we now gradually expand the set
‘of permissible intermediate nodes? We can do this one node at a time, updating the shortest
path lengths at each stage. Eventually this set grows to all of V', at which point all vertices
are allowed to be on all paths, and we have found the true shortest paths between vertices of
the graph!

More concretely, number the vertices in V as {1,2,...,n}, and let dist(i, j, k) denote the
length of the shortest path from i to j in which only nodes {1,2, ..., k} can be used as interme-
diates. Initially, dist(i, j,0) is the length of the direct edge between i and j, if it exists, and is
oo otherwise.




Shortest Paths Between All Pair of
Nodes

One idea comes to mind: the shortest path v — w; — -+ — w; — v between u and v
uses some number of intermediate nodes—possibly none. Suppose we disallow intermediate
nodes altogether. Then we can solve all-pairs shortest paths at once: the shortest path from
u to v is simply the direct edge (u,v), if it exists. What if we now gradually expand the set
‘of permissible intermediate nodes? We can do this one node at a time, updating the shortest
path lengths at each stage. Eventually this set grows to all of V', at which point all vertices
are allowed to be on all paths, and we have found the true shortest paths between vertices of
the graph!

More concretely, number the vertices in V as {1,2,...,n}, and let dist(i, j, k) denote the
length of the shortest path from i to j in which only nodes {1,2, ..., k} can be used as interme-
diates. Initially, dist(i, j,0) is the length of the direct edge between i and j, if it exists, and is
oo otherwise.




Subproblem and Updating Rule

What happens when we expand the intermediate set to include an extra node £? We must
reexamine all pairs i, j and check whether using & as an intermediate point gives us a shorter
path from 7 to j. But this is easy: a shortest path from i to j that uses k£ along with possibly
other lower-numbered intermediate nodes goes through & just once (why? because we assume
that there are no negative cycles). And we have already calculated the length of the shortest
path from 7 to £ and from £ to j using only lower-numbered vertices:

k

dist(i,k,k —1)

dist(k,j,k —1)

dist(i,j,k — 1)
Thus, using k gives us a shorter path from i to j if and only if
dist(i,k,k —1)+dist(k,j,k —1) < dist(i,j,k — 1),

in which case dist(i, j, k) should be updated accordingly.



Floyd-Warshall Algorithm

Here is the Floyd-Wafshall algoritflm—and as you_cén see, it takes O(|V|?) time.

for 1=1 to n:
for =1 to n:
dist(7,7,0) = o0

for all (i,j) € E:
dist(,4,0) = £(i,7)
for k=1 to n:
for 1=1 to n:
for =1 to n:
dist(i,j, k) = min{dist(i,k,k — 1) +dist(k,j,k — 1), dist(i,j,k—1)}



