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Google acquires U of T neural networks company

swsers [IEIEIES

Sara Franca

University Professor Geoffrey
Hinton and two of his
graduate students from the
Department of Computer
Science have sold their startup
company to Google Inc.

Google acquired the company,
incorporated by Alex
Krizhevsky, llya Sutskever
and Hinton in 2012, for its
research on deep neural
networks. Also known as “deep
learning” for computers, this
research involves helping

machines understand context.  From left: llya Sutskever, Alex Krizhevsky and University Professor Geoffrey

Hinton of the University of Toronto's Department of Computer Science (photo by

Hinton is world-renowned for John Guatto)

his work with machine learning
and artificial intelligence. His neural networks research has profound implications for areas such as speech
recognition, computer vision and language understanding.

"Geoffrey Hinton's research is a magnificent example of disruptive innovation with roots in basic research,”
said U of T's president, Professor David Naylor."The discoveries of brilliant researchers, guided freely by
their expertise, curiosity, and intuition, lead eventually to practical applications no one could have imagined,
much less requisitioned.



Facebook Launches Advanced
Al Effort to Find Meaning in
Your Posts

A technique called deep learning could help Facebook understand
its users and their data better.

By Tom Simonite on September 20, 2013




Deep Learning Comes of Age

By Gary Anthes

Communications of the ACM, Vol. 56 No. 6, Pages 13-15
10.1145/2461256.2461262
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Rainbow brainwaves made from a computer
simulation of pyramidal neurons found in the

cerebral cortex.

Credit: Hermann Cuntz

Improvements in algorithms and application architectures,
coupled with the recent availability of very fast computers and
huge datasets, are enabling major increases in the power of
machine learning systems. In particular, multilayer artificial
neural networks are producing startling improvements in the
accuracy of computer vision, speech recognition, and other
applications in a field that has become known as "deep learning."

Artificial neural networks ("neural nets") are patterned after the
arrangement of neurons in the brain, and the connections, or
synapses, between the neurons. Work on neural nets dates to the
1960s; although conceptually compelling, they proved difficult to
apply effectively, and they did not begin to find broad commercial
use until the early 1990s.

Neural nets are systems of highly interconnected, simple

processing elements. The behavior of the net changes according
to the "weights" assigned to each connection, with the output of
any node determined by the weighted sum of its inputs. The nets

Brains, Sex, and Machine Leaming

It can deal with 2 wide range of objects
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do not work according to hand-coded rules, as
with traditional computer programs; they must
be trained, which involves an automated process
of successively changing the inter-nodal weights
in order to minimize the difference between the
desired output and the actual output. Generally,
the more input data used for this training, the
better the results.

For years, most neural nets contained a single
layer of "feature detectors" and were trained
mainly with labeled data in a process called
"supervised" training. In these kinds of networks,
the system is shown an input and told what



Yahoo Acquires Startup LookFlow To Work On Flickr
And ‘Deep Learning’

Anthony Ha

W6 Ellke 184 WTweet (30| [[}share| 41

ADVERTISEMENT

LookFlow, a startup that describes
itself as “an entirely new way to
explore images you love,” just
announced that it has been acquired
by Yahoo and will be joining the Flickr
team.

Meet

Venmo Touch.
The company writes on its homepage, “Fret not, LookFlow fans. Keep an eye out for our m
product in future versions of Flickr — with many more wonderful photos and all that Flickr

awesomeness!” It also says it will be helping Yahoo to form a new “deep learning group.” Bra'i'ntrcc




Google’s Large Scale Deep Learning Experiments

Google’s new large-scale learning experimentation using 16000 CPU cores and deep learning as part of google brain project had made a big success on Imagenet dataset.
This success had a wide media coverage. Some pointers to the news:

Google official blog, 26 June 2012 http://googleblog.blogspot.com/2012/06/using-large-scale-brain-simulations-for.html

NYT Front page on large scale neural network John Markoff, [...]
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The Toolbox

We often reach for the familiar...
For discriminative tasks we have

o neural networks (~1980’s, back-prop)
o SVM (~1990’s, Vapnik)

But is there anything better out there???



Challenges with SVM/NN

Potential difficulties with SVM
o Training time for large datasets

o Large number of support vectors for hard
classification problems

Potential difficulties with NN & back-prop

o Diminishing gradient inhibits multiple layers
o Can get stuck in local minimums

o Training time can be extensive




Challenges with SVM/NN

More general “problems” with NNs and SVM...

o Need labeled data (what about unlabeled
data?)

o Amount of information restricted by labels (ie,
hard to learn a complex model if we are limited

by labels)

6 What if | could use “8”s
\ to learn to recognize
7 “6"s ?
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How to respond to these challenges

* Try to model the structure of the sensory input
(ie, data), but keep the efficiency and simplicity
of a gradient method

— Adjust the weights to maximize the probability that a
generative model would have produced the sensory
input.

— Learn p(data) not p(label | data)

* So instead of learning a label, first learn how to
generative your data

Hinton, 2007



How to respond to these challenges

* Try to model the structure of the sensory input
(ie, data), but keep the efficiency and simplicity
of a gradient method

— Adjust the weights to maximize the probability that a
generative model would have produced the sensory

Input,

mms)  — Learn p(data) not p(label | data) <

* So instead of learning el, first learn how to

generative your data Immediate benefit in that all data
does not have to be label. Also
reduces dependency on label.

Hinton, 2007



Recap

So, we are convinced we ...

1.

recognize some concerns with
“standard” tools and would like
what other options are out
there

. like the idea of modeling the

input first (ie, building a model
of our data as oppose to an out
right classifier)



Energy Based Models

p(x) — probability of our data; data is represented by
feature vector x. E(x)

p(z) = - Z
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Attach an energy function (ie, E(x)) to score a
configuration (ie, each possible input x).

and

We want desirable data to have low energy. Thus, tweak
the parameters of E(x) accordingly.

Restricted Boltzann Machines (RBM)



EBMs with Hidden Units

To increase power of EBMs, add hidden
variables.

E(x.h)

ZP.L}I Z.'Z

h

By usmg th_e notatlon

_ l()h Z (x.h)
wy

We can rewrite p(x) in a form similar to the

standard EBM, o
P(z) = - —— withZ = ) e 70,

Restricted Boltzmann Machines (RBM)



EBMs with Hidden Units

To increase power of EBMs, add hidden
variables.

E(x.h)
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We can rewrite p(x) in a form similar to the
standard EBMV,

~F(x
P(z) = —— with Z = Z Flz),

Restricted Boltzmann Machines (RBM)



RBMs

* Represented by a bipartite
graph, with symmetric,
weighted connections

* One layer has visible nodes
and the other hidden (ie,
latent) variables.

* Notes are often binary,
stochastic units (ie, assume 0
or 1 based on probablity)




Restricted Boltzmann Machine (RBM)

hidden layer

A model for a distribution
over binary vectors

* Probability of a vector, v,
under the model is defined
via an “energy”
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visible layer




Training a RBM — Maximum Likelihood
Approach
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Training a RBM - Contrastive
Divergence (CD)

Instead of attempting to sample from joint
distribution p(v,h) (i.e. pee), sample from p*(v,h).
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Faster and lower variance in sample.

Hinton, Neural Computation(2002)
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Training a RBM

Partials of E(v, h) easy to calculate.
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Hinton, Neural Computation(2002)



Training a RBM via Contrastive
Divergence

Gradient of the likelihood with respect to w; = the

difference between interaction of v; and 4; at time 0 and
at time 1.

Hidden
Layer Q @ Q p§0) = U(Z viw;j + ¢;)
A
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Layer

Hinton, Neural Computation(2002)



Training a RBM via Contrastive
Divergence

Gradient of the likelihood with respect to w; = the

difference between interaction of v; and 4; at time 0 and
at time 1.

Hidden
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Hinton, Neural Computation(2002)



Training a RBM via Contrastive
Divergence

Gradient of the likelihood with respect to w; = the
difference between interaction of v; and hJ at time 0 and

at time 1.
Hidden Q Q
Layer @ Q /@ O ( ) — U(Z VWi + Cj)
/ / .
< vz’pQ >data < p%pl > recon '
@i/ \@/J piV = 0o hjwi; + b)
Visible J
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t=0 t=1 p

- 0 1,1
Awl.,]. o <vlpj > - <pl pj > Hinton, Neural Computation(2002)



Weight/Bias Updates

A<n)wz] — 6{(< Uip§0) > — <K pgl)p§1) >) — nwzj}
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€ is the learning rate, n is the weight cost, and v the momentum.

Gradient Smaller Weights Avoid Local Minima



A quick way to learn an RBM
O/@ Q Q O Sjca.rt with a training vector on the

visible units.

<Vi h >/ <Vi h Update all the hidden units in
parallel

Update the all the visible units in
parallel to get a “reconstruction”.

t=0 t=1
data reconstruction Update the hidden units again.
— 0 1

This is not following the gradient of the log likelihood. But it works well. It is

approximately following the gradient of another objective function (Carreira-
Perpinan & Hinton, 2005).

Slide modified from Hinton, 2007



Why Deep Learning? — A Face
Recognition Analogy

| Brain Learning



Training a RBM - A Maximum

Likelihood Approach
Objective of Iterative Gradient
Unsupervised Descent Approach:
Learning:

Adjust w; ;to increase the

Find w;; to maximize the _ .
: likelihood according to gradien

likelihood p(v) of visible data




Why 2?7

Okay, we can model p(x).

:

But how to...

1. Find p(label|x). We want a
classifier!

2. Improve the model for p(x).



Deep Belief Nets

RBMs are typically used | |
in stack 23 v,

— Train them up one layer |

at a time

| | *+3 7
— Hidden units become
visible units to the next | |

layer up 43 v,
If your goal is a | data |
discriminator, you train a
classifier on the top level
representation of your
input.




Deep
Learning
Network

Architecture

[0,1]

~350 nodes

~500 nodes

~500 nodes




Training a Deep Network

-

1. Weights are learned
layer by layer via
unsupervised learning.

2. Final layer is learned as a

supervised neural
network.

3. All weights are fine-
tuned using supervised
back propagation.

Hinton and Salakhutdinov, Science, 2006



Training a Deep Network

-

1. Weights are learned
layer by layer via
unsupervised learning.

2. Final layer is learned as a

supervised neural
network.

3. All weights are fine-
tuned using supervised
back propagation.

Hinton and Salakhutdinov, Science, 2006



Specific Implementation on GPU

LSDEKIINVDF KPSEERVRETTI

Speed up training by \
CUDAMat and GPUs

Train DNs with over 1M
parameters in about an
hour




How to generate from the model

* To generate data:

O

Get an equilibrium sample

from the top-level RBM by
performing alternating .
Gibbs sampling for a long 3

time.
Perform a top-down pass to

get states for all the other
layers. I 1 W5

So the lower level bottom-up
connections are not part of
the generative model. They I l, W,
are just used for inference.
data

Slide modified from Hinton, 2007




Deep Autoencoders

* They always looked like a really
nice way to do non-linear
dimensionality reduction:

— But it is very difficult to
optimize deep
autoencoders using
backpropagation.

* We now have a much better
way to optimize them:

— First train a stack of 4
RBM’s
— Then “unroll” them.

— Then fine-tune with
backprop.

Hinton & Salakhutdinov, 2006; slide form Hinton
UCL tutorial
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Applications: A model of digit recognition

* Classify digits (0—9)

* |[nput is a 28x28 image from MNIST (training

60k, test 10k examples)
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Applications: A model of digit recognition

This is work from Hinton

et al., 2006 ‘ 2000 top-level neurons

The top two layers form an

associative memory whose I

energy landscape models the

low dimensional manifolds of

the digits. 10 label

—) 500 neurons

The energy valleys have names neurons

11

The model learns to generate

combinations of labels and images. ‘ 500 neurons
To perform recognition we start with a " l
neutral state of the label units and do an
up-pass from the image followed by a few 28 X 28
iterations of the top-level associative pixel
memory. :

image

Matlab/Octave code available at
http://www.cs.utoronto.ca/~hinton/ Slide modified from Hinton, 2007




Model in action

Hinton has provided an excellent way to view the model in

action...
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http://www.cs.toronto.edu/~hinton/digits.html

Demo:



More Digits

Samples generated by letting the associative memory
run with one label clamped. There are 1000 iterations of
alternating Gibbs sampling between samples.
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Slide from Hinton, 2007



Even More Digits

Examples of correctly recognized handwritten digits
that the neural network had never seen before

oot N\ (/4872
292 A5 7
3¢ 7914947046 >509
e L 702\ 71489379
b8 T3 HL9qg7

Slide from Hinton, 2007



Extensions

Do classification.

One way (probably no
the best), train
generative model with
labeled/unlabeled data

Then train a NN on
higher dimensional
representation.

| NNorsvm |

1

& | 2000 top-level neurons

T

| 500 neurons

T

| 500 neurons

< T 1

28 x 28 pixel

image
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