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Abstract

Background: Predicting protein residue-residue contacts is an important 2D prediction task. It is useful for ab

initio structure prediction and understanding protein folding. In spite of steady progress over the past decade,

contact prediction remains still largely unsolved.

Results: Here we develop a new contact map predictor (SVMcon) that uses support vector machines to predict

medium- and long-range contacts. SVMcon integrates profiles, secondary structure, relative solvent accessibility,

contact potentials, and other useful features. On the same test data set, SVMcon’s accuracy is 4% higher than

the latest version of the CMAPpro contact map predictor. SVMcon recently participated in the seventh edition

of the Critical Assessment of Techniques for Protein Structure Prediction (CASP7) experiment and was

evaluated along with seven other contact map predictors. SVMcon was ranked as one of the top predictors,

yielding the second best coverage and accuracy for contacts with sequence separation >= 12 on 13 de novo

domains.

Conclusions: We describe SVMcon, a new contact map predictor that uses SVMs and a large set of informative

features. SVMcon yields good performance on medium- to long-range contact predictions and can be modularly

incorporated into a structure prediction pipeline. The web server, software, and source code are available at:

http://www.bioinfotool.org/svmcon.html.
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Background

Predicting protein inter-residue contacts is an important 2D structure prediction problem [1]. Contact

prediction can help improve analogous fold recognition [2,3] and ab initio 3D structure prediction [4].

Several algorithms for reconstructing 3D structure from contacts have been developed in both the structure

prediction and determination (NMR) literature [5–8]. Contact map prediction is also useful for inferring

protein folding rates and pathways [9, 10].

Due to its importance, contact prediction has received considerable attention over the last decade. For

instance, contact prediction methods have been evaluated in the fifth, sixth, and seventh editions of the

Critical Assessment of Techniques for Protein Structure Prediction (CASP) experiment [11–15].

A number of different methods for predicting contacts have been developed. These methods can be

classified roughly into two non-exclusive categories: (1) statistical correlated mutations approaches [16–22];

and (2) machine learning approaches [23–34]. The former uses correlated mutations of residues to predict

contacts. The latter uses machine learning methods such as neural networks, self organizing map, hidden

Markov models, and support vector machines to predict 2D contacts from the primary sequence, as well as

other 1D features such as relative solvent accessibility and secondary structure.

In spite of steady progress, contact map prediction remains however a largely unsolved challenge. Here we

describe a method that uses support vector machines together with a large set of informative features to

improve contact map prediction. On the same data set, SVMcon outperforms the latest version of the

CMAPpro contact map predictor [28, 35] and is ranked as one of the top predictors in the blind and

independent CASP7 experiment.

Results and Discussion

We first compare SVMcon with the latest version of CMAPpro on the same benchmark dataset. Then we

describe the performance of SVMcon along with several other predictors during the CASP7 experiment.

Comparison with CMAPpro on the same Benchmark

SVMcon is trained to predict medium- to long-range contacts (sequence separation >= 6) as in [36], which

are not captured by local secondary structure. We train SVMcon on the same dataset used to train

CMAPpro [28, 35] and test both programs on the same test dataset. The training dataset contains 485

proteins and the test dataset contains 48 proteins. The sequence identity between the training and testing

datasets is below 25%, a common threshold for ab initio prediction [36].
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We use sensitivity and specificity to evaluate the performance of SVMcon and CMAPpro. Sensitivity is the

percentage of native contacts that are predicted to be contacts. Specificity is the percentage of predicted

contacts that are present in the native structure. The contact threshold is set at 8 Å between Ca atoms.

The sensitivity and specificity of a predictor depend also on the threshold used to separate ‘contact’ from

‘non-contact’ predictions. To compare SVMcon and CMAPpro fairly, we choose to evaluate them at their

break-even point, where sensitivity is equal to specificity as in [37]. At the break-even point, the sensitivity

and specificity of SVMcon is 27.1%, 4% higher than CMAPpro. Thus on the same benchmark dataset,

SVMcon yields a sizable improvement.

We also compare the accuracy of SVMcon with the random uniform baseline algorithm consisting of

random independent coin flips to decide whether each residue pair is in contact or not. Since the medium-

and long-range contacts account for 2.8% of the total number of residue pairs with linear separation >= 6,

the probability for the coin to produce a contact is set to 2.8%. As a result, the sensitivity and specificity

of the random baseline algorithm is 2.8% at the break-even point. Thus SVMcon yields a nine-fold

improvement over the random baseline.

Since the contact prediction accuracy varies significantly with individual proteins and their structure

classes [29], we calculate the contact prediction specificity (or called accuracy) and sensitivity (or called

coverage) for each test protein (Table 1). For each one, we select up to L (protein length) predicted

contacts ranked by SVM scores because the total number of true contacts is approximately linear to the

protein length [24]. The results show that in many cases (e.g. 1QJPA, 1DZOA, 1MAIA, 1LSRA, 1F4PA,

1MSCA, 1IG5A, 1ELRA, 1J75A), the prediction accuracy and coverage are > 30%.

However, for some proteins such as 1SKNP, the prediction accuracy is pretty low. We observe that the

contact prediction accuracy is related to the the quality of multiple sequence alignment, the prediction

accuracy of secondary structure, and the proportion of beta-sheets. Consistent with previous

research [29, 37], the contacts within beta-sheets in beta, alpha+beta, and alpha/beta proteins are

predicted with higher accuracy than the contacts between an alpha helix and a beta strand or between

alpha helices. We think that the strong restraints between beta-strands such as hydrogen-bonding

probably contribute to the improved accuracy.

Figures 1 and 2 show the native 3D structure and the predicted contact map of a good example (protein

1DZOA), respectively. In this case, 2L (240) predicted contacts with sequence separation >= 6 are

selected. The contact prediction accuracy and coverage are 39.2% and 42.5%, respectively. It is shown that

the predicted contact clusters (Figure 2) recall most native beta-sheet pairing patterns of the protein
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(Figure 1). And it is interesting to see most false positive contacts are also clustered around the true

contacts. Thus, these noise may not be very harmful during the process of reconstructing protein structure

from the contacts.

Furthermore, to investigate the relationship between the SVM contact map predictions and the structure

classes, we compute the average accuracy and coverage of contact predictions in the six SCOP [38] structure

classes (Table 2). The contact prediction accuracy of proteins having beta-sheets (alpha+beta, alpha/beta,

beta) is higher than that of alpha helical proteins, which is consistent with previous observations [29].

According to Table 2, the average coverage is about 20% and the accuracy ranges from 21 to 37%. This

level of accuracy is probably good enough (or at least helpful) for constructing an ab initio low-resolution

structure, since previous experiments show that only L/5 or even less residues contacts are required to

reconstruct a low resolution structure for a small protein [5, 8, 39–42], taking into account the inherent

physical restraints of protein structures. However, the challenge is to develop algorithms to reconstruct a

protein structure from a noisy predicted contact map, where contact restraints are much less reliable than

the experimental contacts determined by NMR techniques.

Comparison with seven other Predictors during CASP7

SVMcon participated in the CASP7 experiment in 2006 and was evaluated along with seven other contact

map predictors. The CASP7 evaluation procedure focuses on inter-residue contact predictions with linear

sequence separation >= 12 and >= 24 respectively [15]. Up to L/5 of the top predicted contacts were

assessed, where L is the length of the target protein. These evaluation metrics are also similar to those

used in the past editions of the Critical Assessment of Fully Automated Structure Prediction

Methods [43–45] and in the EVA contact evaluation server [46]. We use the similar procedure to compute

accuracy (specificity) and coverage (sensitivity) for all server predictors.

We compare SVMcon with the other contact map predictors on the 13 out of 15 CASP7 de novo domains

whose structures have been released. The contact map predictors participating in CASP7 include SVMcon,

BETApro [37], SAM-T06 [47], PROFcon [32], GajdaPairings, Distill [34, 48], Possum [19], and

GPCPRED [29]. Their contact predictions were downloaded from the CASP7 website.

Table 3 reports the performance of the eight automated contact map predictors in the CASP7 experiment.

The accuracy and coverage of SVMcon at a sequence separation threshold of 12 are 27.7% and 4.7%

respectively, corresponding to the second best ranking behind our other predictor BETApro. The accuracy

and coverage of SVMcon at a sequence separation threshold of 24 are 13.1% and 2.8% respectively, overall
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slightly behind SAM-T06 and BETApro. Its coverage at a sequence separation threshold of 24 is higher

than Distill, Possum, GPCPRED, and GadjaPairings. Since PROFcon only made predictions for 11 out of

13 domains, its performance can not be directly compared with other methods. Here we include its results

for completeness.

Another caveat is that the evaluation dataset and scheme we used may be slightly different from the official

CASP7 evaluation. Thus, here we only try to evaluate the current state of the art of contact predictors

instead of ranking them. For the offical contact evaluation scheme and results, readers are advised to check

the assessment paper of the CASP7 contact predictions published in the upcoming supplement issue of the

journal Proteins.

Overall, these results on the CASP7 dataset show that the accuracy and coverage of protein contact

prediction are still low. However, these results are an important step towards reaching the milestone of an

accuracy level of about 30%, required for deriving moderately accurate (low resolution) 3D protein

structures from scratch [5, 8, 39–42] (Also, Dr. Yang Zhang, personal communication at the CASP7

conference). In particular, these predictors tend to predict different correct contacts. Thus, a consensus

combination of contact map predictors may yield more accurate contact map predictions, which in turn

could significantly improve 3D structure reconstruction. Since the stakes of contact map prediction are

high, a community-wide effort for improving contact map prediction should be worthwhile (Dr. Burkhard

Rost’s lecture slides at Columbia University).

It is also worth pointing out that the CASP7 de novo dataset is too small to reliably estimate the accuracy

of the predictors. So one should not over-interpret these results. Indeed, when we use a larger CASP de

novo dataset of 24 domains classified by Dr. Dylan Chivian from Dr. David Baker’s group to evaluate the

predictors (results not shown), the accuracy of SVMcon and BETApro are very close for both sequence

separations >= 12 and 24, and both remain among the top predictors.

Conclusions

We have described a new contact map predictor (SVMcon) that uses support vector machines to integrate

a large number of useful information including profiles, secondary structure, solvent accessibility, contact

potentials, residue types, segment window information [24, 32], and protein-level information [32]. The

method yields a 4% improvement over the state-of-the art contact map predictor CMAPpro. In the blind

CASP7 experiment, SVMcon is ranked as one of the top contact predictors. The method represents an

effort toward a good 2D structure prediction. It can be used to improve ab initio structure prediction [4]
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and analogous fold recognition [2, 3].

Methods
Data Sets

In the comparison with CMAPpro [28,35], we use the same training and testing datasets. The datasets are

redundancy reduced. The pairwise sequence identity of any two sequences is less than 25%. The training

and testing datasets contain 485 sequences and 48 sequences respectively.

We use PSI-BLAST to search each sequence against the NCBI non-redundant database and generate a

multiple sequence alignment. The number of PSI-BLAST iterations is set to 3. The e-value for selecting a

sequence is set to 0.001. The e-value for including a sequence into the construction of a profile is set to

10−10. Multiple sequence alignments are converted into profiles, where each position is associated with a

vector denoting the probability of each residue type.

We extract only medium- and long- range residue pairs with sequence separation >= 6 as in [32], which are

not captured by local secondary structures. We use a 8Å distance threshold between Ca atoms to classify

residue pairs into two categories: contact (positive, < 8Å) or non-contact (negative, >= 8Å). Since the

majority of residue pairs are negative examples, to balance the number of positive and negative examples

in the training set we randomly sample and retain only 5% of the negative examples while keeping all

positive examples. In total, there are 220,994 negative examples and 94,110 positive examples in the

training data set. We keep all negative and positive examples in the test data set. The test data set has

10,498 positive examples and 367,299 negative examples.

Input Features

We extract five categories of features for each pair of residues at positions i and j to evaluate their contact

likelihood. In addition to the new features (e.g. pairwise information features), the choice of most features

combines ideas from our previous contact map predictors, disulfide bond predictors [33, 49], and beta sheet

topology predictors [37], and from the PROFcon [32], the best predictor in CASP6.

Local window feature. We extract local features using a 9-residue window centered at each residue in each

residue pair. For each position in the window, we use 21 inputs for the probabilities of the 20 amino acids

plus gap, computed from multiple sequence alignments, 3 binary inputs for secondary structure (helix: 100,

sheet: 010, coil: 001), 2 binary inputs for relative solvent accessibility (exposed: 10, buried: 01) at 25%

threshold, one input for the entropy (−
∑

k pklogpk) as a measure of local conservation. Here pk is the
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probability of occurrence of the k-th residue (or gap) at the position under consideration. Secondary

structure and relative solvent accessibility are predicted using the SSpro and ACCpro programs in the

SCRATCH suite [27, 35, 50]. Thus the two local windows produce 2 × 9 × 27 features.

Pairwise information features. For each pair of positions (i, j) in a multiple sequence alignment, we

compute the following features. One input corresponds to the mutual information of the profiles of the two

positions (
∑

kl pkllog(pkl/(pkpl)), where pkl is the empirical probability of residues (or gap) k and l

appearing at the two positions i and j simultaneously. Two other pairwise inputs are computed using the

cosine ( x·y
|x||y| ) and correlation (

∑

i
(xi−x̄)(yi−ȳ)

√
∑

i
(xi−x̄)2

∑

i
(yi−ȳ)2

) measures on the profiles at positions i and j. Thus

some information about correlated mutations is used in the inputs. We also use three inputs to represent

Levitt’s contact potential [51], Jernigan’s pairwise potential [52], and Braun’s pairwise potential [53] for the

residue pairs in the target sequence.

Residue type features. We classify residues into four categories: non-polar (G,A,V,L,I,P,M,F,W), polar

(S,T,N,Q,C,Y), acidic (D,E), basic (K,R,H). These four residue types induce 10 different combinations:

non-polar/non-nopolar, non-polar/polar, non-polar/acidic, non-polar/basic, polar/polar, polar/acidic,

polar/basic, acidic/acidic, acidic/basic, and basic/basic. We use 10 binary inputs to encode the type of a

residue pair.

Central segment window feature. Central segment window corresponding to a window centered at position

⌊(i + j)/2)⌋ has been shown to be useful for predicting whether the residues at position i and j are in

contact or not [24,32]. We use a central segment window of size 5. For each position in the window, we use

the same 27 features as the local window features. So the total number of features for the central window

is 5 × 27. We also compute the amino acid composition (21 features), secondary structure composition (3

features), relative solvent accessibility composition (2 features) in the central segment window. The

sequence separation (|i − j + 1|) for residue pair (i, j) are classified into one of 16 length bins

(< 6, 6, 7, 8, 9, 10, 11, 12, 13, 14, < 19, < 24, <= 29, <= 39, <= 49, >= 50) using a binary vector of length 16,

as in [32].

Protein information features. We also compute the global amino acid composition (21 features), secondary

structure composition (3 features), and relative solvent accessibility composition (2 features) of the target

sequence. In addition, we classify sequence lengths into four bins (<= 50, <= 100, <= 150, and > 150)

using a binary vector of length 4, as in [32].

The detailed methods of generating features are described in the additional files [see Additional file 1, 2, 3].
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Feature Selection

Feature selection is useful to improve the performance of machine learning methods, particularly when

there is a large number of features as in this study. However, since there are more than 310,000 training

data points, it takes about 12 days to conduct a round of training and testing on a Pentium-IV computer.

Thus a thorough feature selection is currently not feasible. So we tried only to remove some features

(pairwise profile correlation, pairwise mutual information, residue type, and protein information features)

once a time to test how they affect the prediction accuracy. We find that removing these features slightly

improve the accuracy by about 0.2%. However, it is not clear if the improvement is due to the random

variation or due to the removal of the features. But at least, these features are not essential or being

compensated by other similar features. Thus, a more thorough feature selection should be conducted to

improve the performance when more computing power is available.

SVM Learning

For an input feature vector associated with a pair of residues, we use Support Vector Machines (SVMs) to

predict if the two residues are in contact (positive) or not (negative). SVMs provide a non-linear classifier

model by non-linearly mapping the input vectors into a feature space and using linear methods for

classification in the feature space [54–57]. Thus SVMs, and more generally kernel methods, attempt to

combine the advantages of both linear and nonlinear methods by first embedding the data into a feature

space equipped with a dot product and then using linear methods in the feature space to perform

classification or regression tasks based on the Gram matrix of dot products between data points. A key

property of kernel methods is that the embedding does not need to be given in explicit form, the Gram

matrix of dot products K(x, y) = φ(x) · φ(y) between data points is all is needed to proceed with

classification or regression. Here x and y are input data points, φ is the mapping from input space to

feature space, and K is the kernel or similarity measure between the original data points.

Given a set of training data points S = S+ ∪ S−, where S+ (resp. S−) represent the positive (resp.

negative) examples, using the theory of structural risk minimization [54–57], SVMs learn a classification

function f(x) in the form of

f(x) =
∑

xi∈S+

αiK(x, xi) −
∑

xi∈S−

αiK(x, xi) + b

where αi are non-negative weights assigned to the training data point xi during training by minimizing a

quadratic objective function and b is the bias. Thus the function f(x) can be viewed as a weighted linear
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combination of similarities between training data points xi and the target data point x. Only data points

with strictly positive weight α in the training dataset affect the final solution. The corresponding data

points xi are called the support vectors. For contact map prediction, a new data point x is predicted to be

positive or negative by taking the sign of f(x).

We use SVM-light (http://svmlight.joachims.org) [58,59] to implement SVM classification on our data. We

experimented with several common kernels including linear kernels, Gaussian radial basis kernels (RBF),

polynomial kernels, and sigmoidal kernels. In our experience, on this data the RBF kernel

K(x, y) = e−γ||x−y||2 (or e−
||x−y||2

σ2 ) works the best. Using the RBF kernel, f(x) is actually a weighted sum

of Gaussians centered on the support vectors. Almost any separating boundary or regression function can

be obtained with such a kernel [60], thus it is important to tune the SVM parameters carefully in order to

achieve good generalization performance and avoid overfitting.

We only adjust the width parameter γ of the RBF kernel, leaving all other parameters to their default

value. γ is the inverse of the variance (σ2) of the RBF and controls the width of the Gaussian functions

centered on the support vectors. The bigger is γ, the more peaked are the Gaussians, and the more

complex are the resulting decision boundaries [60]. After experimenting with several values of γ, we

selected γ = 0.025.
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Figures
Figure 1 - 3D Structure of Protein 1DZOA

Protein 1DZOA is an a+b protein. It consists of two alpha helices and two beta sheets. Beta strands 1 and

2 form a parallel beta sheet. Beta strands 3, 4, 5, 6 form an anti-parallel beta sheet. Most non-local

contacts involve the pairing interations between beta strands and the packing interactions between helices

and beta sheets. (Figure rendered using Molscript [61]).

Figure 2 - Predicted and True Contact Maps of 1DZOA

The upper triangle shows the true contacts of protein 1DZOA. The lower triangle shows the predicted

contacts of protein 1DZOA. 2L (240) top ranked contacts are selected. The key contacts within

anti-parallel strand pairs (3,4), (4,5), and (5,6) are recalled. A few contacts within the parallel strand pair

(1,2) are also predicted correctly. However, very long range contacts between alpha helices and beta sheets

are not predicted. And there are some false positives. It is interesting to see that most false positives are

close to the true contacts. Thus, they may not be very harmful when being used as distance restraints to

reconstruct protein 3D structure.
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Tables
Table 1 - Detailed Contact Prediction Results on 48 Test Proteins for Sequence Separation >= 6, 12,

and 24 respectively.

Column 1 lists the protein name (PDB code + chain id). The chain id of a single-chain protein is denoted

by ”A” instead of ”-”. Column 2 lists chain lengths, ranging from 46 to 198. Column 3 lists the SCOP

structure class. alpha, beta, a+b, a/b, small, and coil-coil represent six SCOP protein classess (all alpha

helix, all beta sheet, alpha helix + beta sheet, alpha helix alternating beta sheet, small protein, and

coil-coil), respectively. Columns 4 and 5 report the prediction accuracy (specificity) and coverage

(sensitivity) for each protein. Accuracy is the number of correct predictions divided by the total number of

predictions. Coverage is the number of correct predictions divided by the total number of true contacts.

The raw number of correct preditions, all predictions, and true contacts are also reported in the brackets.
Protein Len Type Separation >= 6 Separation >= 12 Separation >= 24

Acc(corr/pred) Cov(corr/tot) Acc(corr/pred) Cov(corr/tot) Acc(corr/pred) Cov(corr/tot)
1IG5A 75 alpha 0.333 (25/75) 0.446 (25/56) 0.240 (18/75) 0.486 (18/37) 0.273 (9/33) 0.346 (9/26)
1HXIA 112 alpha 0.304 (34/112) 0.270 (34/126) 0.214 (24/112) 0.238 (24/101) 0.015 (1/67) 0.018 (1/55)
1SKNP 74 alpha 0.093 (4/43) 0.133 (4/30) 0.000 (0/18) 0.000 (0/24) 0.000 (0/6) 0.000 (0/20)
1ELRA 128 alpha 0.406 (52/128) 0.327 (52/159) 0.384 (33/86) 0.264 (33/125) 0.227 (5/22) 0.085 (5/59)
1E29A 135 alpha 0.289 (39/135) 0.193 (39/202) 0.111 (15/135 0.112 (15/134) 0.103 (7/68) 0.071 (7/99)
1CTJA 89 alpha 0.157 (14/89) 0.147 (14/95) 0.112 (10/89 0.204 (10/49) 0.090 (8/89) 0.190 (8/42)
1J75A 57 alpha 0.474 (27/57) 0.466 (27/58) 0.250 (7/28) 0.206 (7/34) 0.500 (1/2) 0.038 (1/26)
1ECAA 136 alpha 0.103 (14/136) 0.156 (14/90) 0.063 (5/79) 0.064 (5/78) 0.070 (3/43) 0.041 (3/74)
1FIOA 190 alpha 0.143 (19/133) 0.161 (19/118) 0.153 (11/72) 0.113 (11/97) 0.140 (8/57) 0.110 (8/73)
1C75A 71 alpha 0.282 (20/71) 0.211 (20/95) 0.099 (7/71) 0.127 (7/55) 0.087 (4/46) 0.089 (4/45)
1HCRA 52 alpha 0.058 (3/52) 0.231 (3/13) 0.056 (1/18) 0.167 (1/6) 0.000 (0/0) 0.000 (0/3)
1QJPA 137 beta 0.518 (71/137) 0.183 (71/389) 0.489 (67/137) 0.215 (67/312) 0.350(48/137) 0.300 (48/160)
1D2SA 170 beta 0.482 (82/170) 0.180 (82/455) 0.341 (58/170) 0.150 (58/386) 0.165 (28/170) 0.096 (28/293)
1CQYA 99 beta 0.182 (18/99) 0.080 (18/225) 0.172 (17/99) 0.094 (17/180) 0.273 (27/99) 0.197 (27/137)
1BMGA 98 beta 0.398 (39/98) 0.177 (39/220) 0.398 (39/98) 0.211 (39/185) 0.429 (42/98) 0.323 (42/130)
1MAIA 119 beta 0.538 (64/119) 0.298 (64/215) 0.361 (43/119) 0.250 (43/172) 0.034 (4/119) 0.048 (4/83)
1AMXA 150 beta 0.387 (58/150) 0.162 (58/357) 0.300 (45/150) 0.148 (45/304) 0.220 (33/150) 0.141 (33/234)
1G3PA 192 beta 0.042 (8/192) 0.019 (8/420) 0.042 (8/192 0.023 (8/342) 0.036 (7/192) 0.026 (7/273)
1RSYA 135 beta 0.578 (78/135) 0.259 (78/301) 0.459 (62/135) 0.240 (62/258) 0.230 (31/135) 0.177 (31/175)
1WHIA 122 beta 0.492 (60/122) 0.201 (60/298) 0.459 (56/122 0.226 (56/248) 0.295 (36/122) 0.303 (36/119)
1HE7A 107 beta 0.280 (30/107) 0.183 (30/164) 0.327 (35/107) 0.254 (35/138) 0.346 (37/107) 0.394 (37/94)
1MWPA 96 a+b 0.365 (35/96) 0.178 (35/197) 0.385 (37/96) 0.236 (37/157) 0.292 (28/96) 0.311 (28/90)
1QGVA 130 a+b 0.338 (44/130) 0.198 (44/222) 0.338 (44/130) 0.221 (44/199) 0.385 (50/130) 0.279 (50/179)
1DBUA 152 a+b 0.434 (66/152) 0.208 (66/317) 0.276 (42/152) 0.162 (42/260) 0.151 (23/152) 0.111 (23/207)
1XERA 103 a+b 0.466 (48/103) 0.219 (48/219) 0.330 (34/103) 0.214 (34/159) 0.204 (21/103) 0.193 (21/109)
1JSFA 130 a+b 0.500 (65/130) 0.316 (65/206) 0.385 (50/130) 0.345 (50/145) 0.154 (20/130) 0.235 (20/85)
1DZOA 120 a+b 0.608 (73/120) 0.330 (73/221) 0.500 (60/120) 0.351 (60/171) 0.083 (10/120) 0.139 (10/72)
1GRJA 151 a+b 0.318 (48/151) 0.209 (48/230) 0.225 (34/151) 0.186 (34/183) 0.066 (10/151) 0.084 (10/119)
1MSCA 129 a+b 0.620 (80/129) 0.421 (80/190) 0.512 (66/129) 0.524 (66/126) 0.225 (29/129) 0.644 (29/45)
1CEWI 108 a+b 0.528 (57/108) 0.300 (57/190) 0.454 (49/108) 0.310 (49/158) 0.278 (30/108) 0.316 (30/95)
1VHHA 157 a+b 0.414 (65/157) 0.206 (65/316) 0.338 (53/157 0.201 (53/264) 0.223 (35/157) 0.174 (35/201)
1BUOA 121 a+b 0.298 (36/121) 0.300 (36/120) 0.207 (25/121) 0.291 (25/86) 0.140 (17/121) 0.309 (17/55)
1G2RA 94 a+b 0.340 (32/94) 0.254 (32/126) 0.309 (29/94) 0.309 (29/94) 0.234 (22/94) 0.400 (22/55)
1E9MA 106 a+b 0.387 (41/106) 0.186 (41/220) 0.358 (38/106) 0.200 (38/190) 0.311 (33/106) 0.210 (33/157)
1E87A 117 a+b 0.470 (55/117) 0.239 (55/230) 0.299 (35/117) 0.193 (35/181) 0.291 (34/117) 0.227 (34/150)
1H9OA 108 a+b 0.630 (68/108) 0.354 (68/192) 0.352 (38/108) 0.299 (38/127) 0.148 (16/108) 0.302 (16/53)
1IDOA 184 a/b 0.402 (74/184) 0.223 (74/332) 0.402 (74/184) 0.250 (74/296) 0.402 (74/184) 0.277 (74/267)
1CHDA 198 a/b 0.429 (85/198) 0.175 (85/487) 0.384 (76/198) 0.170 (76/447) 0.338 (67/198) 0.181 (67/370)
1FUEA 163 a/b 0.374 (61/163) 0.185 (61/330) 0.374 (61/163) 0.206 (61/296) 0.399 (65/163) 0.251 (65/259)
1CXQA 143 a/b 0.448 (64/143) 0.303 (64/211) 0.350 (50/143) 0.276 (50/181) 0.091 (13/143) 0.115 (13/113)
1F4PA 147 a/b 0.442 (65/147) 0.222 (65/293) 0.361 (53/147) 0.205 (53/258) 0.354 (52/147) 0.223 (52/233)
1ES8A 196 a/b 0.240 (47/196) 0.130 (47/361) 0.153 (30/196) 0.100 (30/300) 0.189 (37/196) 0.160 (37/231)
1DMGA 172 a/b 0.302 (52/172) 0.176 (52/296) 0.273 (47/172) 0.175 (47/269) 0.192 (33/172) 0.155 (33/213)
1A1HA 85 small 0.424 (36/85) 0.424 (36/85) 0.129 (11/85) 0.262 (11/42) 0.000 (0/85) 0.000 (0/0)
9WGAB 171 small 0.415 (71/171) 0.188 (71/378) 0.357 (61/171) 0.268 (61/228) 0.041 (7/171) 0.175 (7/40)
2MADL 124 small 0.274 (34/124) 0.106 (34/321) 0.226 (28/124) 0.106 (28/263) 0.218 (27/124) 0.116 (27/232)
1EJGA 46 small 0.261 (12/46) 0.203 (12/59) 0.419 (13/31 0.271 (13/48) 0.458 (11/24 0.306 (11/36)
1AA0A 113 coil-coil 0.221 (25/113) 0.397 (25/63) 0.031 (3/97) 0.158 (3/19) 0.000 (0/35) 0.000 (0/0)
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Table 2 - Contact Prediction Results of Proteins in the Six SCOP Structure Classes.

Column 1 lists six structure classes. Column 2 lists the number of proteins in each class. Other columns

reports the accuracy and coverage of contact predictions in each category. The statistics is computed for

sequence separation >= 6, 12, and 24, respectively. The last row reports the average performance on all 48

proteins. The accuracy of a+b and a/b is slightly higher than that of beta proteins, which is in turn higher

than that of alpha proteins. The performance on small proteins (mostly alpha helical) lies between proteins

containing beta-sheets (a+b, a/b, and beta) and alpha helical proteins. There is only one coil-coil protein,

which does not have native contacts with sequence separation >= 24.
SCOP Class Num Separation >= 6 Separation >= 12 Separation >= 24

Accuracy Coverage Accuracy Coverage Accuracy Coverage
alpha 11 0.24 0.24 0.17 0.18 0.11 0.09
beta 10 0.38 0.17 0.32 0.17 0.22 0.17
a+b 15 0.45 0.25 0.35 0.25 0.21 0.23
a/b 7 0.37 0.19 0.33 0.19 0.28 0.20
small 4 0.36 0.18 0.28 0.19 0.11 0.15
coil-coil 1 0.22 0.40 0.03 0.16 0.00 —
average 48 0.37 0.21 0.30 0.20 0.21 0.19

Table 3 - CASP7 Results of Inter-Residue Contact Predictions of Eight Predictors.

The eight contact map predictors are evaluated on the 13 de novo domains of CASP7. The 13 domains

include (T0296, T0300, T0307, T0309, T0314, T0316 domain 2, T0319, T0347 domain 2, T0350, T0353,

T0361, T0356 domain 1, T0356 domain 3). The experimental structures of the targets and the domain

classification can be found at the CASP7 web site (predictioncenter.org/casp7). The accuracy and coverage

of contact predictions are evaluated at sequence separation >= 12 and >= 24, respectively. It is worth

noting that PROFcon only made predictions for 11 out of 13 domains. Thus its performance can not be

directly compared with other methods. Here we includes its results for completeness.
Separation >= 12 Separation >= 24

Method Acuracy (%) Coverage (%) Accuracy (%) Coverage (%)
SVMcon 27.7 4.7 13.1 2.8
BETApro 35.4 5.1 19.7 3.2
SAM-T06 20.7 3.5 18.5 3.9
Distill 26.4 2.9 13.7 1.4
Possum 15.0 2.3 21.4 2.6
PROFcon 12.1 2.0 8.1 1.6
GPCPRED 12.2 2.1 10.5 2.0
GajdaPairings 9.8 1.5 10.4 1.9
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Additional Files
Additional file 1 — predict map.pl

The main Perl script to predict a contact map. It is a text file that can be viewed by any text

viewer/editor.

Additional file 2 — generate input with title.pl

The Perl script to generate input features for support vector machine. It is a text file that can be viewed

by any text viewer/editor.

Additional file 3 — potential.pl

The Perl script to compute pairwise contact potentials. It is a text file that can be viewed by any text

viewer/editor.
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Additional files provided with this submission:

Additional file 1: predict_map.pl, 4K
http://www.biomedcentral.com/imedia/1817000629128095/supp1.pl
Additional file 2: generate_input_with_title.pl, 12K
http://www.biomedcentral.com/imedia/1186797076128095/supp2.pl
Additional file 3: potential.pl, 16K
http://www.biomedcentral.com/imedia/1800262821280954/supp3.pl

http://www.biomedcentral.com/imedia/1817000629128095/supp1.pl
http://www.biomedcentral.com/imedia/1186797076128095/supp2.pl
http://www.biomedcentral.com/imedia/1800262821280954/supp3.pl
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