Support Vector Machines II

Dr. Jianlin Cheng

Computer Science Department
University of Missouri, Columbia
Fall, 2015

Slides Adapted from Book and CMU, Stanford Machine Learning Courses

The SMO Algorithm

Consider solving the unconstrained opt problem:

$$\max_{\alpha} W(\alpha_1, \alpha_2, \dots, \alpha_m)$$

- We've already see three opt algorithms!
 - ?
 - ?
 - ?
- Coordinate ascend:

Coordinate Ascend

Sequential minimal optimization

Constrained optimization:

$$\max_{\alpha} \quad \mathcal{J}(\alpha) = \sum_{i=1}^{m} \alpha_{i} - \frac{1}{2} \sum_{i,j=1}^{m} \alpha_{i} \alpha_{j} y_{i} y_{j} (\mathbf{x}_{i}^{T} \mathbf{x}_{j})$$
s.t.
$$0 \le \alpha_{i} \le C, \quad i = 1, ..., m$$

$$\sum_{i=1}^{m} \alpha_{i} y_{i} = 0.$$

• Question: can we do coordinate along one direction at a time (i.e., hold all $\alpha_{[-i]}$ fixed, and update α_i ?)

Sequential minimal optimization

Repeat till convergence

1. Select some pair α_i and α_j to update next (using a heuristic that tries to pick the two that will allow us to make the biggest progress towards the global maximum).

How to select?

2. Re-optimize $J(\alpha)$ with respect to α_i and α_j , while holding all the other α_k 's $(k \neq i; j)$ fixed.

Will this procedure converge?

Sequential minimal optimization

$$\max_{\alpha} \quad \mathcal{J}(\alpha) = \sum_{i=1}^{m} \alpha_i - \frac{1}{2} \sum_{i,j=1}^{m} \alpha_i \alpha_j y_i y_j (\mathbf{x}_i^T \mathbf{x}_j)$$

KKT: s.t.
$$0 \le \alpha_i \le C$$
, $i = 1,...,k$

$$\sum_{i=1}^{m} \alpha_i y_i = 0.$$

• Let's hold α_3 ,..., α_m fixed and reopt J w.r.t. α_I and α_2

Convergence of SMO

The constraints:

$$\alpha_1 y_1 + \alpha_2 y_2 = \xi$$
$$0 \le \alpha_1 \le C$$
$$0 < \alpha_2 < C$$

$$\mathcal{J}(\alpha_1, \alpha_2, \dots, \alpha_m) = \mathcal{J}((\xi - \alpha_2 y_2) y_1, \alpha_2, \dots, \alpha_m)$$

Constrained opt:

$$\mathcal{J}(\alpha) = \sum_{i=1}^{m} \alpha_i - \frac{1}{2} \sum_{i,j=1}^{m} \alpha_i \alpha_j y_i y_j (\mathbf{x}_i^T \mathbf{x}_j)$$

Cross-Validation Error of SVM

 The leave-one-out cross-validation error does not depend on the dimensionality of the feature space but only on the # of support vectors!

Leave - one - out CV error =
$$\frac{\text{\# support vectors}}{\text{\# of training examples}}$$

Time Complexity of Testing

• O(MN_s). M is the number of operations required to evaluate inner product. M is O(d_L). N_s is the number of support vectors.

Multi-Class SVM

- Most widely used method: one versus all
- Also direct multi-classification using SVM. (K. Crammer and Y. Singer. On the Algorithmic Implementation of Multi-class SVMs, JMLR, 2001)

Summary

Max-margin decision boundary

- Constrained convex optimization
 - Duality
 - The KTT conditions and the support vectors
 - Non-separable case and slack variables
 - The SMO algorithm

Non-Linear Decision Boundary

- So far, we have only considered large-margin classifier with a linear decision boundary
- How to generalize it to become nonlinear?
- Key idea: transform x_i to a higher dimensional space to "make life easier"
 - Input space: the space the point x_i are located
 - Feature space: the space of $\phi(\mathbf{x}_i)$ after transformation
- Why transform?
 - Linear operation in the feature space is equivalent to non-linear operation in input space
 - Classification can become easier with a proper transformation. In the XOR problem, for example, adding a new feature of x₁x₂ make the problem linearly separable (homework)

Support Vector Machine Approach

Map data point into high dimension, e.g. adding some non-linear features.

How about we augument feature into three dimension $(x_1, x_2, x_1^2 + x_2^2)$.

All data points in class C2 have a larger value for the third feature Than data points in C1. Now data is linearly separable.

 x_1

Non-linear SVMs: Feature spaces

General idea: the original input space can always be mapped to some higher-dimensional feature space where the training set is separable:

Nonlinear Support Vector Machines

- In the L_D function, what really matters is dot products: x_i.x_j.
- Idea: map the data to some other (possibly infinite dimensional) Euclidean space H, using a mapping.

$$\Phi: \mathbb{R}^d \mapsto H$$

Then the training algorithm would only depend on the data through dot products in H, i.e. $\Phi(x_i)$.

Transforming the Data

Note: feature space is of higher dimension than the input space in practice

Kernel Trick

- If there were a kernel function K such that $K(x_i,x_j) = \Phi(x_i)$. $\Phi(x_j)$, we would only need to use K in the training algorithm and would never need to explicitly do the mapping Φ .
- So we simply replace $x_i.x_j$ with $K(x_i,x_j)$ in the training algorithm, the algorithm will happily produce a support vector machine which lives in a new space
- Is training time on the mapped data significantly different from the un-mapped data?

Kernel Trick

Recall the SVM optimization problem

$$\max_{\alpha} \quad \mathcal{J}(\alpha) = \sum_{i=1}^{m} \alpha_{i} - \frac{1}{2} \sum_{i,j=1}^{m} \alpha_{i} \alpha_{j} y_{i} y_{j} (\mathbf{x}_{i}^{T} \mathbf{x}_{j})$$
s.t.
$$0 \le \alpha_{i} \le C, \quad i = 1, ..., m$$

$$\sum_{i=1}^{m} \alpha_{i} y_{i} = 0.$$

- The data points only appear as inner product
- As long as we can calculate the inner product in the feature space, we do not need the mapping explicitly
- Many common geometric operations (angles, distances) carbon be expressed by inner products
- Define the kernel function K by $K(\mathbf{x}_i, \mathbf{x}_j) = \phi(\mathbf{x}_i)^T \phi(\mathbf{x}_j)$

How to Use the Machine?

- We can't get w if we do not do explicit mapping.
- Once again we use kernel trick.

$$f(x) = (\sum_{i=1}^{N_S} a_i y_i \Phi(s_i)) \Phi(x) + b = \sum_{i=1}^{N_S} a_i y_i K(s_i, x) + b$$

What's the problem from a computational point of view?

An Example of Feature Mapping

- Consider an input x=[x₁,x₂]
- Suppose $\phi(.)$ is given as follows

$$\phi\left(\begin{bmatrix} x_1 \\ x_2 \end{bmatrix}\right) = 1, \sqrt{2}x_1, \sqrt{2}x_2, x_1^2, x_2^2, \sqrt{2}x_1x_2$$

An inner product in the feature space is

$$\left\langle \phi \left(\begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \right), \phi \left(\begin{bmatrix} x_1' \\ x_2' \end{bmatrix} \right) \right\rangle =$$

 So, if we define the kernel function as follows, there is no need to carry out φ(.) explicitly

$$K(\mathbf{x}, \mathbf{x}') = (\mathbf{1} + \mathbf{x}^T \mathbf{x}')^2$$

Common Kernels

- (1) $K(x,y) = (x.y + 1)^p$ p is degree. p = 1, linear kernel.
- (2) Gaussian radial basis kernel
- (3) Hyperbolic Tanh kernel

$$K(x,y) = e^{-|x-y|^2/2\sigma^2}$$

$$K(x, y) = \tanh(kx.y - \delta)$$

Note: RBF kernel, the weights (a_i) and centers (S_i) are automatically learned. Tanh kernel is equivalent to two-layer neural network, where number of hidden units is number of support vectors. a_i corresponds to the weights of the second layer.

$$tanh(x) = \frac{\begin{array}{c} x & -x \\ e & -e \end{array}}{\begin{array}{c} x & -x \\ -x & -x \end{array}}$$

Kernel Matrix

- Suppose for now that K is indeed a valid kernel corresponding to some feature mapping ϕ , then for $x_1, ..., x_m$, we can compute an $m \times m$ matrix $K = \{K_{i,j}\}$, where $K_{i,j} = \phi(x_i)^T \phi(x_j)$
- This is called a kernel matrix! Or Gram Matrix
- Now, if a kernel function is indeed a valid kernel, and its elements are dot-product in the transformed feature space, it must satisfy:
 - Symmetry $K=K^T$ proof $K_{i,j}=\phi(x_i)^T\phi(x_j)=\phi(x_j)^T\phi(x_i)=K_{j,i}$
 - Positive –semidefinite $y^T K y \ge 0 \quad \forall y$ proof?

Proof

• K is positive semi-definite, i.e. $\alpha K\alpha \geq 0$ for all $\alpha \in \mathbb{R}^m$ and all kernel matrices $K \in \mathbb{R}^{m \times m}$. Proof (from class):

$$\sum_{i,j}^{m} \alpha_i \alpha_j K_{ij} = \sum_{i,j}^{m} \alpha_i \alpha_j \langle \Phi(x_i), \Phi(x_j) \rangle$$

$$= \langle \sum_{i}^{m} \alpha_i \Phi(x_i), \sum_{j}^{m} \alpha_j \Phi(x_j) \rangle = || \sum_{i}^{m} \alpha_i \Phi(x_i)||^2 \ge 0$$

Mercer Kernel

Theorem (Mercer): Let $K: \mathbb{R}^n \times \mathbb{R}^n \mapsto \mathbb{R}$ be given. Then for K to be a valid (Mercer) kernel, it is necessary and sufficient that for any $\{x_i, \ldots, x_m\}$, $(m < \infty)$, the corresponding kernel matrix is symmetric positive semi-denite.

Define Your Own Kernel Function or Combine Standard Kernel Function

- We can write our own kernel function
- Some non-kernel function may still work in practice
- Combine standard kernels: k1 + k2 is a kernel, a*k1 is a kernel, etc. Can you prove?

Non-Linear SVM Demo

http://www.youtube.com/watch?
 v=3liCbRZPrZA

http://cs.stanford.edu/people/karpathy/svmjs/demo/

Nonlinear rbf kernel

http://www.cs.ucf.edu/courses/cap6412/fall2009/papers/Berwick2003.pdf

SVM Examples

Gaussian Kernel Examples

SVM Multi-Classification

Let $S = \{(\bar{x}_1, y_1), \dots, (\bar{x}_m, y_m)\}$ be a set of m training examples. We assume that each example \bar{x}_i is drawn from a domain $\mathcal{X} \subseteq \mathbb{R}^n$ and that each label y_i is an integer from the set $\mathcal{Y} = \{1, \dots, k\}$. A (multiclass) classifier is a function $H : \mathcal{X} \to \mathcal{Y}$ that maps an instance \bar{x} to an element y of \mathcal{Y} . In this paper we focus on a framework that uses classifiers of the form

$$H_{\mathbf{M}}(\bar{x}) = \arg \max_{r=1}^{k} \{ \bar{M}_r \cdot \bar{x} \} ,$$

where \mathbf{M} is a matrix of size $k \times n$ over \Re and \overline{M}_r is the rth row of \mathbf{M} . We interchangeably call the value of the inner-product of the rth row of \mathbf{M} with the instance \bar{x} the confidence and the similarity score for the r class. Therefore, according to our definition above, the predicted label is the index of the row attaining the highest similarity score with \bar{x} .

SVM Multi-Classification

SVM Multi-Classification

$$\min_{M} \frac{1}{2} ||M||_{2}^{2}$$
 subject to : $\forall i, r \ \bar{M}_{y_{i}} \cdot \bar{x}_{i} + \delta_{y_{i},r} - \bar{M}_{r} \cdot \bar{x}_{i} \geq 1$.

Note that m of the constraints for $r = y_i$ are automatically satisfied since,

$$\bar{M}_{y_i} \cdot \bar{x}_i + \delta_{y_i,y_i} - \bar{M}_{y_i} \cdot \bar{x}_i = 1$$
.

Note: here M is the weight matrix

Define the l_2 -norm of a matrix \mathbf{M} to be the l_2 -norm of the vector represented by the concatenation of \mathbf{M} 's rows, $||M||_2^2 = ||(\bar{M}_1, \dots, \bar{M}_k)||_2^2 = \sum_{i,j} M_{i,j}^2$. Note that if the constraints

Soft Margin Formulation

$$\min_{M,\xi} \frac{1}{2}\beta \|M\|_2^2 + \sum_{i=1}^m \xi_i$$
subject to: $\forall i, r \ \bar{M}_{y_i} \cdot \bar{x}_i + \delta_{y_i,r} - \bar{M}_r \cdot \bar{x}_i \ge 1 - \xi_i$

Primal Optimization

$$\mathcal{L}(M,\xi,\eta) = \frac{1}{2}\beta \sum_{r} \|\bar{M}_{r}\|_{2}^{2} + \sum_{i=1}^{m} \xi_{i}$$

$$+ \sum_{i,r} \eta_{i,r} \left[\bar{M}_{r} \cdot \bar{x}_{i} - \bar{M}_{y_{i}} \cdot \bar{x}_{i} - \delta_{y_{i},r} + 1 - \xi_{i} \right]$$
subject to:
$$\forall i, r \quad \eta_{i,r} \geq 0 .$$

Dual Optimization

$$Q(\eta) = -\frac{1}{2}\beta^{-1} \sum_{i,j} (\bar{x}_i \cdot \bar{x}_j) \left[\sum_r (\delta_{y_i,r} - \eta_{i,r}) (\delta_{y_j,r} - \eta_{j,r}) \right] - \sum_{i,r} \eta_{i,r} \delta_{y_i,r}$$

Dual Optimization

$$Q(\eta) = -\frac{1}{2}\beta^{-1} \sum_{i,j} (\bar{x}_i \cdot \bar{x}_j) \left[\sum_r (\delta_{y_i,r} - \eta_{i,r}) (\delta_{y_j,r} - \eta_{j,r}) \right] - \sum_{i,r} \eta_{i,r} \delta_{y_i,r}$$

How to extend it to non-linear multi-classification problem?

SVM Regression

Regression: f(x) = wx + b

Hard Margin Formulation

$$\begin{array}{ll} \text{minimize} & \frac{1}{2}\|w\|^2 \\ \\ \text{subject to} & \left\{ \begin{array}{ll} y_i - \langle w, x_i \rangle - b & \leq & \varepsilon \\ \langle w, x_i \rangle + b - y_i & \leq & \varepsilon \end{array} \right. \end{array}$$

Questions: can both constraints associated with the same data point be violated at the same time?

Software Margin Formulation

minimize
$$\frac{1}{2} ||w||^2 + C \sum_{i=1}^{\ell} (\xi_i + \xi_i^*)$$
subject to
$$\begin{cases} y_i - \langle w, x_i \rangle - b & \leq \varepsilon + \xi_i \\ \langle w, x_i \rangle + b - y_i & \leq \varepsilon + \xi_i^* \\ \xi_i, \xi_i^* & \geq 0 \end{cases}$$

The constant C > 0 determines the trade-off between the flatness of f and the amount up to which deviations larger than ε are tolerated.

Primal Optimization

$$L := \frac{1}{2} ||w||^2 + C \sum_{i=1}^{\ell} (\xi_i + \xi_i^*) - \sum_{i=1}^{\ell} (\eta_i \xi_i + \eta_i^* \xi_i^*)$$
$$- \sum_{i=1}^{\ell} \alpha_i (\varepsilon + \xi_i - y_i + \langle w, x_i \rangle + b)$$
$$- \sum_{i=1}^{\ell} \alpha_i^* (\varepsilon + \xi_i^* + y_i - \langle w, x_i \rangle - b)$$

Here L is the Lagrangian and η_i , η_i^* , α_i , α_i^* are Lagrange multipliers. Hence the dual variables in (5) have to satisfy positivity constraints, i.e.

$$\alpha_i^{(*)}, \eta_i^{(*)} \ge 0.$$

Note that by $\alpha_i^{(*)}$, we refer to α_i and α_i^* .

Dual Optimization

$$\partial_b L = \sum_{i=1}^{\ell} (\alpha_i^* - \alpha_i) = 0$$

$$\partial_w L = w - \sum_{i=1}^{\ell} (\alpha_i - \alpha_i^*) x_i = 0$$
(8)

$$\partial_w L = w - \sum_{i=1}^{\ell} (\alpha_i - \alpha_i^*) x_i = 0 \tag{8}$$

$$\partial_{\xi_i^{(*)}} L = C - \alpha_i^{(*)} - \eta_i^{(*)} = 0 \tag{9}$$

Substituting (7), (8), and (9) into (5) yields the dual optimization problem.

maximize
$$\begin{cases} -\frac{1}{2} \sum_{i,j=1}^{\ell} (\alpha_i - \alpha_i^*)(\alpha_j - \alpha_j^*) \langle x_i, x_j \rangle \\ -\varepsilon \sum_{i=1}^{\ell} (\alpha_i + \alpha_i^*) + \sum_{i=1}^{\ell} y_i(\alpha_i - \alpha_i^*) \end{cases}$$
(10) subject to
$$\sum_{i=1}^{\ell} (\alpha_i - \alpha_i^*) = 0 \text{ and } \alpha_i, \alpha_i^* \in [0, C]$$

Support Vectors and Weights

Complementary Slackness

$$\alpha_{i}(\varepsilon + \xi_{i} - y_{i} + \langle w, x_{i} \rangle + b) = 0$$

$$\alpha_{i}^{*}(\varepsilon + \xi_{i}^{*} + y_{i} - \langle w, x_{i} \rangle - b) = 0$$

$$(C - \alpha_{i})\xi_{i} = 0$$

$$(C - \alpha_{i}^{*})\xi_{i}^{*} = 0.$$

Support Vectors

Which data points are support vectors and what are their weights?

Computing b

- How?
- Can any support vector have both a, a* nonzero?

SVM for Non-Linear Regression

maximize
$$\begin{cases} -\frac{1}{2} \sum_{i,j=1}^{\ell} (\alpha_i - \alpha_i^*)(\alpha_j - \alpha_j^*) k(x_i, x_j) \\ -\varepsilon \sum_{i=1}^{\ell} (\alpha_i + \alpha_i^*) + \sum_{i=1}^{\ell} y_i(\alpha_i - \alpha_i^*) \end{cases}$$
subject to
$$\sum_{i=1}^{\ell} (\alpha_i - \alpha_i^*) = 0 \text{ and } \alpha_i, \alpha_i^* \in [0, C]$$

Likewise the expansion of f (11) may be written as

$$w = \sum_{i=1}^{\ell} (\alpha_i - \alpha_i^*) \Phi(x_i)$$
 and $f(x) = \sum_{i=1}^{\ell} (\alpha_i - \alpha_i^*) k(x_i, x) + b$.

Properties of SVM

- Flexibility in choosing a similarity function
- Sparseness of solution when dealing with large data sets
 - only support vectors are used to specify the separating hyperplane
- Ability to handle large feature spaces
 - complexity does not depend on the dimensionality of the feature space
- Overfitting can be controlled by soft margin approach
- Nice math property: a simple convex optimization problem which is guaranteed to converge to a single global solution
- Feature Selection
- Sensitive to noise

SVM Applications

- SVM has been used successfully in many realworld problems
 - text and hypertext categorization
 - image classification
 - bioinformatics (protein classification, cancer classification)
 - hand-written character recognition

Application 1: Cancer Classification

- High Dimensional
 - g>1000; n<100
- Imbalanced
 - less positive samples

Genes				
Patients	g-1	g-2	••••	g-p
P-1				
p-2				
•••••				
p-n				

- Many irrelevant features
- Noisy

SVM is sensitive to noisy (mis-labeled) data 😂

FEATURE SELECTION

In the linear case, w_i² gives the ranking of dim i

Application 2: Text Categorization

- Task: The classification of natural text (or hypertext) documents into a fixed number of predefined categories based on their content.
 - email filtering, web searching, sorting documents by topic, etc..
- A document can be assigned to more than one category, so this can be viewed as a series of binary classification problems, one for each category

Representation of Text

IR's vector space model (aka bag-of-words representation)

- A doc is represented by a vector indexed by a pre-fixed set or dictionary of terms
- Values of an entry can be binary or weights

$$\phi_i(x) = \frac{\mathrm{tf}_i \mathrm{log}\,(\mathrm{idf}_i)}{\kappa},$$

- Normalization, stop words, word stems
- Doc $x => \varphi(x)$

Text Categorization using SVM

- The similarity between two documents is $\phi(x) \cdot \phi(z)$
- $K(x,z) = \langle \varphi(x) \cdot \varphi(z) \rangle$ is a valid kernel, SVM can be used with K(x,z) for discrimination.
- Why SVM?
 - -High dimensional input space
 - -Few irrelevant features (dense concept)
 - -Sparse document vectors (sparse instances)
 - -Text categorization problems are linearly separable

Some Issues

Choice of kernel

- Gaussian or polynomial kernel is default
- if ineffective, more elaborate kernels are needed
- domain experts can give assistance in formulating appropriate similarity measures

Choice of kernel parameters

- e.g. σ in Gaussian kernel
- σ is the distance between closest points with different classifications
- In the absence of reliable criteria, applications rely on the use of a validation set or cross-validation to set such parameters.
- Optimization criterion Hard margin v.s. Soft margin
 - a lengthy series of experiments in which various parameters are tested

Additional Resources

 An excellent tutorial on VC-dimension and Support Vector Machines:

C.J.C. Burges. A tutorial on support vector machines for pattern recognition. Data Mining and Knowledge Discovery, 2(2):955-974, 1998.

The VC/SRM/SVM Bible:

Statistical Learning Theory by Vladimir Vapnik, Wiley-Interscience; 1998

http://www.kernel-machines.org/

SVM Tools

- SVM-light: http://svmlight.joachims.org/
- LIBSVM:
 - http://www.csie.ntu.edu.tw/~cjlin/libsvm/
- Gist: http://bioinformatics.ubc.ca/gist/
- More:

```
http://www.kernel-machines.org/software.html
```