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The SMO Algorithm

e Consider solving the unconstrained opt problem:

max Wi(ay,ag,...,0,,)

e We've already see three opt algorithms!
o ?
o ?
e ?

e Coordinate ascend:



Coordinate Ascend




Sequential minimal optimization

e Constrained optimization:

m 1 m
‘ v v (vly
max, J(a)= E ai—g z a.ayy(X;X;)
i=1 i.j=1

st. O<a,<C, i=1....m

e Question: can we do coordinate along one direction at a time
(l.e., hold all ¢, fixed, and update «,?)



Sequential minimal optimization

Repeat till convergence

1. Select some pair ¢, and ¢, to update next (using a heuristic that tries
to pick the two that will allow us to make the biggest progress
towards the global maximum).

How to select?

2. Re-optimize J(«) with respect to ¢, and ¢, while holding all the other
o, 's (k=1 ) fixed.

WIll this procedure converge?



Sequential minimal optimization

m 1 m

7l — v v (xTx
max, J(a)=) a-=> aayy,(xx))
i=1

“~ i, j=1

s.t. O0<a.<C. i=1.... k

KKT: S -0

e Let'shold a, ,..., a, fixed and reopt J w.rt. , and «,



Convergence of SMO

e [he constraints:

1Y) + agys = §
0<a, <C

0<ay<(C

e The objective:

L

d C >



Cross-Validation Error of SVM

e The leave-one-out cross-validation error does not depend on
the dimensionality of the feature space but only on the # of
support vectors!

# support vectors

Leave-one-out CV error = ————
# of training examples




Time Complexity of Testing

* O(MN,). M is the number of operations
required to evaluate inner product. M is O(d,).
N, is the number of support vectors.



Multi-Class SVM

* Most widely used method: one versus all
* Also direct multi-classification using SVM. («.

Crammer and Y. Singer. On the Algorithmic Implementation of Multi-class SVMs, JMLR,

2001)

Yes




Summary

e Max-margin decision boundary

e Constrained convex optimization
e Duality
e The KTT conditions and the support vectors

e Non-separable case and slack variables

e The SMO algorithm



Non-Linear Decision Boundary

So far, we have only considered large-margin classifier with a
linear decision boundary

How to generalize it to become nonlinear?

Key idea: transform Xx; to a higher dimensional space to “make
life easier”

e Input space: the space the point x; are located
e Feature space: the space of ¢(x;) after transformation

Why transform?

e Linear operation in the feature space is equivalent to non-linear operation in input
space

e Classification can become easier with a proper transformation. In the XOR
problem, for example, adding a new feature of x,x, make the problem linearly
separable (homework)



XOR problem: aqd a dimension x1 * x2

X1



Support Vector Machine Approach

X, Map data point into high dimension, e.g.
adding some non-linear features.

. How about we augument feature
° into three dimension
U S
(X, Xy, X 7Fx,7).

>
>

o) ) o) .\'1

o 0 All data ponts 1n class C2 have a
° larger value for the third feature
X +x,2 = 10 Than data points in C1. Now
data 1s linearly separable.

October 21, 2015 Data Mining: Concepts and Techniques 14



Non-linear SVMs: Feature spaces

= General idea: the original input space can always be mapped
to some higher-dimensional feature space where the training

set is separable:
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Nonlinear Support Vector Machines

In the L, function, what really matters is dot products: x;.x;.

* Idea: map the data to some other (possibly infinite
dimensional) Euclidean space H, using a mapping.

d
. R H
Then the training algorithm would only depend on the data
through dot products in H, i.e. O(x;). O(X;).



Transforming the Data

Input space ' Feature space



Kernel Trick

* If there were a kernel function K such that K(x;,x;) =
D(x;). D(x;), we would only need to use K in the
training algorithm and would never need to explicitly
do the mapping O.

* So we simply replace x;.x; with K(x;,x;) in the training
algorithm, the algorithm will happily produce a
support vector machine which lives in a new space

* |s training time on the mapped data significantly
different from the un-mapped data?



Kernel Trick

Recall the SVM optimization problem

m 1 m .
max, J(a)=) a,- 5 Y aayy;(xx,
i1

ij=1

st. 0=a, =C, i=1....m

m
>y, =0
i=1

The data points only appear as inner product

As long as we can calculate the inner product in the feature
space, we do not need the mapping explicitly

Many common geometric operations (angles, distances) c
be expressed by inner products

Define the kernel function K by K(x;.x;) = ¢(x, )T¢(xj)



How to Use the Machine?

e We can’t get w if we do not do explicit mapping.
* Once again we use kernel trick.

Ns

)= (3 ay@s)P(x)+b =3 a,yK(s,x)+b

=1

What’s the problem from a computational point of view?



An Example of Feature Mapping

e Consider an input x=[x,,x,]
e Suppose ¢ .) is given as follows
A‘z

e An inner product in the feature space is
GG
X2 1) \[X2

)
e S0, if we define the kernel function as follows, there is no
need to carry out ¢(.) explicitly

K(x.,x") = (1+XTX')Z



Common Kernels

(1) K(x,y) = (x.y +1)° p
is degree. p =1, linear
kernel.

2)h 2
(2) Gaussian radial basis kernel K (x, y) = p XyI2o

(3) Hyperbolic Tanh kernel K (X ) y) = tanh(kx Y= o) )

Note: RBF kernel, the weights (a,) and centers (S;) X x
are automatically learned. Tanh kernel is equivalent  casne -
to two-layer neural network, where number of e +e
hidden units 1s number of support vectors. a.

corresponds to the weights of the second layer.




Kernel Matrix

e Suppose for now that X is indeed a valid kernel corresponding
to some feature mapping ¢, then for x,, ..., X.,, we can
compute an mxm matrix K = {K; ;} where K, ; = é(a:)T o(x;)

e Thisis called a kernel matrix!]  Or Gram Matrix
e Now, If a kernel function is indeed a valid kernel, and its

elements are dot-product in the transformed feature space, it
must satisfy:

e Symmetry K=KT
proof K ;= 0(.1‘,-)Tc7(.1'j) = o(.r;)TC)(.r,-) = K ;
e Positive —semidefinite yTK y=>0 Yy

proof?



Proof

V

@ K is positive semi-definite, i.e. aKa > 0 for all « € R™ and
all kernel matrices K € R™*"™. Proof (from class):

ZalaJKlJ = ZO‘ZO‘J P (x;))
Za, (x;) Z D (x;)) —HZa(I)x, )||* >0
j



Mercer Kernel

Theorem (Mercer): Let K: R" x R" = R be given. Then for
K to be a valid (Mercer) kernel, it is necessary and sufficient that
for any {;,.... &} (M < ), the corresponding kernel matrix
1s symmetric positive semi-denite,



Define Your Own Kernel Function or
Combine Standard Kernel Function

e We can write our own kernel function

 Some non-kernel function may still work in
practice

e Combine standard kernels: k1 + k2 is a kernel,
a*k1 is a kernel, etc. Can you prove?



Non-Linear SVM Demo

e http://www.youtube.com/watch?
v=3liCbRZPrZA

http://cs.stanford.edu/people/karpathy/svmjs/demo/






Nonlinear rbf kernel

http://www.cs.ucf.edu/courses/cap6412/fall2009/papers/Berwick2003.pdf



SVM Examples

L%

ds——= =3 1o o8 1 s ds———= =5 10 95 1 15z 2

[

4" order polynomial 8" order polynomial



Gaussian Kernel Examples




SVM Multi-Classification

Let S = {(Z1,41),...,(Zm,Ym)} be a set of m training examples. We assume that each

example Z; 1s drawn from a domamn A’ C R™ and that each label y; 1s an integer from the
set Y ={1,...,k}. A (multiclass) classifier is a function H : X — ) that maps an instance
T to an element y of ). In this paper we focus on a framework that uses classifiers of the
form

N k

T) = arg Illai‘({l\_[r LT},
r=

H

i

where M is a matrix of size k x n over ® and M, is the rth row of M. We interchangeably
call the value of the mner-product of the rth row of M with the instance x the confidence
and the similarity score tor the r class. Therefore, according to our definition above, the
predicted label 1s the index of the row attaining the highest similarity score with .

Crammer, Singer, 2001



SVM Multi-Classification

Class 1

Class 3

w2

wl

Class 2




SVM Multi-Classification

, 1
min
M 2!
subject to : Vi, r My, - &+ 6y, — M, - 7; > 1

Note that m of the constraints for » = y; are automatically satisfied since,

My, %+ 0y — My, -2 =1

1

Note: here M is the weight matrix

Define the l9-norm of a matrix M to be the [3-norm of the vector represented by the con-

catenation of M'’s rOWS, ”‘ (f\_[L e J_[k) H% = ZZ] ‘\[22‘7 . Note that 1f the constraints




Soft Margin Formulation

1 m
min —B|| M]3 + Z ¢
VLIRS 9C

subject to : Vi,r My, - Z; 4+ 0y, r — M, -7; = 1 =&

Crammer, Singer, 2001



Primal Optimization

I

C(M,

1 - m

Z . —

T Z i,r [A_[T T — j\_[yi L dyz‘ﬂ’ + 1 — gz]
1,7

subject to : Yi,r 1ni, >0 .

Crammer, Singer, 2001



Dual Optimization

Crammer, Singer, 2001



Dual Optimization

L. I : : :
Qn) = _5,‘3 ! Z(Ii - ) Z(Oyzi;f - 77'1',7‘)(01/]',7‘ — i) | — Z MirOy; r
L]

r i,r

How to extend it to non-linear multi-classification problem?

Crammer, Singer, 2001



SVM Regression

Regression: f(x)= wx+b

Smola and Scholkopf, 2003



Hard Margin Formulation

minimize % |w]|?

Yi — <w,Il72'> - b

subject to { (w,z;) + b — v

VAN VAN
()

Questions: can both constraints associated with the same data point be violated
at the same time?

Smola and Scholkopf, 2003



Software Margin Formulation

¢
minimize %||w||2 +C Y (& +&)
i=1

yi —(w, ;) —b < e+4&
subject to (w,z;) +b—y; < e+&
i, & = 0

The constant C' > 0 determines the trade-otft between the tlat-
ness of f and the amount up to which deviations larger than
£ are tolerated. |

Smola and Scholkopf, 2003



Primal Optimization

£

1 : . o
L := §||w||2 + CZ(& +&) — Z("?ifi +1:&)
i=1

i=1

¢
—Zai(€+€i —yi + (w, i) +b)
i=1

¢
—Za?(s—{—ﬁ; +vyi — (w,z;) — b)
i=1

Here L is the Lagrangian and n;. 1!, «;, o are Lagrange mul-
o o y TI2 y 2
tipliers. Hence the dual variables in (5) have to satisty positiv-
ity constraints, 1.e.
(*) ()
a;, ",m; ~ = 0.

Note that by a'g*), we refer to a; and o .

Smola and Scholkopf, 2003



Dual Optimization

oL = S (of — ) =0 (7)
Ol = w—_(i—a})z; =0 (8)
Oml= — C—o”—y” =0 9)

Substituting (7), (8), and (9) into (5) yields the dual optimiza-
tion problem.

.

4
—3 2 (e —ai)(ay — aj) (@i, )
t,J=

maximize < ; ,
(i +af)+ > vilai — af) (10)
= i—1

—E
\ i=1

¢
subjectto > (a; — ;) =0and a;,a; € [0, C]
i=1

Smola and Scholkopf, 2003



Support Vectors and Weights

Which data points are support vectors?
* What are their weights?

Smola and Scholkopf, 2003



Complementary Slackness

|
-

aile +& —yi + (w,zi) + b)

i (E+& v b
R L

(C —ai)é&i

|
-

|
o

Smola and Scholkopf, 2003



Support Vectors

Which data points are support vectors and what are their weights?



Computing b

e How?

e Can any support vector have both a, a* non-
zero?



SVM for Non-Linear Regression

¢
3 X_: (i — o) (aj — o) k(zi, ;)

maximize zej i ,
—& ) (i +ai) + > yilai — a7)
i—=1 i—1

¢
subjectto ) (i —aj) =0and ai, ] € [0, C]
i=1

Likewise the expansion of f (11) may be written as

w = Z(ai — a; )®(x;) and f(z) = Z(al — «; )k(xi, z) + b.



Properties of SVM

Flexibility in choosing a similarity function

Sparseness of solution when dealing with large data sets
- only support vectors are used to specify the separating hyperplane

Ability to handle large feature spaces
- complexity does not depend on the dimensionality of the feature space
Overfitting can be controlled by soft margin approach

Nice math property: a simple convex optimization problem which is
guaranteed to converge to a single global solution

Feature Selection
Sensitive to noise

M. Tan’s slides, Univ. British Columbia



SVM Applications

* SVM has been used successfully in many real-

world problems

- text and hypertext categorization

- image classification

- bioinformatics (protein classification,
cancer classification)

- hand-written character recognition

M. Tan’s slides, Univ. British Columbia



Application 1: Cancer Classification

High Dimensional

1000 100 Genes

- . <

&> Al Patients g1 | g2 | .. g-p
P-1

* Imbalanced p-2

- less positive samples

p-n

e Many irrelevant features FEATURE SELECTION

Noisy \ In the linear case,

w2 gives the ranking of dim i

SVM is sensitive to noisy (mis-labeled) data ®

M. Tan’s slides, Univ. British Columbia



Application 2: Text Categorization

e Task: The classification of natural text (or
hypertext) documents into a fixed number of
predefined categories based on their content.

- email filtering, web searching, sorting documents by topic,
etc..

* A document can be assigned to more than one
category, so this can be viewed as a series of
binary classification problems, one for each
category

M. Tan’s slides, Univ. British Columbia



Representation of Text

IR’s vector space model (aka bag-of-words representation)

= Adocis represented by a vector indexed by a pre-fixed set or
dictionary of terms

= Values of an entry can be binary or weights

5t s tf,log.(ldl,)‘

= Normalization, stop words, word stems
= Doc x =>d(x)

M. Tan’s slides, Univ. British Columbia



Text Categorization using SVM

The similarity between two documents is ¢(x)-P(z)

K(x,z) = {d(x)-d(z) is a valid kernel, SVM can be used with
K(x,z) for discrimination.

Why SVM?
-High dimensional input space
-Few irrelevant features (dense concept)
-Sparse document vectors (sparse instances)
-Text categorization problems are linearly separable

M. Tan’s slides, Univ. British Columbia



Some Issues

e Choice of kernel
- Gaussian or polynomial kernel is default
- if ineffective, more elaborate kernels are needed

- domain experts can give assistance in formulating appropriate similarity
measures

* Choice of kernel parameters
- e.g. o in Gaussian kernel
- o is the distance between closest points with different classifications

- In the absence of reliable criteria, applications rely on the use of a
validation set or cross-validation to set such parameters.

* Optimization criterion — Hard margin v.s. Soft margin
- a lengthy series of experiments in which various parameters are tested

M. Tan’s slides, Univ. British Columbia



Additional Resources

* An excellent tutorial on VC-dimension and Support Vector
Machines:

C.J.C. Burges. A tutorial on support vector machines for pattern
recognition. Data Mining and Knowledge Discovery, 2(2):955-974,
1998.

* The VC/SRM/SVM Bible:
Statistical Learning Theory by Vladimir Vapnik, Wiley-Interscience; 1998

http://www.kernel-machines.org/

M. Tan’s slides, Univ. British Columbia



SVM Tools

SVM-light: http://svmlight.joachims.org/
LIBSVM:
http://www.csie.ntu.edu.tw/~cjlin/libsvm/
Gist: http://bioinformatics.ubc.ca/gist/

More:

http://www.kernel-machines.org/
software.html

M. Tan’s slides, Univ. British Columbia



