The SMO Algorithm

- Consider solving the unconstrained opt problem:

 $$\max_{\alpha} W(\alpha_1, \alpha_2, \ldots, \alpha_m)$$

- We’ve already see three opt algorithms!
 - ?
 - ?
 - ?

- Coordinate ascend:
Coordinate Ascend
Sequential minimal optimization

- Constrained optimization:

\[
\max_{\alpha} \quad J(\alpha) = \sum_{i=1}^{m} \alpha_i - \frac{1}{2} \sum_{i,j=1}^{m} \alpha_i \alpha_j y_i y_j (x_i^T x_j)
\]

s.t. \quad 0 \leq \alpha_i \leq C, \quad i = 1, \ldots, m

\quad \sum_{i=1}^{m} \alpha_i y_i = 0.

- Question: can we do coordinate along one direction at a time (i.e., hold all \(\alpha_{[-i]}\) fixed, and update \(\alpha_i\)?)
Sequential minimal optimization

Repeat till convergence

1. Select some pair α_i and α_j to update next (using a heuristic that tries to pick the two that will allow us to make the biggest progress towards the global maximum).

 How to select?

2. Re-optimize $J(\alpha)$ with respect to α_i and α_j, while holding all the other α_k's ($k \neq i, j$) fixed.

Will this procedure converge?
Sequential minimal optimization

\[
\max_\alpha \quad J(\alpha) = \sum_{i=1}^{m} \alpha_i - \frac{1}{2} \sum_{i,j=1}^{m} \alpha_i \alpha_j y_i y_j (x_i^T x_j)
\]

\[\text{KKT:}\]
\[\begin{align*}
\text{s.t.} \quad & 0 \leq \alpha_i \leq C, \quad i = 1, \ldots, k \\
& \sum_{i=1}^{m} \alpha_i y_i = 0.
\end{align*}\]

- Let’s hold \(\alpha_3, \ldots, \alpha_m\) fixed and reopt \(J\) w.r.t. \(\alpha_1\) and \(\alpha_2\)
Convergence of SMO

- The constraints:
 \[\alpha_1 y_1 + \alpha_2 y_2 = \xi \]
 \[0 \leq \alpha_1 \leq C' \]
 \[0 \leq \alpha_2 \leq C' \]

- The objective:
 \[J(\alpha_1, \alpha_2, \ldots, \alpha_m) = J((\xi - \alpha_2 y_2) y_1, \alpha_2, \ldots, \alpha_m) \]

- Constrained opt:
 \[J(\alpha) = \sum_{i=1}^{m} \alpha_i - \frac{1}{2} \sum_{i,j=1}^{m} \alpha_i \alpha_j y_i y_j (x_i^T x_j) \]
Cross-Validation Error of SVM

- The leave-one-out cross-validation error does not depend on the dimensionality of the feature space but only on the # of support vectors!

Leave-one-out CV error = \frac{\text{# support vectors}}{\text{# of training examples}}
Time Complexity of Testing

- $O(MN_s)$. M is the number of operations required to evaluate inner product. M is $O(d_L)$. N_s is the number of support vectors.
Multi-Class SVM

- Most widely used method: one versus all
- Also direct multi-classification using SVM. (K. Crammer and Y. Singer. On the Algorithmic Implementation of Multi-class SVMs, JMLR, 2001)

Diagram:
- If Yes, Class 1 or others
- If No, Class 2 or others
Summary

- Max-margin decision boundary
- Constrained convex optimization
 - Duality
 - The KTT conditions and the support vectors
 - Non-separable case and slack variables
 - The SMO algorithm
Non-Linear Decision Boundary

- So far, we have only considered large-margin classifier with a linear decision boundary
- How to generalize it to become nonlinear?
- Key idea: transform x_i to a higher dimensional space to “make life easier”
 - Input space: the space the point x_i are located
 - Feature space: the space of $\phi(x_i)$ after transformation
- Why transform?
 - Linear operation in the feature space is equivalent to non-linear operation in input space
 - Classification can become easier with a proper transformation. In the XOR problem, for example, adding a new feature of x_1x_2 make the problem linearly separable (homework)
XOR problem: add a dimension $x_1 \times x_2$
Support Vector Machine Approach

Map data point into high dimension, e.g. adding some non-linear features.

How about we augment feature into three dimension $\langle x_1, x_2, x_1^2 + x_2^2 \rangle$.

All data points in class C2 have a larger value for the third feature. Than data points in C1. Now data is linearly separable.
Non-linear SVMs: Feature spaces

- General idea: the original input space can always be mapped to some higher-dimensional feature space where the training set is separable:

\[\Phi: x \rightarrow \varphi(x) \]

M. Tan’s slides, Univ. British Columbia
Nonlinear Support Vector Machines

• In the L_D function, what really matters is dot products: $x_i.x_j$.
• Idea: map the data to some other (possibly infinite dimensional) Euclidean space H, using a mapping.

$$\Phi : R^d \rightarrow H$$

Then the training algorithm would only depend on the data through dot products in H, i.e. $\Phi(x_i). \Phi(x_j)$.

Transforming the Data

Note: feature space is of higher dimension than the input space in practice
Kernel Trick

• If there were a kernel function K such that $K(x_i, x_j) = \Phi(x_i) \cdot \Phi(x_j)$, we would only need to use K in the training algorithm and would never need to explicitly do the mapping Φ.

• So we simply replace $x_i \cdot x_j$ with $K(x_i, x_j)$ in the training algorithm, the algorithm will happily produce a support vector machine which lives in a new space.

• Is training time on the mapped data significantly different from the un-mapped data?
Kernel Trick

- Recall the SVM optimization problem

$$\max_{\alpha} \quad J(\alpha) = \sum_{i=1}^{m} \alpha_i - \frac{1}{2} \sum_{i,j=1}^{m} \alpha_i \alpha_j y_i y_j (x_i^T x_j)$$

s.t. \(0 \leq \alpha_i \leq C, \quad i = 1, \ldots, m\)

$$\sum_{i=1}^{m} \alpha_i y_i = 0.$$

- The data points only appear as inner product
- As long as we can calculate the inner product in the feature space, we do not need the mapping explicitly
- Many common geometric operations (angles, distances) can be expressed by inner products
- Define the kernel function \(K\) by

$$K(x_i, x_j) = \phi(x_i)^T \phi(x_j)$$

How to Use the Machine?

- We can’t get w if we do not do explicit mapping.
- Once again we use kernel trick.

\[
f(x) = \left(\sum_{i=1}^{N_s} a_i y_i \Phi(s_i) \right) \Phi(x) + b = \sum_{i=1}^{N_s} a_i y_i K(s_i, x) + b
\]

What’s the problem from a computational point of view?
An Example of Feature Mapping

- Consider an input \(x = [x_1, x_2] \)
- Suppose \(\phi(.) \) is given as follows
 \[
 \phi\left(\begin{bmatrix}
 x_1 \\
 x_2
 \end{bmatrix}\right) = 1, \sqrt{2}x_1, \sqrt{2}x_2, x_1^2, x_2^2, \sqrt{2}x_1x_2
 \]
- An inner product in the feature space is
 \[
 \left\langle \phi\left(\begin{bmatrix}
 x_1 \\
 x_2
 \end{bmatrix}\right), \phi\left(\begin{bmatrix}
 x_1' \\
 x_2'
 \end{bmatrix}\right)\right
angle
 \]
- So, if we define the \textbf{kernel function} as follows, there is no need to carry out \(\phi(.) \) explicitly
 \[
 K(x, x') = (1 + x^T x')^2
 \]
Common Kernels

(1) \(K(x, y) = (x \cdot y + 1)^p \). \(p \) is degree. \(p = 1 \), linear kernel.

(2) Gaussian radial basis kernel \(K(x, y) = e^{-|x-y|^2/2\sigma^2} \)

(3) Hyperbolic Tanh kernel \(K(x, y) = \tanh(kx \cdot y - \delta) \)

Note: RBF kernel, the weights \((a_i)\) and centers \((S_i)\) are automatically learned. Tanh kernel is equivalent to two-layer neural network, where number of hidden units is number of support vectors. \(a_i \) corresponds to the weights of the second layer.
Kernel Matrix

- Suppose for now that K is indeed a valid kernel corresponding to some feature mapping ϕ, then for x_1, \ldots, x_m, we can compute an $m \times m$ matrix $K = \{K_{i,j}\}$, where $K_{i,j} = \phi(x_i)^T \phi(x_j)$

- This is called a kernel matrix! Or Gram Matrix

- Now, if a kernel function is indeed a valid kernel, and its elements are dot-product in the transformed feature space, it must satisfy:
 - Symmetry $K = K^T$

 proof

 $K_{i,j} = \phi(x_i)^T \phi(x_j) = \phi(x_j)^T \phi(x_i) = K_{j,i}$

 - Positive-semidefinite

 proof?

 $y^T Ky \geq 0 \quad \forall y$
Proof

- K is positive semi-definite, i.e. $\alpha K \alpha \geq 0$ for all $\alpha \in \mathbb{R}^m$ and all kernel matrices $K \in \mathbb{R}^{m \times m}$. Proof (from class):

$$\sum_{i,j}^{m} \alpha_i \alpha_j K_{ij} = \sum_{i,j}^{m} \alpha_i \alpha_j \langle \Phi(x_i), \Phi(x_j) \rangle$$

$$= \langle \sum_{i}^{m} \alpha_i \Phi(x_i), \sum_{j}^{m} \alpha_j \Phi(x_j) \rangle = \| \sum_{i}^{m} \alpha_i \Phi(x_i) \|^2 \geq 0$$
Mercer Kernel

Theorem (Mercer): Let $K: \mathbb{R}^n \times \mathbb{R}^n \mapsto \mathbb{R}$ be given. Then for K to be a valid (Mercer) kernel, it is necessary and sufficient that for any $\{x_i, \ldots, x_m\}$, $(m < \infty)$, the corresponding kernel matrix is symmetric positive semi-definite.
Define Your Own Kernel Function or Combine Standard Kernel Function

• We can write our own kernel function
• Some non-kernel function may still work in practice
• Combine standard kernels: \(k_1 + k_2 \) is a kernel, \(a*k_1 \) is a kernel, etc. Can you prove?
Non-Linear SVM Demo

- \text{http://www.youtube.com/watch?v=3liCbRZPrZA}

\text{http://cs.stanford.edu/people/karpathy/svmjs/demo/}
Nonlinear rbf kernel

SVM Examples

linear

2^{nd} order polynomial

4^{th} order polynomial

8^{th} order polynomial
Gaussian Kernel Examples
Let $S = \{(\bar{x}_1, y_1), \ldots, (\bar{x}_m, y_m)\}$ be a set of m training examples. We assume that each example \bar{x}_i is drawn from a domain $\mathcal{X} \subseteq \mathbb{R}^n$ and that each label y_i is an integer from the set $\mathcal{Y} = \{1, \ldots, k\}$. A (multiclass) classifier is a function $H : \mathcal{X} \to \mathcal{Y}$ that maps an instance \bar{x} to an element y of \mathcal{Y}. In this paper we focus on a framework that uses classifiers of the form

$$H_M(\bar{x}) = \arg \max_{r=1}^k \{\bar{M}_r \cdot \bar{x}\},$$

where M is a matrix of size $k \times n$ over \mathbb{R} and \bar{M}_r is the rth row of M. We interchangeably call the value of the inner-product of the rth row of M with the instance \bar{x} the confidence and the similarity score for the r class. Therefore, according to our definition above, the predicted label is the index of the row attaining the highest similarity score with \bar{x}.

Crammer, Singer, 2001
SVM Multi-Classification

Class 1

Class 2

Class 3

w1

w2

w3
SVM Multi-Classification

\[
\begin{align*}
\min_M & \quad \frac{1}{2} \|M\|_2^2 \\
\text{subject to:} & \quad \forall i, r \quad \vec{M}_{y_i} \cdot \vec{x}_i + \delta_{y_i,r} - \vec{M}_r \cdot \vec{x}_i \geq 1.
\end{align*}
\]

Note that \(m \) of the constraints for \(r = y_i \) are automatically satisfied since,

\[
\vec{M}_{y_i} \cdot \vec{x}_i + \delta_{y_i,y_i} - \vec{M}_{y_i} \cdot \vec{x}_i = 1.
\]

Note: here \(M \) is the weight matrix

Define the \(l_2 \)-norm of a matrix \(M \) to be the \(l_2 \)-norm of the vector represented by the concatenation of \(M \)'s rows, \(\|M\|_2^2 = \|(\vec{M}_1, \ldots, \vec{M}_k)\|_2^2 = \sum_{i,j} M_{i,j}^2 \). Note that if the constraints
Soft Margin Formulation

\[
\min_{M, \xi} \quad \frac{1}{2} \beta \|M\|_2^2 + \sum_{i=1}^{m} \xi_i \\
\text{subject to : } \forall i, r \quad \bar{M}_{y_i} \cdot \bar{x}_i + \delta_{y_i, r} - \bar{M}_r \cdot \bar{x}_i \geq 1 - \xi_i
\]

Crammer, Singer, 2001
Primal Optimization

\[\mathcal{L}(M, \xi, \eta) = \frac{1}{2} \beta \sum_r \left\| M_r \right\|^2 + \sum_{i=1}^m \xi_i \]

\[+ \sum_{i,r} \eta_{i,r} \left[M_r \cdot \bar{x}_i - M_{y_i} \cdot \bar{x}_i - \delta_{y_i,r} + 1 - \xi_i \right] \]

subject to: \quad \forall i, r \quad \eta_{i,r} \geq 0 .

Crammer, Singer, 2001
Dual Optimization

\[Q(\eta) = -\frac{1}{2} \beta^{-1} \sum_{i,j} (\bar{x}_i \cdot \bar{x}_j) \left[\sum_r (\delta_{y_i,r} - \eta_{i,r})(\delta_{y_j,r} - \eta_{j,r}) \right] - \sum_{i,r} \eta_{i,r}\delta_{y_i,r} \]
Dual Optimization

\[Q(\eta) = \frac{1}{2 \beta^{-1}} \sum_{i,j} (\bar{x}_i \cdot \bar{x}_j) \left[\sum_r (\delta_{y_{i,r}} - \eta_{i,r})(\delta_{y_{j,r}} - \eta_{j,r}) \right] - \sum_{i,r} \eta_{i,r} \delta_{y_{i,r}} \]

How to extend it to non-linear multi-classification problem?

Crammer, Singer, 2001
SVM Regression

Regression: \(f(x) = wx + b \)

Smola and Scholkopf, 2003
Hard Margin Formulation

\[
\begin{align*}
\text{minimize} & \quad \frac{1}{2} \|w\|^2 \\
\text{subject to} & \quad \begin{cases}
 y_i - \langle w, x_i \rangle - b & \leq \varepsilon \\
 \langle w, x_i \rangle + b - y_i & \leq \varepsilon
\end{cases}
\end{align*}
\]

Questions: can both constraints associated with the same data point be violated at the same time?

Smola and Scholkopf, 2003
Software Margin Formulation

\[
\begin{align*}
\text{minimize} & \quad \frac{1}{2}\|w\|^2 + C \sum_{i=1}^{\ell} (\xi_i + \xi_i^*) \\
\text{subject to} & \quad y_i - \langle w, x_i \rangle - b \leq \varepsilon + \xi_i \\
& \quad \langle w, x_i \rangle + b - y_i \leq \varepsilon + \xi_i^* \\
& \quad \xi_i, \xi_i^* \geq 0
\end{align*}
\]

The constant $C > 0$ determines the trade-off between the flatness of f and the amount up to which deviations larger than ε are tolerated.

Smola and Scholkopf, 2003
Primal Optimization

\[L := \frac{1}{2} \|w\|^2 + C \sum_{i=1}^{\ell} (\xi_i + \xi_i^*) - \sum_{i=1}^{\ell} (\eta_i \xi_i + \eta_i^* \xi_i^*) \]

\[- \sum_{i=1}^{\ell} \alpha_i (\varepsilon + \xi_i - y_i + \langle w, x_i \rangle + b) \]

\[- \sum_{i=1}^{\ell} \alpha_i^* (\varepsilon + \xi_i^* + y_i - \langle w, x_i \rangle - b) \]

Here \(L \) is the Lagrangian and \(\eta_i, \eta_i^*, \alpha_i, \alpha_i^* \) are Lagrange multipliers. Hence the dual variables in (5) have to satisfy positivity constraints, i.e.

\[\alpha_i^{(*)}, \eta_i^{(*)} \geq 0. \]

Note that by \(\alpha_i^{(*)} \), we refer to \(\alpha_i \) and \(\alpha_i^* \).

Smola and Scholkopf, 2003
Dual Optimization

\begin{align}
\partial_b L &= \sum_{i=1}^{\ell} (\alpha_i^* - \alpha_i) = 0 \\
\partial_w L &= w - \sum_{i=1}^{\ell} (\alpha_i - \alpha_i^*) x_i = 0 \\
\partial_{\xi_i^{(*)}} L &= C - \alpha_i^{(*)} - \eta_i^{(*)} = 0
\end{align}

Substituting (7), (8), and (9) into (5) yields the dual optimization problem.

\[
\begin{array}{c}
\text{maximize} \\
\left\{ \begin{array}{l}
-\frac{1}{2} \sum_{i,j=1}^{\ell} (\alpha_i - \alpha_i^*)(\alpha_j - \alpha_j^*) \langle x_i, x_j \rangle \\
-\varepsilon \sum_{i=1}^{\ell} (\alpha_i + \alpha_i^*) + \sum_{i=1}^{\ell} y_i (\alpha_i - \alpha_i^*)
\end{array} \right.
\end{array}
\]

subject to \[\sum_{i=1}^{\ell} (\alpha_i - \alpha_i^*) = 0 \text{ and } \alpha_i, \alpha_i^* \in [0, C] \]

Smola and Scholkopf, 2003
Support Vectors and Weights

Which data points are support vectors? What are their weights?

Smola and Scholkopf, 2003
Complementary Slackness

\[
\begin{align*}
\alpha_i (\varepsilon + \xi_i - y_i + \langle w, x_i \rangle + b) &= 0 \\
\alpha_i^* (\varepsilon + \xi_i^* + y_i - \langle w, x_i \rangle - b) &= 0 \\
(C - \alpha_i)\xi_i &= 0 \\
(C' - \alpha_i^*)\xi_i^* &= 0.
\end{align*}
\]

Smola and Scholkopf, 2003
Support Vectors

Which data points are support vectors and what are their weights?
Computing b

- How?
- Can any support vector have both a, a^* non-zero?
SVM for Non-Linear Regression

\[
\begin{align*}
\text{maximize} & \quad \left\{ -\frac{1}{2} \sum_{i,j=1}^{\ell} (\alpha_i - \alpha_i^*) (\alpha_j - \alpha_j^*) k(x_i, x_j) \\
& \quad -\varepsilon \sum_{i=1}^{\ell} (\alpha_i + \alpha_i^*) + \sum_{i=1}^{\ell} y_i (\alpha_i - \alpha_i^*) \right\} \\
\text{subject to} & \quad \sum_{i=1}^{\ell} (\alpha_i - \alpha_i^*) = 0 \text{ and } \alpha_i, \alpha_i^* \in [0, C]
\end{align*}
\]

Likewise the expansion of \(f(11) \) may be written as

\[
w = \sum_{i=1}^{\ell} (\alpha_i - \alpha_i^*) \Phi(x_i) \text{ and } f(x) = \sum_{i=1}^{\ell} (\alpha_i - \alpha_i^*) k(x_i, x) + b.
\]
Properties of SVM

• Flexibility in choosing a similarity function
• Sparseness of solution when dealing with large data sets
 - only support vectors are used to specify the separating hyperplane
• Ability to handle large feature spaces
 - complexity does not depend on the dimensionality of the feature space
• Overfitting can be controlled by soft margin approach
• Nice math property: a simple convex optimization problem which is guaranteed to converge to a single global solution
• Feature Selection
• Sensitive to noise

M. Tan’s slides, Univ. British Columbia
SVM Applications

• SVM has been used successfully in many real-world problems
 - text and hypertext categorization
 - image classification
 - bioinformatics (protein classification, cancer classification)
 - hand-written character recognition
Application 1: Cancer Classification

- High Dimensional
 - \(g > 1000; \ n < 100 \)

- Imbalanced
 - less positive samples

- Many irrelevant features

- Noisy

SVM is sensitive to noisy (mis-labeled) data 😞

FEATURE SELECTION

In the linear case, \(w_i^2 \) gives the ranking of dim \(i \)

M. Tan’s slides, Univ. British Columbia
Application 2: Text Categorization

• Task: The classification of natural text (or hypertext) documents into a fixed number of predefined categories based on their content.
 - email filtering, web searching, sorting documents by topic, etc..

• A document can be assigned to more than one category, so this can be viewed as a series of binary classification problems, one for each category

M. Tan’s slides, Univ. British Columbia
Representation of Text

IR’s vector space model (aka bag-of-words representation)
- A doc is represented by a vector indexed by a pre-fixed set or dictionary of terms
- Values of an entry can be binary or weights

\[\phi_i(x) = \frac{tf_i \log (idf_i)}{\kappa}, \]

- Normalization, stop words, word stems
- Doc \(x \) => \(\phi(x) \)

M. Tan’s slides, Univ. British Columbia
Text Categorization using SVM

• The similarity between two documents is $\phi(x) \cdot \phi(z)$

• $K(x,z) = \langle \phi(x) \cdot \phi(z) \rangle$ is a valid kernel, SVM can be used with $K(x,z)$ for discrimination.

• Why SVM?
 - High dimensional input space
 - Few irrelevant features (dense concept)
 - Sparse document vectors (sparse instances)
 - Text categorization problems are linearly separable

M. Tan’s slides, Univ. British Columbia
Some Issues

• **Choice of kernel**
 - Gaussian or polynomial kernel is default
 - if ineffective, more elaborate kernels are needed
 - domain experts can give assistance in formulating appropriate similarity measures

• **Choice of kernel parameters**
 - e.g. σ in Gaussian kernel
 - σ is the distance between closest points with different classifications
 - In the absence of reliable criteria, applications rely on the use of a validation set or cross-validation to set such parameters.

• **Optimization criterion** – Hard margin v.s. Soft margin
 - a lengthy series of experiments in which various parameters are tested

M. Tan’s slides, Univ. British Columbia
Additional Resources

• An excellent tutorial on VC-dimension and Support Vector Machines:

• The VC/SRM/SVM Bible:

http://www.kernel-machines.org/

M. Tan’s slides, Univ. British Columbia
SVM Tools

• SVM-light: http://svmlight.joachims.org/
• LIBSVM: http://www.csie.ntu.edu.tw/~cjlin/libsvm/
• Gist: http://bioinformatics.ubc.ca/gist/
• More: http://www.kernel-machines.org/software.html

M. Tan’s slides, Univ. British Columbia