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Graphical Model

* Graphical model is a probabilistic model for
which a graph denotes dependency and
independency relationships between random
variables (e.g. disease — symptom)

* Typical models: hidden Markov models,
Bayesian networks, Markov networks

* Applications: speech recognition,
bioinformatics, image processing, medical
informatics, robotics, computer vision
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Real World Process

Discrete signals: characters, nucleotides,...

Continuous signals: speech samples, music
temperature measurements, music,...

Signal can be pure (from a single source)
or be corrupted from other sources (e.g

Noise)

Stationary source: its statistical properties
Source does not vary.

Nonstationary source: the signal properties

vary over time.



Discrete Markov Process

* Consider a system described at any time as
being in one of a set of N distinct states, S,

S, ., Sy .
djg }/ d3)
dj3
a4l
as1
d‘f a45

ass
At regularly spaced discrete times, the system undergoes a change of
state according to a set of probabilities.



Definition of Variables

Time instants associated with state changesast=1,
2, ....,T

Observation: O = x;X,...X;
Actual state at time tasyvy, y,€1{S., S,, -.., S Sw}

A full probabilistic description of the system requires
the specification of the current state, as well as all
the predecessor states.

The first order Makov chain (truncation):

Ply, = Sj | Ye1 =Si Ye2 = S -] = Ply, = Sj | Vet =Sil-
Further simplification: state transition is independent of time.
a; =PIy =S; | Y1 =SiI, 1 <=1, j <= N, subject to constraints:

a;>=0and <

al.j=1

=1



Web as a Markov Model




Hidden Markov Models

e Observation is a probabilistic function of the
state.

* Doubly embedded process: Underlying
stochastic process that is not observable
(hidden), but only be observed through
another set of stochastic processes that
produce the sequence of observations.



A Dice Throwing Example

An experience in a casino

Game:

1. You bet $1
2. You roll (always with a fair die)

3. Casino player rolls (maybe with fair
die, maybe with loaded die)

4. Highest number wins $2

Question:

6462146146126136661664661626
6163661626165156 6 6

Which die is being used in each play?




The Dishonest Casino !!!

A casino has two dice:
e Fair die
P(1) =P(2) =P(3) =P(5) =P(6) =1/6
e Loaded die
P(1) = P(2) =P(3) =P(5)=1/10
P(6) =1/2
Casino player switches back-&-forth

between fair and loaded die once
every 20 turns




Puzzles about Dishonest Casino

GIVEN: A sequence of rolls by the casino player

2455264621461461361366616646671636616266163616515615115146123562344

QUESTION

e How likely is this sequence, given our model of how the casino
works?
e This is the EVALUATION problem

e What portion of the sequence was generated with the fair die, and

what portion with the loaded die?
e This is the DECODING question

e How “loaded’ is the loaded die? How “fair” is the fair die? How often

does the casino player change from fair to loaded, and back?
e Thisis the LEARNING question



From Static to Dynamic Mixture
Model

Static mixture Dynamic mixture




Hidden Markov Models

The underlying source: e Q @ G

dice

The sequence: e @ @ @

sequence of rolls,

Markov property:



An HMM is a Stochastic Generative

Model
e Observed sequence: 2ae
O—0——O—O©—©@—

A T---
9.V
B

e Hidden sequenge (a parse¢ or segmentation):

O—O—O—O—O—O—




Definition of HMIM

Observation space

IE\:Jpc':ia:ieri\cssp:t;e' C= {CI*CZ*"'~CK} ot
: RY
Index set of hidden states
1=02.-.M Q @ @ @

Transition probabilities between any two states Graphical model
P(}’rj=1|}’ri-1=1)=ai,j~ |
or  p(y, |yl =1~ Mlllti110111ial(a,-,l. a,.....q, 4 JViel
Start probabilities
p(y,) ~ Multinomial(7z,. 7,..... 7, ).
Emission probabilities associated with each state

p(x, |y, =1)~Multinomial(b,. 5 ,.....5 ). 7/ €.
or in general:

pix, | yi =1 ~£(16,)7/iel

State automata



Dishonest Casino Model

0.95

P(1|F) = 1/6
P(2|F) = 1/6
P(3|F) = 1/6
P(4|F) = 1/6
P(5|F) = 1/6
P(6|F) = 1/6

0.05

0.05

0.95

P(1|L) = 1/10
P(2IL) = 1/10
P(3IL) = 1/10
P(4|L) = 1/10
P(5|L) = 1/10
P(6IL) = 1/2



Three Main Questions on HMMs

1. Evaluation

GIVEN an HMM M, and a sequence x,
FIND Prob (x| M)
ALGO. Forward
2. Decoding
GIVEN an HMM M, and a sequence x,
FIND the sequence y of states that maximizes, e.g., P(y | x, M),
or the most probable subsequence of states
ALGO. Viterbi, Forward-backward
3. Learning
GIVEN an HMM M, with unspecified transition/emission probs.,
and a sequence x,
FIND parameters 6 = (7, g;, 7) that maximize P(x| 6)

ALGO. Baum-Welch (EM)



Joint Probability

124552646214614613613666716646616366163661636716515615115146123562344
FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF

e \When the state-labeling is known, this is easy ...

P(X.Y) ?



Probability of a Parse
e Given asequencex = x;...... X7
andaparsey=yy, ......, Vi, @ @ @ @

e To find how likely is the parse:
(given our HMM and the sequence) Q @ @ Q
pxy) =px...... Xt, Vi eeeeens Y1) (Joint probability)

=P) P L) Py L) K | ya) - PO | yaa) Pox | )
= p) PO | y) - P | yea) < plxa | ) P | ) - Pl | )

e Marginal probability: p(x) = Zp(x )= Z Z Z )IHP(‘ |1r1)Hp(\'|1)

=1

e Posterior probability:  p(y|x) = p(x.y)/ p(x)



An Example: Dishonest Casino

e Letthe sequence of rolls be:

e x=1,2,1,56,2,1,6,2, 4 i E

e Then, what is the likelihood of
e y= Fair, Fair, Fair, Fair, Fair, Fair, Fair, Fair, Fair, Fair?

(say initial probs ageir = 72, @y gaded = 72)

2 x P(1 | Fair) P(Fair | Fair) P(2 | Fair) P(Fair | Fair) ... P(4 | Fair) =

% x (1/6)10 x (0.95)? = .00000000521158647211 = 5.21 x 10



An Example: Dishonest Casino

e S0, the likelihood the die is fair in all this run
is just 5.21 x 10°

e OK, but what is the likelihood of

e 7 =LlLoaded, Loaded, Loaded, Loaded, Loaded, Loaded, Loaded,
Loaded, Loaded, Loaded?

2 x P(1 | Loaded) P(Loaded | Loaded) ... P(4 | Loaded) =

% x (1/10)8 x (1/2)2 (0.95)° = .00000000078781176215 = 0.79 x 102

e Therefore, it is after all 6.59 times more likely that the die is fair
all the way, than that it is loaded all the way



An Example: Dishonest Casino

=

e Letthe sequence of rolls be:
e x=1,6,6,56,26,6,3,6

e Now, what is the likelihood n=F, F, ..., F?
o "2 x(1/6)10x(0.95)° =0.5 x 109, same as before

e Whatis the likelihood y=L, L, ..., L?
Y% x (1/10)4 x (1/2)8 (0.95)9 = .00000049238235134735 =5 x 107

e S0, itis 100 times more likely the die is loaded



Marginal Probability

5264621461461261366616646616366163661626165156

e What if state-labeling Y is not observed

P(X) 7



The Forward Algorithm

e We want to calculate Ax), the likelihood of x, given the HMM

e Sum over all possible ways of generating x:

p(X) Z p(X V) Zylz,vz Zy,y )’11—[ Yfl}’fl—[p(xf|)/f

e To avoid summing over an exponential number of paths y, define
alyl =) =af =P(x,...x,.yf =1) (the forward probability)
e The recursion:
= p(x; | Yfk = l)z 4@,
P(x) = z a,’f |
k



Lattice View

1
| -
State
e
N




The Forward Algorithm - Derivation

e Compute the forward probability:
@ cod Yia @ coe
af =P(Xqe. X 1. Xy =1) x;) - (x. GD
_ X Vo Xyl =1

=2, P Xy Yo DPO =1 e X X PO | Y =1 X X Yoy
= Zm P(Xpon X Ve )PV =1 v )P (X, | v =1)

=P, | Y =D P Xy Y =DP(Yf =1y =)

=P(x, |y = I)Z/ a4,

Chainrule: P(A4.B.C)=P(A)P(B|A)P(C|A.B)



Matrix View (Implementation)

iyt |Z0
L=
7;211))(x1|y1/
2
/
| H—
State
(1) / /
N
1 3 )
Time (t) a: the probability of observing

X;...X, and staying in state 1.

Fill the matrix column by column.




The Forward Algorithm
e We can compute af for all &, #, using dynamic programming!

Initialization: af =P(x. i =1)

=P(x |y =DP(y} =1)

0‘1/( = P(x |)’1k =Dy =P(x |y} =Dr,

Iteration:

af =P(x, |yl =D ala,

Termination:

P(x)= Za{f
7



Time Complexity

* The computation is performed for all states |,
for a given time t; the computation is then
iterated for t=1,2,..T-1. Finally the desired is
the sum of the terminal forward variable a;'.
This is the case since a;' = P(x;X,...Xy, Y7 = 1|A).

* Time complexity: M-2T.



Insights

* Key: there are only M states at each time slot
in the lattice, all the possible state sequences
will merge into these M nodes, no matter how

long the observation sequence.
e Similar to Dynamic Programming (DP trick).



The Backward Algorithm
e We want to compute P(yf =1|x) , @ @

the posterior probability distribution on the

7 th position, given x ° @ @

e We start by computing

Forward, a/* Backward, ,Brk =P(X,, ... X7 | v, =1)

e Therecursion:
i i
yr+1 _ 1)181+1

k .
:Br = Z ak.z‘p(ArH
i




Backward Algorithm

B ti Bt+ 1j



The Backward Algorithm - Derivation

e Define the backward probability: A0 .@_ _.@

BE=P(x, (.. x; | yf=1) : , ,
- Z)’m P(Xpatoros X Vo | Y1 =1) X ey @
= Z,-'D()’r/;l =1y =Pt | Vi =LY =DP (Ko X | X Vi =Ly =1)

= Z,-P(le;l :1|yrk =1 p(x,,4 |}’r/+1 =DP(X; 5 Xy |)’ri+1 =1)
= Z, a, ;. px...ly r/+1 = 1),3;;1



The Backward Algorithm

e \We can compute ,Bf for all &, #, using dynamic programming|!

Initialization:

BE=1 Vk

Iteration:

B = Z,- a, P Xy | Vi =D

Termination:

P(x) = Zalkﬁlk
%



An Example

x=1,2,1,56,2,1,6,2,4

P(1|F)=1/6
P(2|F)=1/6
P(3|F)=1/6
P(4|F)=1/6
P(5|F)=1/6
P(6|F)=1/6

0.05

P(1]L) = 1/10
P(2|L) = 1/10
P(3|L) = 1/10
P(4|L) = 1/10
P(5|L) = 1/10
P(6|L) = 1/2

a,k =P(x, |yrk :I)Zi a;{—1a/,/r
B = Z,- a, PXq |y L1 =D,



An Example

x=1,2,1,5,6,2,1,6,2,4

Alpha (actual)

0.0833
0.0136
0.0022
0.0004
0.0001
0.0000
0.0000
0.0000
0.0000
0.0000

0.0500
0.0052
0.0006
0.0001
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000

Beta (actual)

0.0000
0.0000
0.0000
0.0000
0.0001
0.0007
0.0045
0.0264
0.1633
1.0000

0.0000
0.0000
0.0000
0.0000
0.0001
0.0006
0.0055
0.0112
0.1033
1.0000

n,=mn,=0.5

0.95 .@

(1IF) = 1/6
(2IF) = 1/6
(3|F) = 1/6
(4|F) = 1/6
(5|F) = 1/6
(6]F)

P
P
P
P
P
P(6|F) = 1/6

0.05

@“ 0.95

P(1]L) = 1/10
P(2|L) = 1/10
P(3|L) = 1/10
P(4|L) = 1/10
P(5|L) = 1/10
P(6|L) = 1/2

af =P(x, ‘}/fk :l)z,- 0‘1{—10/,./(
BE=>" a, PX, | Yia=Dp



x=1,2,1,5,6,2,1,6,2,4

0.95(] (10.95
&, &

Alpha (logs) Beta (logs) P(1IF) =1/6 0.05 P(1]L)=1/10
-2.4849 -2.9957 -16.2439 -17.2014 L =1 Bl = 1110
-4.2969 -5.2655 -14.4185 -14.9922 P(4|F) = 1/6 P(4|L) = 1/10
-6.1201 -7.4896 12.6028 -12.7337 P(IF) = 116 PSIL)= 110
.7.9499 -9.6553 -10.8042 -10.4389 (6IF) = (6lL)=

-9.7834 -10.1454 -9.0373 -9.7289 kK kK ;
11.5905 -12.4264 .7.2181 -7.4833 a, =P(x, |y, —I)Z,.a,_la,,k
13.4110 -14.6657 -5.4135 -5.1977 ik P4\ pi
15.2391 -15.2407 -3.6352 -4.4938 I —Z,-ak.//’ X1 | Yo =D
17.0310 -17.5432 1.8120 -2.2698
-18.8430 -19.8129 0 0



Implementation Issue: Scaling

* To compute a,' and b,/, Multiplication of a large number of
terms (probability), value heads to 0 quickly, which exceed
the precision range of any machine.

* The basic procedure is to multiply them by a scaling
coefficient that is independent of i (i.e., it depends only on
t). Logarithm cannot be used because of summation. But

1
we Can use ¢ =

t
i—

C, will be stored for the time points when the scaling is
performed. C, is used for both a,' and b,'. The scaling factor
will be canceled out for parameter estimation.




What is the probability of a hidden
state prediction?

e A single state:

P(‘;U1|X)

e \What about a hidden state sequence ?



Posterior Decoding

e \We can now calculate
P(}’,«k =1 | X) —

e Then, we can ask
e What is the most likely state at position t of sequence x:

P()’fk ZI,X) . afﬂfk
Px)  P(x)

k' =argmax, P(yf =1|x)

e Note that this is an MPA of a single hidden state,
what if we want to a MPA of a whole hidden state sequence?

e Posterior Decoding: {yfkf' —1-¥=1...T }

e This is different from MPA of a whole sequence
states

e This can be understood as bit error rate
vs. word error rate



Viterbi Algorithm

e GIVENx=x, .., x;wewanttofindy =y, .., y4, such that
Ay|x) is maximized:

y = argmax, Ay|x) = argmax, Ay x)
o Let

k _ K _
V.;" =max,, P(Xpes Xog Yioos Voo X Ve =1)

= Probability of most likely sequence of states ending at state y; = &

e T[he recursion: X{ Xp X corereereereeseesensensrsssesneses XN
A “ =1 a V., F
r p(Xr | yf - )maX/ /.kY -1 =
71
e Underflows are a significant problem K[ /
p(Xl””’Xf"yl‘-”"yf) - ”}’10}’14’2 '”a)’f-l.-}’fb)’I.-Xl ...best

These numbers become extremely small — underflow |
Solution: Take the logs of all values: V¥ =log p(x, | y¥ =1)+max,(log(a,,,( )+ l/,fl)



Viterbi Algorithm - derivation

e Define the viterbi probability:

Vi =max,,  PXpo X Yy Yo Ko Vi = 1)
=max,, ., P(mey,’:l =1 X X Yy V)P (X X Ve V)
—max,, . P(X Vi =1 V)P X Xy Vi Voo X2 V)
—max, P(X,, Yy =11y, =Dmax,, P(X Xy Yo Yo X Yy =1)

. _
=max, P(x,, [ Vi =Da W/

=P (X \)’rkq =1)max, a/,eri



Induction

S
S,
S;
Sm
't t+1
th Vt+1J

Choose the transition step yielding the maximum probability.



Viterbi Algorithm

e Input:x=x, .., x5

Initialization:

K* =P(x |}’1k =Dr,

Iteration:
k k '
[/f = P(Xf |)/f — 1) max; a/kl/fil
Ptr(k, 1) = argmax; a; A

Termination:

P(x,y") = max, 11"
TraceBack:
y; =argmax, W

Y, =Ptr(y; . 1)



Matrix View (Implementation)

by (x)

N

State I; /

. v/: the max probability of I
Time (t) observing X, ...X, and staying in
Fill the matrix column by column state i.



Viterbi VS. MPA

Vtk (log) ptr(k,t) Seq Veterbi MPA p()-’f =1]x)
-2.4849 -1.3863 N/A 6 2 2 0.2733 0.7267
-4.0943 -4.1997 2 2 2 1 1 0.6040 0.3960
-6.3969 -7.0131 1 2 3 1 1 0.6538 0.3462
-8.6995 -9.6158 1 1 5 1 1 0.6062 0.3938
-11.0021 -10.3090 1 1 6 2 2 0.2861 0.7139
-13.0170 -13.1224 2 2 2 2 1 0.5342 0.4658
-15.3196 -14.3263 1 2 6 2 2 0.2734 0.7266
-17.0344 -17.1397 2 2 3 2 1 0.5226 0.4774
-19.3370 -18.3437 1 2 6 2 2 0.2252 0.7748
-21.0518 -19.5477 2 2 6 2 2 0.2159 0.7841

max

0.6 @ @. 0.6 Same transition probabilities
1
0.4 -



Computational Complexity and
Implementation Issues

What is the running time, and space required, for Forward,
and Backward?

af =p(x, | vy =D ala;,

IBtk - Zak,ip(xtﬂ ‘ J”ri+l = l)ﬁrlﬂ

V) =p, |y =Dmax, a7V,
Time: O(KEN); Space: O(KN).

Useful implementation technique to avoid underflows
e Viterbi: sum of logs
e Forward/Backward: rescaling at each position by multiplying by a constant



Three Main Problems on HMMs

1.

Evaluation
GIVEN an HMM M, and a sequence x,
FIND Prob (x| M)
ALGO. Forward
Decoding
GIVEN an HMM M, and a sequence x,
FIND the sequence y of states that maximizes, e.g., P(y | x, M),
or the most probable subsequence of states
ALGO. Viterbi, Forward-backward
Learning
GIVEN an HMM M, with unspecified transition/emission probs.,
and a sequence x,
FIND parameters 6 = (7, g;, 7) that maximize P(x| 6)

ALGO. Baum-Welch (EM)



Learning HMM: two scenarios

e Supervised learning: estimation when the “right answer” is
known

e Examples:

GIVEN:  agenomic region x = X;...X; ggg 000 Where we have good
(experimental) annotations of the CpG islands

GIVEN: the casino player allows us to observe him one evening,
as he changes dice and produces 10,000 rolls

e Unsupervised learning: estimation when the “right answer” is
unknown

e Examples:

GIVEN: the porcupine genome; we don’t know how frequent are the
CpG islands there, neither do we know their composition

GIVEN: 10,000 rolls of the casino player, but we don’t see when he
changes dice

e QUESTION: Update the parameters & of the model to maximize
A x16) --- Maximal likelihood (ML) estimation



Supervised ML Estimation

e Glven x= x,...xy for which the true state path y= y,...yyIs
known,

e Define:
A = # times state transition /- joccurs iny
By = # times state /in y emits kin x

e We can show that the maximum likelihood parameters #are:

oM #(1 — f) _ Zn Z:‘;Z yf;.,r-lynj_..r _ Afj
’ R —>e) Z,, Z;z Yr:,r—l ZJAJ

T F,
b — #(/. — k) _ Zn Zr=1)/n.fxn/fr B B,
DN e 2B
Zn Zr=1yn,f kK

e Whatify is continuous? We can treat {(Xn.f‘yn.f )t=1:T.n=1: N} as AkT
observations of, e.g., a Gaussian, and apply learning rules for Gaussian ...




Maximum Likelihood Problems

e Intuition:

e When we know the underlying states, the best estimate of @is the
gv?rage frequency of transitions & emissions that occur in the training
ata

e Drawback:
e Given little data, there may be overfitting:

P(x|6) is maximized, but 6 is unreasonable
0 probabilities — VERY BAD

e Example:

e Given 10 casino rolls, we observe
x=2,1,5, 6,1, 2, 3, 6, 2, 3
y=F, F, F, F, F, F, F, F, F, F
e Then: age=1, ag =0
bey = bpy = .2;
b, =.3; bey = 0; beg = by = .1

’ r 4



Pseudo-counts

e Solution for small training sets:

e Add pseudocounts
A,-J. = # times state transition /—j occurs iny + R,-J-
B, = # times state /iny emits kinx+ 5,

® R,-j, 5,-J- are pseudocounts representing our prior belief
o Total pseudocounts: R,=Z R, 5,=2,5,

- "strength" of prior belief,

-— total number of imaginary instances in the prior

e Larger total pseudocounts = strong prior belief

e Small total pseudocounts: just to avoid O probabillities ---
smoothing



Unsupervised ML estimation

e Given x= x;...xy for which the true state path y= y,...yy Is
unknown,

e EXPECTATION MAXIMIZATION

o. Starting with our best guess of a model M, parameters &

1. Estimate A, B, in the training data
How? 4; =Zﬂj<yrf,f—1}’z{n> B, =Z,,_f<},/f,f>xn/ff,
Update 6according to A4;;, B

Now a "supervised learning" problem

2. Repeat 1 & 2, until convergence
This is called the Baum-Welch Algorithm

We can get to a provably more (or equally) likely parameter set @ each iteration



Baum-Welch Algorithm

* Definition: &(i,j), the probability of being in
state S; at time t and state S; at time t+1,
given the model and observation sequence,

e. &(1,j) = Py/=1, yu,/=1[X,\)
‘/:
. o

t+1 t+2

. 1_] J(Xt+1)




From the definitions of the forward and backward
variables, we can write &(i,j) in the form:

a,a,b,(x,.,)p,

atlaijbj (X,,1) B

M M . .
l

2 N ajagb,(x,,) B,

i=1 j=1




Important Quantities

* vy, is the probability of being in state S, at time t, given
the observation and the model, hence we can relate y,!

to &,(i,j) by summing over j, giving

N
T-1 J=1
E Y. (i ) = expected number of transitions from S..
|

T-1
5 ( ) = expected number of transitions from S. to S..
(L, ] J

=1



Re-estimation of HMM parameters

A set of reasonable re-estimation formulas for n, A, and B are:

Ll

= expected frequency (number of times) in state S, at time (t=1) =v,(1)
T-1
_ y AN
Expected number of transitions from state S; to state S; =
a = =TT
J Expected number of transitions from state S,. Y, (i)
t=1
T
— expected number of times in state j and observing symbol v, E ! (‘])
b(k) = _ t=15.1.0,=V;
] T

expected number of times in state j



Baum-Welch Algorithm

 Initialize model A = (A,B,mt)
* Repeat

E-step: Use forward/backward algorithm to expected
frequencies (y, €), given the current model A and O.

M-step: Use expected frequencies to compute the
new model A.

If (X= A), stops, otherwise, set A = A and go to repeat.

The final result of this estimation procedure 1s called a maximum
likelithood estimate of the HMM. (local maxima)



Local Optimal Guaranteed

If we define the current model as A=(A,B,mt) and
use it to compute the new model A=(A,B,m), it
has been proven by Baum et al. that either 1)
initial model A defines a critical point, in which
case A =A; or 2) Ais more likely than A in the
sense that P(O| A) > P(O| A), i.e., we have
found a new model A from which the
observation sequence is more likely to have
been produced.



N Global Maxima

Local Maxima

Local Maxima

P(X[A) /

Hill Climbing

A

Likelithood monotonically crease per iteration until it converges to local
maxima.



P(X[A)

v

Iteration

Likelithood monotonically increases per iteration until 1t converges to local
maxima. It usually converges very fast in several iterations.



Applications of HMM

e Some early applications of HMMs

o finance
® speech recognition
® modelling ion channels

¢ In the mid-late 1980s HMMs entered genetics and molecular
biology, and they are now firmly entrenched.

e Some current applications of HMMs to biology

® mapping chromosomes

o aligning biological sequences

o predicting sequence structure

o inferring evolutionary relationships

o finding genes in DNA sequence



A Typical Gene Structure

Startcodon  codons  ponor site

ATGCCCTTCTCCAACAG

Transcription
start

Stop codon

GATCCCCATGCCTGAGGGCCCCTC



GeneScan (Burge and Karlin)




HMM Demo (HHMVE)

un"@l

[ HMMVE
File \iew

BB11001 | Null Model | HmmLogo | Hmm Text |

i [ Sequences | Result |

MName Sequence Align Path |
1aab_ GKGDPKKPRGKMSSYAFFVYATSREEHKKKHPDASYNFSEF SKKCSERWK...

1j46_A MADRYKRPMNAFMWSRDARRKMALENPRMRNSEISKQLGYQWKMLTEA... Clear Path |
1K99_A MKKLKKHFDFPKKPLTPYFRFFMEKRAKYAKLHPEMSMNLDLTKILSKKYKE...
2lef_A MHIKKPLNAFMLYMKEMRANVWAESTLKESAAINQILGRRWHALSREEQAK... Align All |

J. Dai, J. Cheng. HMMEditor: A Visual Editing Tool for Profile Hidden Makov
Model. BMC Genomics. 2008



