
Energy Based Models, Restricted 
Boltzmann Machines and Deep 

Networks 

Jesse Eickholt 



???? 

Who’s heard of … 

• Energy Based Models (EBMs) 

• Restricted Boltzmann Machines (RBMs) 

• Deep Belief Networks 

• Auto-encoders 



Objectives 

1. Awareness of new developments in statistical 
machine learning 

2. Exposure to Energy Based Models, RBMs and 
Deep Belief Networks 

3. Generate some excitement about these new 
developments 

 



Outline 

• Motivating factors for study 

• RBMs 

• Deep Belief Networks 

• Applications 



The Toolbox 

We often reach for the familiar… 

For discriminative tasks we have 

o neural networks (~1980’s, back-prop) 

o SVM (~1990’s, Vapnik) 

 

 

But is there anything better out there??? 



Challenges with SVM/NN 

Potential difficulties with SVM 

o Training time for large datasets 

o Large number of support vectors for hard 
classification problems 

 

Potential difficulties with NN & back-prop 

o Diminishing gradient inhibits multiple layers 

o Can get stuck in local minimums 

o Training time can be extensive 



Challenges with SVM/NN 

More general “problems” with NNs and SVM… 

o Need labeled data (what about unlabeled 
data?) 

o Amount of information restricted by labels (ie, 
hard to learn a complex model if we are limited 
by labels) 

 

 What if I could use “8”s 
to learn to recognize 
“6”s ? 



How to respond to these challenges 

• Try to model the structure of the sensory input 
(ie, data), but keep the efficiency and simplicity 
of a gradient method 

– Adjust the weights to maximize the probability that a 
generative model would have produced the sensory 
input.  

– Learn p(data)  not  p(label | data) 

• So instead of learning a label, first learn how to 
generative your data 

 
Hinton, 2007 



How to respond to these challenges 

• Try to model the structure of the sensory input 
(ie, data), but keep the efficiency and simplicity 
of a gradient method 

– Adjust the weights to maximize the probability that a 
generative model would have produced the sensory 
input.  

– Learn p(data)  not  p(label | data) 

• So instead of learning a label, first learn how to 
generative your data 

 
Hinton, 2007 

Immediate benefit in that all data 
does not have to be label.  Also 
reduces dependency on label. 



Recap 

So, we are convinced we … 

1. recognize some concerns with 
“standard” tools and would like 
what other options are out 
there 

2. like the idea of modeling the 
input first (ie, building a model 
of our data as oppose to an out 
right classifier) 

 



Energy Based Models 

p(x) – probability of our data; data is represented by 
feature vector x. 

  
 and 

 
 
Attach an energy function (ie, E(x)) to score a 
configuration (ie, each possible input x). 
 
We want desirable data to have low energy.  Thus, tweak 
the parameters of E(x) accordingly.   

Restricted Boltzann Machines (RBM) 



EBMs with Hidden Units 

To increase power of EBMs, add hidden 
variables. 

 

By using the notation, 

 
 

We can rewrite p(x) in a form similar to the 
standard EBM, 

 

 

 

Free energy 

Restricted Boltzmann Machines (RBM) 



Tweakin’ Parameters 

Now we need to adjust the model so it reflects 
our data, do ML  

• Likelihood fn 

 

• Avg. Log-likelihood fn 

 

 

 

 

 

 



Tweakin’ Parameters 

• Take the derivative 

 



Tweakin’ Parameters 

• Take the derivative 

 

This is an expectation over all 
possible configurations of input 
x.  ?#@!  Grows exponentially as 
function of the length of input 

Restricted Boltzann Machines (RBM) 

Can think of as an expectation 
over dataset. 



Transition to RBM 

Looks like training a EBM is, in general,  a 
tall task.  But after much  

 

 

 

 

Jump to an end result… 

 Restricted Boltzmann Machines (RBM) 

 



RBMs 

• Represented by a bipartite 
graph, with symmetric, 
weighted connections  

• One layer has visible nodes 
and the other hidden (ie, 
latent) variables. 

• Notes are often binary , 
stochastic units (ie, assume 0 
or 1 based on probablity) 



The Energy Function 

weight between 
units i and j 


ji

ijji whvv,hE
,

)(

Energy with configuration v 
on the visible units and h 
on the hidden units 

binary state of 
visible unit i 

binary state of 
hidden unit j 

Slide modified from Hinton, 2007 

Or, ignoring the bias terms 

Remember that v and h are vectors of binary 
units; b, c and W are real number valued 



What’s gained by “Restricted” 

1) Conditional probabilities factor nicely 

 

2) Using binary units, we also can get 

 

 

So we can get a sample of the visible or hidden 
nodes easily... 

 
Restricted Boltzann Machines (RBM) 

and 



Gradient revisited 

The first term we can calculate directly from data and we 
sample from p(v,h) using Gibbs Sampling.  [ Remember 
that x represents the observable variables, ie v in RBM  ]  

 



Gibbs Sampling  

 

 

 

Can sample from p(v,h) by repeatedly 
sampling from v and h using the eqns. for 
p(v|h) and p(h|v).  

As t →∞, (v(t) ,h(t)) converge to samples of 
p(v,h). 

But… hard to know when equilibrium has been 
reach, can be computionaly expensive 

 
 

Restricted Boltzann Machines (RBM) 



Learning Rule 

Recall energy function 

 

Calculating derivatives… 

 

 

 

So, 

 



A quick way to learn an RBM 

0 jihv 1 jihv

)( 10  jijiij hvhvw 

i 

j 

i 

j 

t = 0                 t = 1    

Start with a training vector on the 
visible units. 

Update all the hidden units in 
parallel 

Update the all the visible units in 
parallel to get a “reconstruction”. 

Update the hidden units again.  

This is not following the gradient of the log likelihood. But it works well. It is 
approximately following the gradient of another objective function (Carreira-
Perpinan & Hinton, 2005). 

reconstruction data 

Slide modified from Hinton, 2007 



Challenges with RBMs 

A number of choices to be made 

– Types of nodes, learning weight, initial 
values, batch sizes, etc. 

– Care should be taken to avoid over-fitting 

– Lack of ready to go software packages 

 

A RBM “manual” is available on line… 
http://www.cs.utoronto.ca/~hinton/absps/guideTR.pdf 



Why ??? 

Okay, we can model p(x).   

But how to… 

1. Find p(label|x).  We want a 
classifier! 

2. Improve the model for p(x). 

 



Deep Belief Nets 

RBMs are typically used 
in stack 
– Train them up one layer 

at a time 

– Hidden units become 
visible units to the next 
layer up 

If your goal is a 
discriminator, you train a 
classifier on the top level 
representation of your 
input.  

 

data 

1W

2W

3W



Why stack them up? Why does this 
work? 

This is a good question, with a long complicated 
answer. 

 

Basically, doing so can improve a lower 
variation bound on the probability of training 
data under the model. 

Hinton, Osindero, & The, 2006 



How to generate from the model 
• To generate data:  

o Get an equilibrium sample 
from the top-level RBM by 
performing alternating 
Gibbs sampling for a long 
time. 

o Perform a top-down pass to 
get states for all the other 
layers. 

 
     So the lower level bottom-up 

connections  are not part of 
the generative model. They 
are just used for inference. 

         h2 

      data 

          h1 

        h3 

2W

3W

1W

Slide modified from Hinton, 2007 



Deep Autoencoders 

• They always looked like a really 
nice way to do non-linear 
dimensionality reduction: 

– But it is very difficult to 
optimize deep 
autoencoders using 
backpropagation. 

• We now have a much better 
way to optimize them: 

– First train a stack of 4 
RBM’s 

– Then “unroll” them.   

– Then fine-tune with 
backprop. 

 

      1000  neurons 

500 neurons 

500 neurons  

250 neurons  

250 neurons  

30   

      1000  neurons 

28x28 

28x28 

1

2

3

4

4

3

2

1

W

W

W

W

W

W

W

W

T

T

T

T

linear 
units 

Hinton & Salakhutdinov, 2006; slide form Hinton 
UCL tutorial   



Some Applications 

We will look at two 
applications done by Hinton’s 
Lab 

• A model for digit recognition 

• Cluster/search documents 



Applications: A model of digit recognition 

• Classify digits (0 – 9)  

• Input is a 28x28 image from MNIST (training 
60k, test 10k examples) 



Applications: A model of digit recognition 

2000 top-level neurons 

500 neurons 

500 neurons  

28 x 28 
pixel     

image  

10 label 

neurons  

The model learns to generate 
combinations of labels and images.  

To perform recognition we start with a 
neutral state of the label units and do an 
up-pass from the image followed by a few 
iterations of the top-level associative 
memory. 

The top two layers form an 
associative memory  whose  
energy landscape models the 
low dimensional manifolds of 
the digits. 

The energy valleys have names 

Slide modified from Hinton, 2007 

This is work from Hinton 
et al., 2006  

Matlab/Octave code available at 
http://www.cs.utoronto.ca/~hinton/  



Model in action 

Hinton has provided an excellent way to view the model in 
action… 
 
 
 
 
 
 
 
 
http://www.cs.toronto.edu/~hinton/digits.html 



More Digits 
Samples generated by letting the associative memory 
run with one label clamped. There are 1000 iterations of 
alternating Gibbs sampling between samples. 

Slide from Hinton, 2007 



Examples of correctly recognized handwritten digits 
that the neural network had never seen before  

Slide from Hinton, 2007 

Even More Digits 



Extensions 

Do classification. 

One way (probably no 
the best), train 
generative model with 
labeled/unlabeled data  

Then train a NN on 
higher dimensional 
representation.   

2000 top-level neurons 

500 neurons 

500 neurons  

28 x 28 pixel     

image  

NN or SVM 



Applications: Classifying text documents  

• A document can be characterized by the 
frequency of words that appear (ie, word 
counts for some dictionary become feature 
vector) 

• Goals… 

1. Group/cluster similar documents 

2. Find similar documents 

 



How to compress the count vector  

Multi-layer auto-encoder 

• Train a model to reproduce 
its input vector as its output 

• This setup forces as much 
information as possible be 
compressed and passed thru 
the 10 numbers in the 
central bottleneck. 

• These 10 numbers are then 
a good way to compare 
documents. 

 2000  reconstructed counts 

500 neurons 

     2000  word counts 

500 neurons  

250 neurons  

250 neurons  

10   

Slide modified from Hinton, 2007 



How to compress the count vector  

Multi-layer auto-encoder 

• Train a model to reproduce 
its input vector as its output 

• This setup forces as much 
information as possible be 
compressed and passed thru 
the 10 2 numbers in the 
central bottleneck. 

• These 10 2 numbers are 
then a good way to compare 
documents. 

 2000  reconstructed counts 

500 neurons 

     2000  word counts 

500 neurons  

250 neurons  

250 neurons  

10 2   

Slide modified from Hinton, 2007 

Or ‘2’ for easy 
visualization 



Clusters 

Images from Hinton, 2007 



Search  

Add noise to input to 
middle layer 

- Forces output to become 
bimodal 

- Round values to 0 or 1 to 
form a binary vector (ie, 
code) 

 2000  reconstructed counts 

500 neurons 

     2000  word counts 

500 neurons  

250 neurons  

250 neurons  

10   
Noise vector 
(constant per 
data example) 

Hinton, 2007 



Search 

Use the binary codes as a key/hash documents 

To find a similar document, calculate binary code and then 
retrieve documents that correspond to small deviations 
of the code. 

Salakhutdinov  and Hinton, 2007 

0000011111 

0000011011 

0000011011 

0000011110 



References 
Hinton, G. 2007 NIPS Tutorial on:  

Deep Belief Nets [PowerPoint slides]. Retrieved from 
http://www.cs.utoronto.ca /~hinton/. 

Hinton, G. UCL Tutorial on: Deep Belief Nets [PowerPoint slides]. Retrieved 
from http://www.cs.utoronto.ca /~hinton/. 

Hinton, G., Osindero, S. and The, Y. (2006) A fast learning algorithm for deep 
belief nets.  Neural Computation, 18, pp 1527-1554.  

Hinton, G. and Salakhutdinov, R. (2006) Reducing the dimensionality of data 
with neural networks. Science, 313:5786, pp. 504 – 507. 

Salakhutdinov, R and Hinton, G. (2007) Semantic Hashing.  Proceedings of the 
SIGIR Workshop on Information Retrieval and applications of Graphical 
Models, Amsterdam.  

Restricted Boltzmann Machines (RBM). Retrieved from 
http://deeplearning.net/ tutorial/rbm.html#rbm 

Carreira-Perpinan, M and Hinton, G. (2005) On Contrastive Divergence 
Learning. Artificial Intelligence and Statistics, Barbados. 


