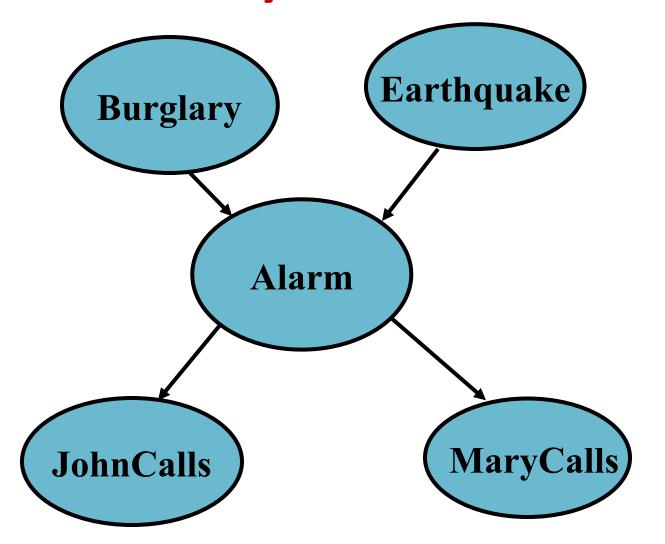
Bayesian Networks

Dr. Jianlin Cheng

Department of Computer Science University of Missouri, Columbia

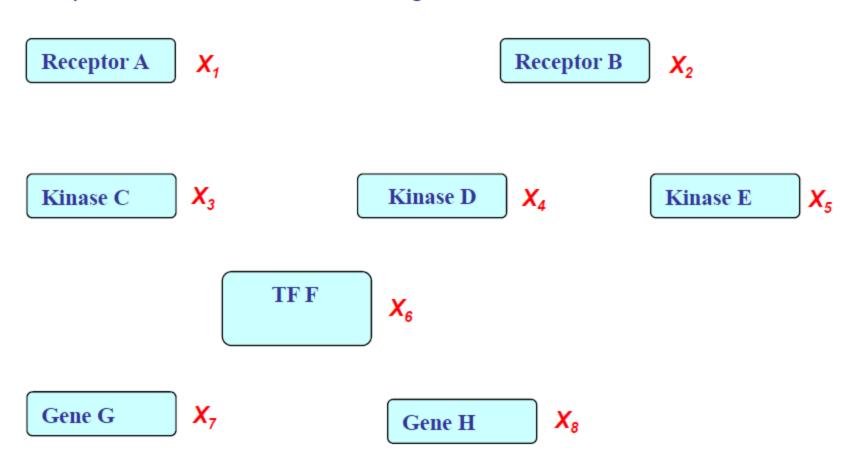
Slides Adapted from Book and CMU, MU, Stanford Machine Learning Courses
Fall, 2015

What is a Bayesian Network?



What is a Bayesian Network?

A possible world for cellular signal transduction:

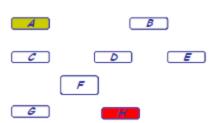


Basic Probability Concepts

 Representation: what is the joint probability dist. on multiple variables?

$$P(X_1, X_2, X_3, X_4, X_5, X_6, X_7, X_8)$$

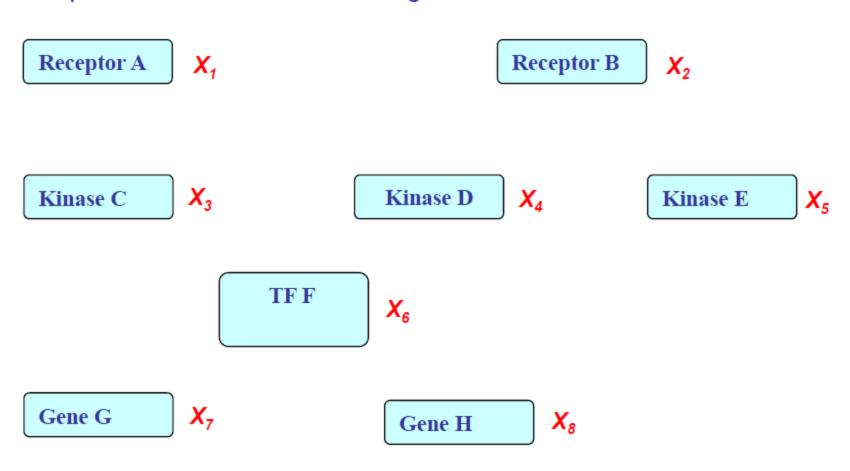
- How many state configurations in total? --- 28
- Are they all needed to be represented?
- Do we get any scientific/medical insight?



- Learning: where do we get all this probabilities?
 - Maximal-likelihood estimation? but how many data do we need?
 - Where do we put domain knowledge in terms of plausible relationships between variables, and plausible values of the probabilities?
- Inference: If not all variables are observable, how to compute the conditional distribution of latent variables given evidence?
 - Computing p(HA) would require summing over all 2⁶ configurations of the unobserved variables

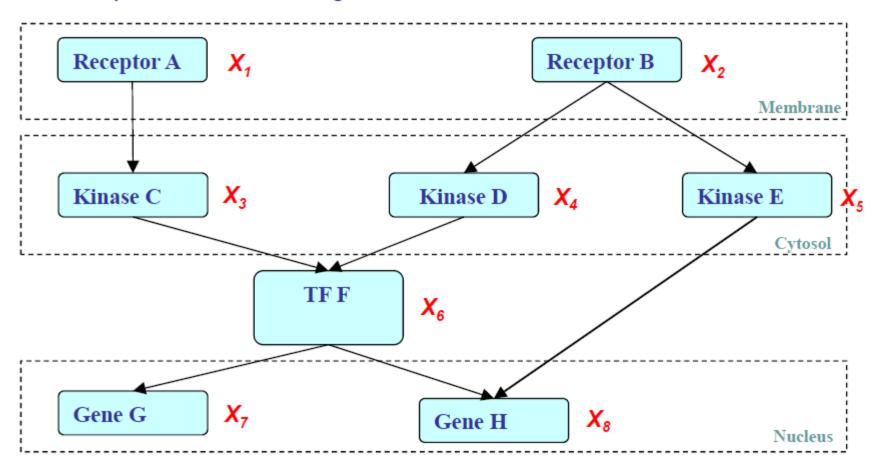
What is a Bayesian Network?

A possible world for cellular signal transduction:



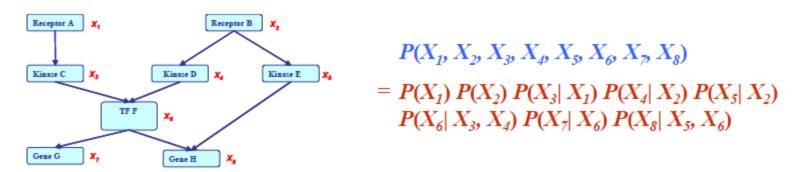
BN: Structure Simplify Representations

Dependencies among variables



Bayesian Networks

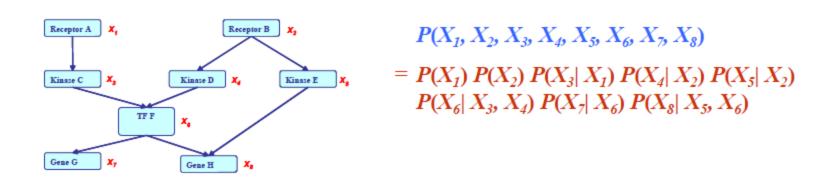
□ If X_i 's are conditionally independent (as described by a BN), the joint can be factored to a product of simpler terms, e.g.,



- Why we may favor a BN?
 - Representation cost: how many probability statements are needed?

- Algorithms for systematic and efficient inference/learning computation
 - Exploring the graph structure and probabilistic semantics
- Incorporation of domain knowledge and causal (logical) structures

Bayesian Network: Factorization Theorem



Theorem:

Given a DAG, The most general form of the probability distribution that is consistent with the (probabilistic independence properties encoded in the) graph factors according to "node given its parents":

$$P(\mathbf{X}) = \prod_{i} P(X_i \mid \mathbf{X}_{\pi_i})$$

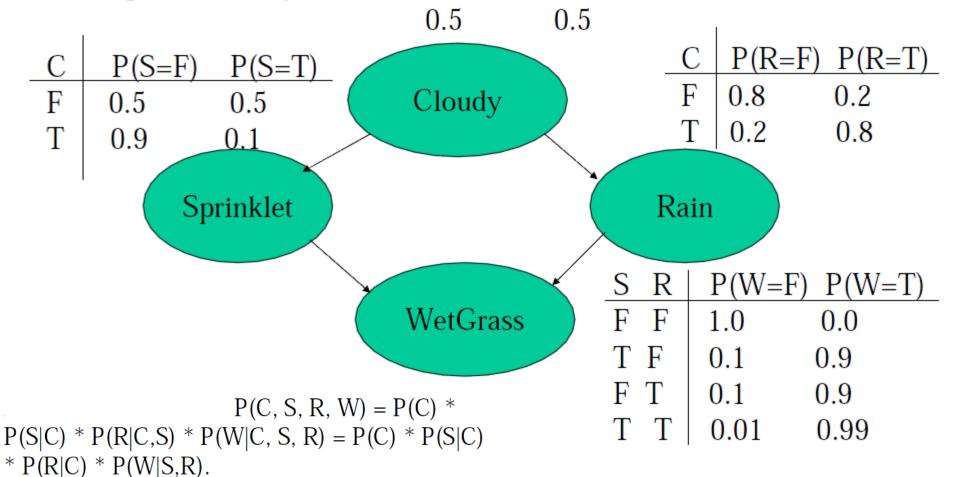
where X_{π_i} is the set of parents of xi. d is the number of nodes (variables) in the graph.

Proof

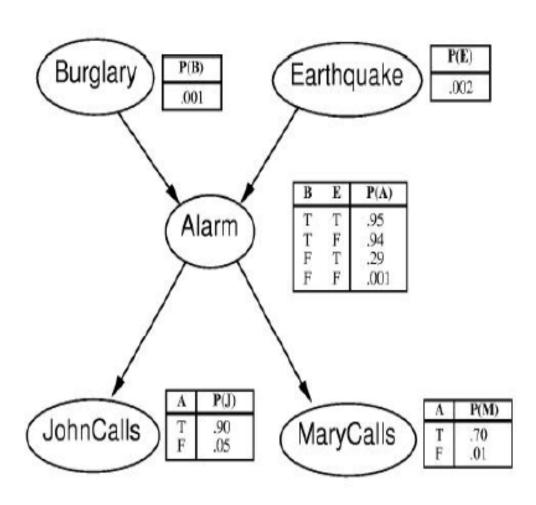
P(X₁, X₂, ..., X_d) = P(X₁|X₂,X₃, ..., X_d) * P(X₂, X₃, ..., X_d) = P(X₁|parent(X₁)) * P(X₂|X₃, ..., X_d) * P(X3, ..., Xd) =

Conditional Probability Distribution

 Discrete variable: CPT, conditional probability table <u>P(C=F)</u> <u>P(C=T)</u>



Examples



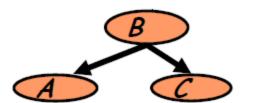
Qualitative Specification

- Where does the qualitative specification come from?
 - Prior knowledge of causal relationships
 - Prior knowledge of modular relationships
 - Assessment from experts
 - Learning from data
 - We simply link a certain architecture (e.g. a layered graph)
 - ...

Local Structures and Independencies

Common parent

Fixing B decouples A and C
 "given the level of gene B, the levels of A and C are independent"



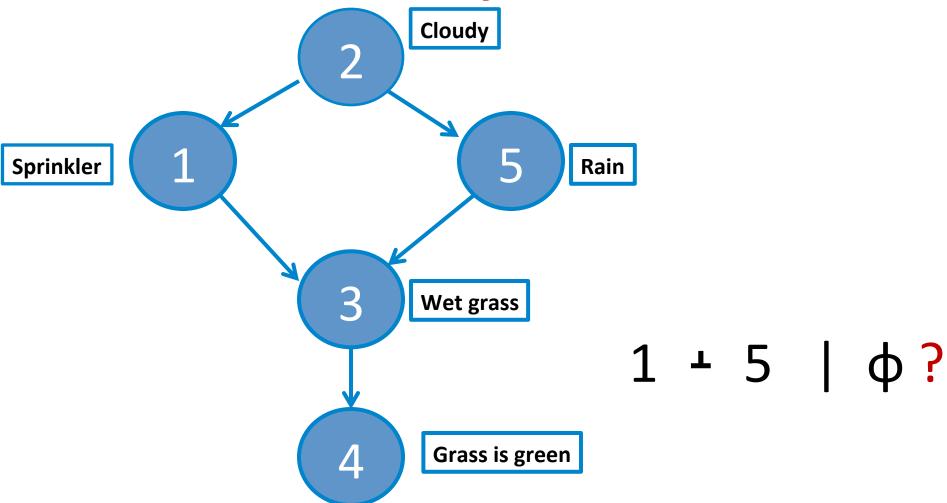
Cascade

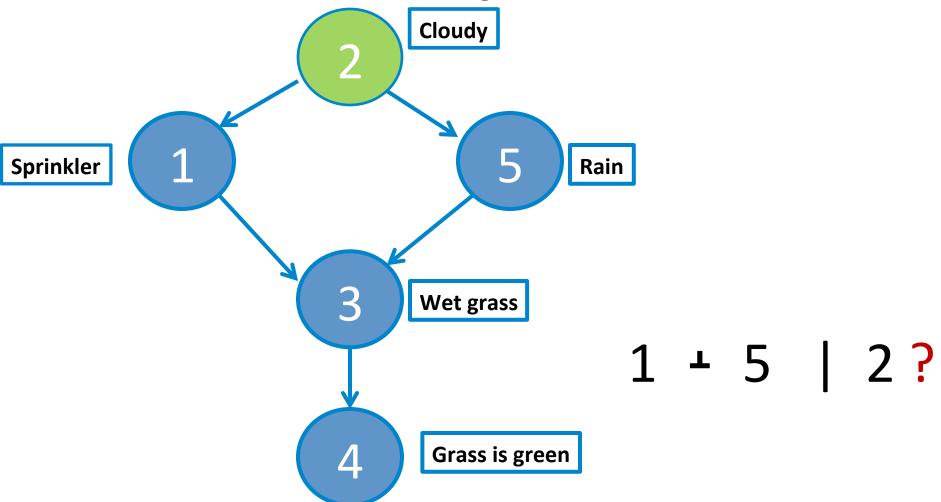
Knowing B decouples A and C
 "given the level of gene B, the level gene A provides no extra prediction value for the level of gene C"

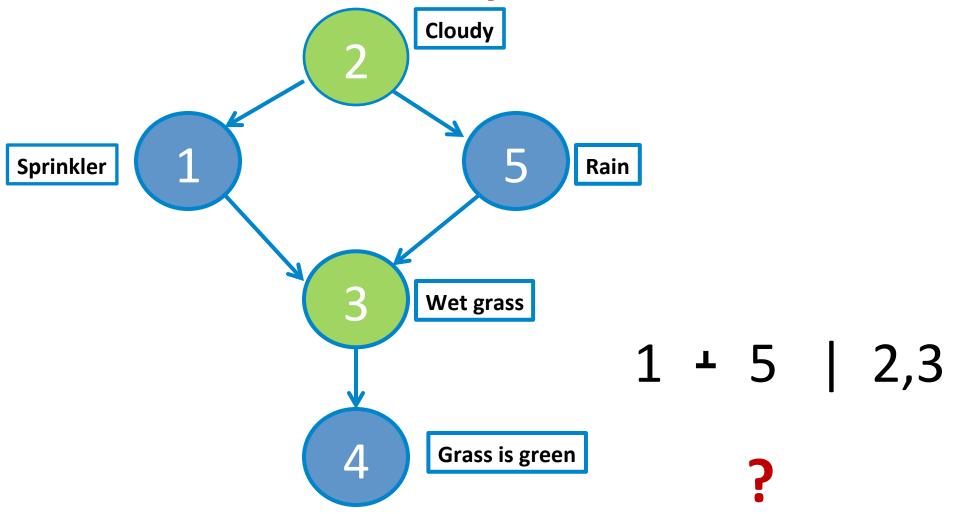
V-structure

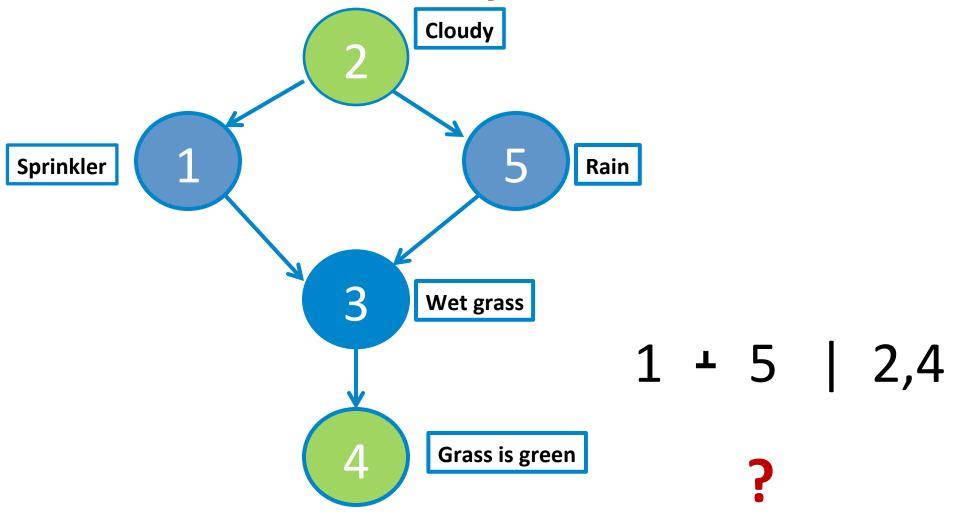
Knowing C couples A and B
 because A can "explain away" B w.r.t. C
 "If A correlates to C, then chance for B to also correlate to B will decrease"

The language is compact, the concepts are rich!







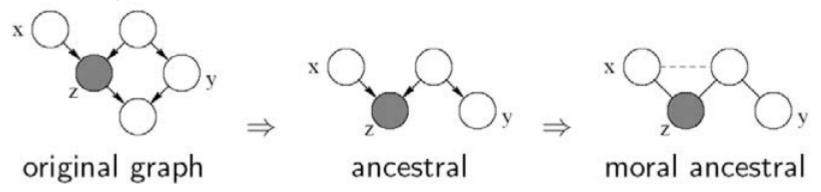


Graph Separation Criterion

 D-separation criterion for Bayesian networks (D for Directed edges):

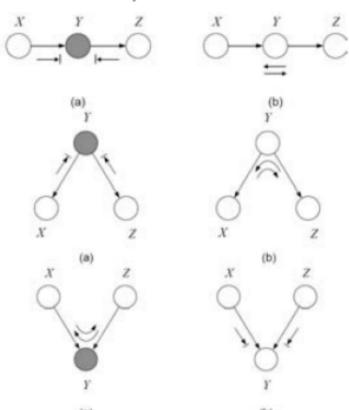
Definition: variables x and y are *D-separated* (conditionally independent) given z if they are separated in the *moralized* ancestral graph

Example:



Global Markov Properties of DAGs

X is **d-separated** (directed-separated) from Z given Y if we can't send a ball from any node in X to any node in Z using the "*Bayes-ball*" algorithm illustrated bellow (and plus some boundary conditions):



 Defn: I(G)=all independence properties that correspond to dseparation:

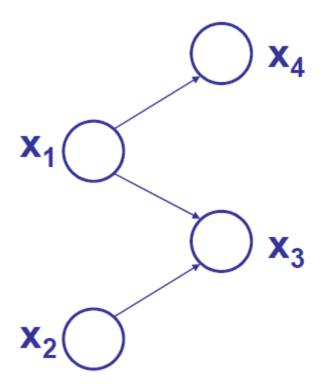
$$I(G) = \{X \perp Z | Y : dsep_G(X; Z | Y)\}$$

 D-separation is sound and complete

D-Separation Algorithm

- All the paths between two nodes must be D-Separated.
- A -> B -> C (linear, B is known, then the path is blocked)
- A <- B -> C (diverging, B is known, then the path is blocked)
- A -> <u>B</u> <- C (converging, B & and its descendants are **not** known)

An Example



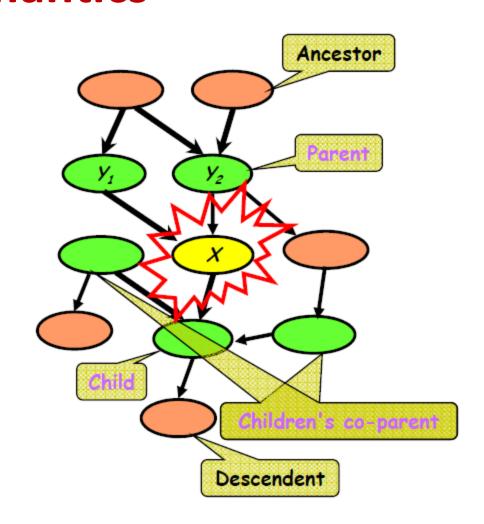
Complete the I(G) of this graph:

Essentially: A BN is a database of Pr. Independence statements among variables.

BN: Conditional Independence Semantics

Structure: DAG

- Meaning: a node is conditionally independent of every other node in the network outside its Markov blanket
- Local conditional distributions (CPD) and the DAG completely determine the joint dist.
- Give causality relationships, and facilitate a generative process



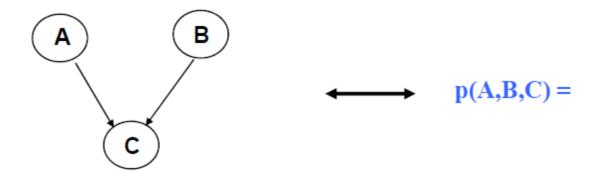
Toward Quantitative Specification of Probability Distribution

- Separation properties in the graph imply independence properties about the associated variables
- For the graph to be useful, any conditional independence properties we can derive from the graph should hold for the probability distribution that the graph represents

The Equivalence Theorem

```
For a graph G,
Let \mathfrak{D}_1 denote the family of all distributions that satisfy I(G),
Let \mathfrak{D}_2 denote the family of all distributions that factor according to G,
Then \mathfrak{D}_1 \equiv \mathfrak{D}_2.
```

Quantitative Specification

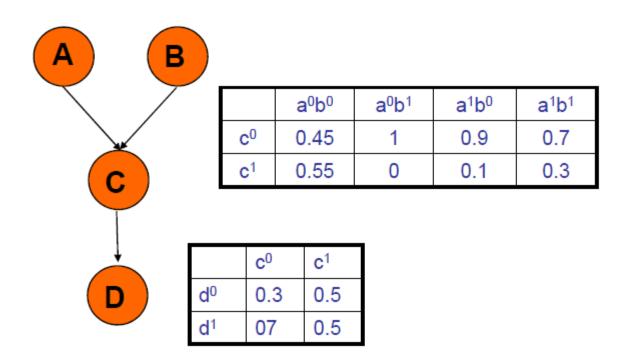


Conditional Probability Tables (CPTs)

a^0	0.75
a ¹	0.25

b^0	0.33
b ¹	0.67

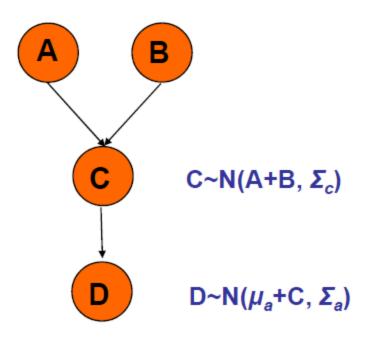
P(a,b,c.d) = P(a)P(b)P(c|a,b)P(d|c)

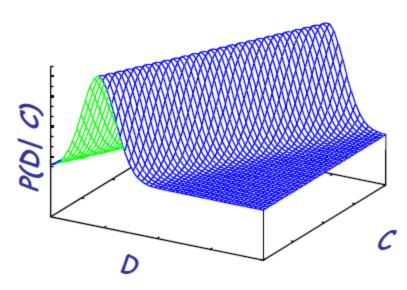


Conditional Probability Density Function (CPDs)

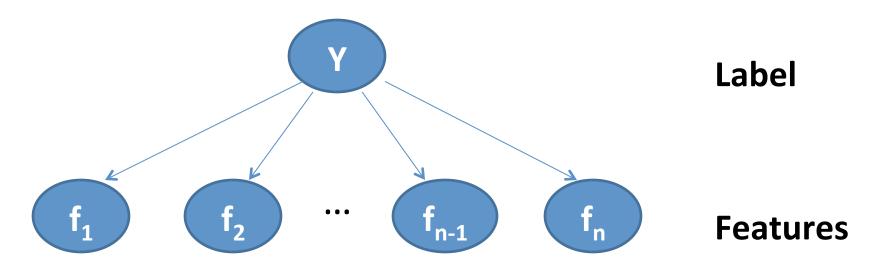
 $A \sim N(\mu_a, \Sigma_a)$ $B \sim N(\mu_b, \Sigma_b)$

P(a,b,c.d) = P(a)P(b)P(c|a,b)P(d|c)





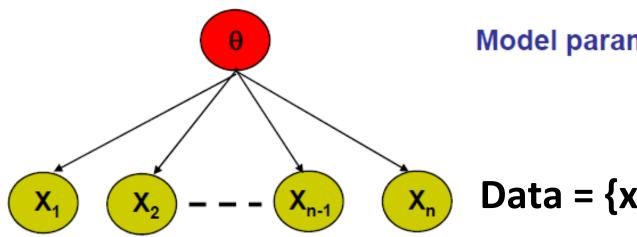
Conditional Independencies



What is the model?

a)When Y is known?b)When Y is not known?

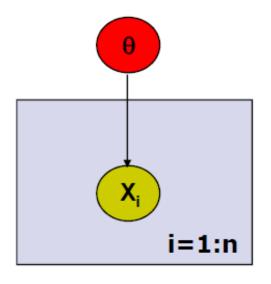
Conditional Independent Observations



Model parameters

Data =
$$\{x_1, ..., X_n\}$$

"Plate" Notation



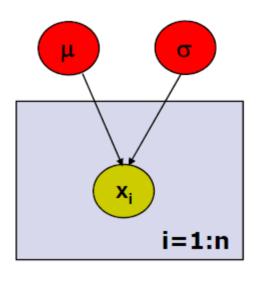
Model parameters

Data =
$$\{x_1, ..., x_n\}$$

Plate = rectangle in graphical model

variables within a plate are replicated in a conditionally independent manner

Example: Gaussian Model

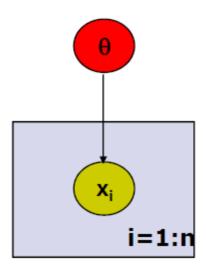


Generative model:

$$p(x_1,...x_n | \mu, \sigma)$$
 = P $p(x_i | \mu, \sigma)$
= $p(data | parameters)$
= $p(D | \theta)$
where $\theta = \{\mu, \sigma\}$

- Likelihood = p(data | parameters)
 = p(D | θ)
 = L (θ)
- Likelihood tells us how likely the observed data are conditioned on a particular setting of the parameters
 - Often easier to work with log L (θ)

Bayesian Model



More Examples

Density estimation

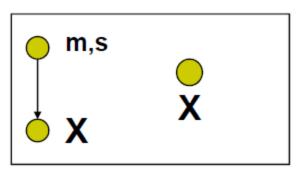
Parametric and nonparametric methods

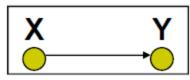
Regression

Linear, conditional mixture, nonparametric

Classification

Generative and discriminative approach

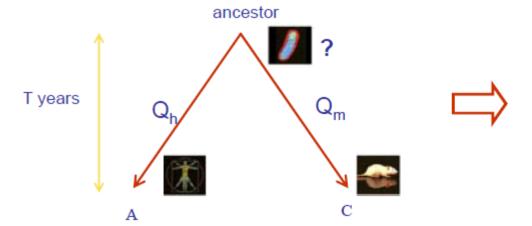


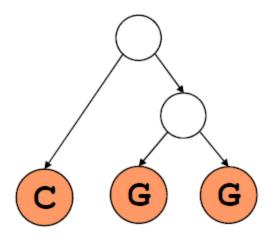




Example, Con'd

Evolution

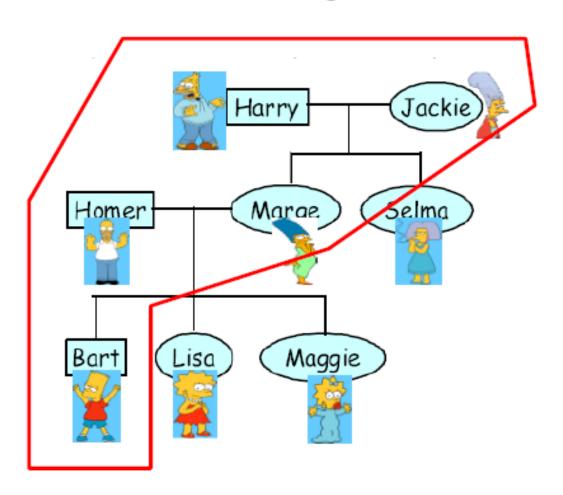




Tree Model

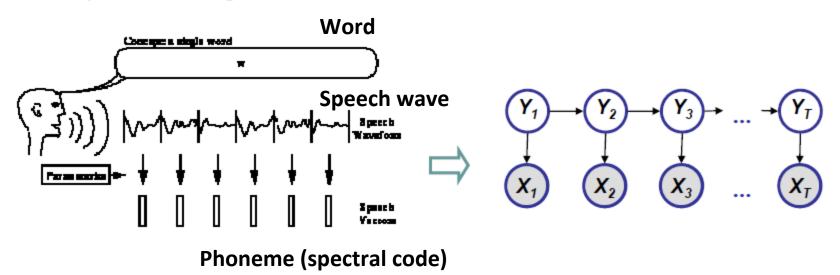
Example, Con'd

Genetic Pedigree



Example, Con'd

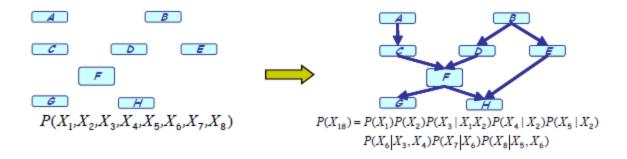
Speech recognition



Hidden Markov Model

BN and Graphical Models

- A Bayesian network is a special case of Graphical Models
- A Graphical Model refers to a family of distributions on a set of random variables that are compatible with all the probabilistic independence propositions encoded by a graph that connects these variables
- It is a smart way to write/specify/compose/design exponentially-large probability distributions without paying an exponential cost, and at the same time endow the distributions with structured semantics



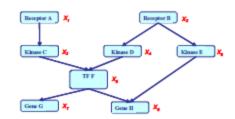
Two Types of GMs

 Directed edges give causality relationships (Bayesian Network or Directed Graphical Model):

$$P(X_1, X_2, X_3, X_4, X_5, X_6, X_7, X_8)$$

$$= P(X_1) P(X_2) P(X_3 | X_1) P(X_4 | X_2) P(X_5 | X_2)$$

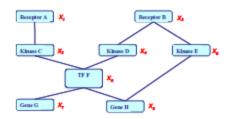
$$P(X_6 | X_3, X_4) P(X_7 | X_6) P(X_8 | X_5, X_6)$$



 Undirected edges simply give correlations between variables (Markov Random Field or Undirected Graphical model):

$$P(X_1, X_2, X_3, X_4, X_5, X_6, X_7, X_8)$$

$$= \frac{1/Z} \exp\{E(X_1) + E(X_2) + E(X_3, X_1) + E(X_4, X_2) + E(X_5, X_2) + E(X_6, X_3, X_4) + E(X_7, X_6) + E(X_8, X_5, X_6)\}$$



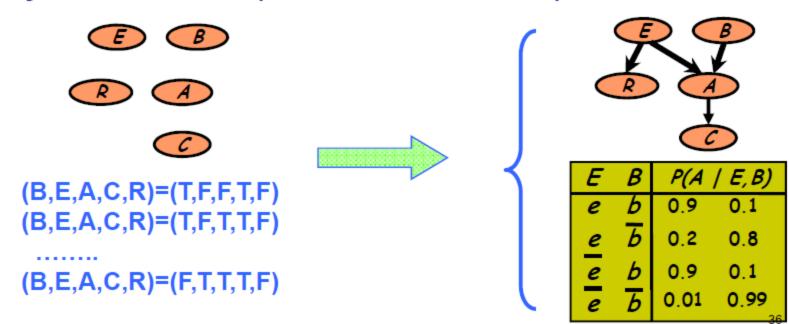
Probabilistic Inference

- Computing statistical queries regarding the network, e.g.:
 - Is node X independent on node Y given nodes Z,W?
 - What is the probability of X=true if (Y=false and Z=true)?
 - What is the joint distribution of (X,Y) if Z=false?
 - What is the likelihood of some full assignment?
 - What is the most likely assignment of values to all or a subset the nodes of the network?
- General purpose algorithms exist to fully automate such computation
 - Computational cost depends on the topology of the network
 - Exact inference:
 - The junction tree algorithm
 - Approximate inference;
 - . Loopy belief propagation, variational inference, Monte Carlo sampling

Learning in BN

The goal:

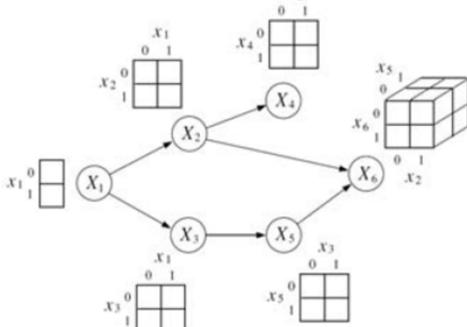
Given set of independent samples (assignments of random variables), find the best (the most likely?) Bayesian Network (both DAG and CPDs)



MLE Learning

 If we assume the parameters for each CPD are globally independent, and all nodes are fully observed, then the loglikelihood function decomposes into a sum of local terms, one per node:

$$\ell(\theta; D) = \log p(D \mid \theta) = \log \prod_{w_i} \left(\prod_i p(x_{n,i} \mid \mathbf{x}_{n,\pi_i}, \theta_i) \right) = \sum_i \left(\sum_n \log p(x_{n,i} \mid \mathbf{x}_{n,\pi_i}, \theta_i) \right)$$

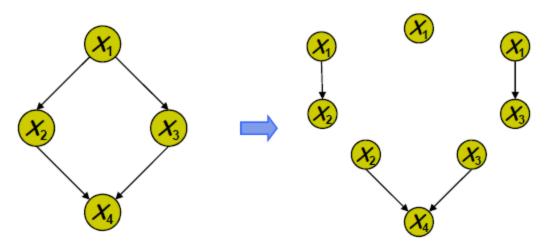


Example: Decomposable likelihood of a directed model

Consider the distribution defined by the directed acyclic GM:

$$p(x \mid \theta) = p(x_1 \mid \theta_1) p(x_2 \mid x_1, \theta_1) p(x_3 \mid x_1, \theta_3) p(x_4 \mid x_2, x_3, \theta_1)$$

 This is exactly like learning four separate small BNs, each of which consists of a node and its parents.



MLEs for BNs with Tabular CPDs

Assume each CPD is represented as a table (multinomial)
 where

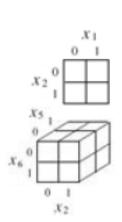
$$\theta_{ijk} \stackrel{\text{def}}{=} p(X_i = j \mid X_{\pi_i} = k)$$

- Note that in case of multiple parents, X_{πi} will have a composite state, and the CPD will be a high-dimensional table
- The sufficient statistics are counts of family configurations

$$n_{ijk} \stackrel{\text{def}}{=} \sum\nolimits_n x_{n,i}^j x_{n,\pi_i}^k$$

- The log-likelihood is $\ell(\theta; D) = \log \prod_{i,j,k} \theta_{ijk}^{n_{ijk}} = \sum_{i,j,k} n_{ijk} \log \theta_{ijk}$
- Using a Lagrange multiplier to enforce $\sum_{j} \theta_{ijk} = 1$, we get:

$$\theta_{ijk}^{ML} = \frac{n_{ijk}}{\sum_{i,j',k} n_{ij'k}}$$



An Example

- Three variables: C Cloudy, R Rain, S –
 Sprinkler
- Data: (C=T, R = T, S = F), (C = T, R = F, S = F), (C = F, R = F, S = T)
- P(C = T) = ?, P(C = F) = ?
- $P(R = T \mid C = T) = ? P(R = F \mid C = F) = ?$
- $P(S = T \mid C = T) = ?, P(S = T \mid C = F) = ?$

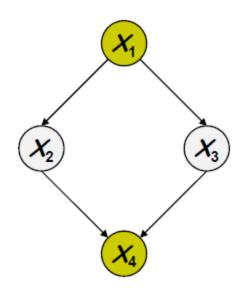
Summary

- Represent dependency structure with a directed acyclic graph
 - Node <-> random variable
 - Edges encode dependencies
 - Absence of edge -> conditional independence
 - Plate representation
 - A BN is a database of prob. Independence statement on variables
- The factorization theorem of the joint probability
 - Local specification → globally consistent distribution
 - Local representation for exponentially complex state-space
- Support efficient inference and learning

What if some nodes are not observed?

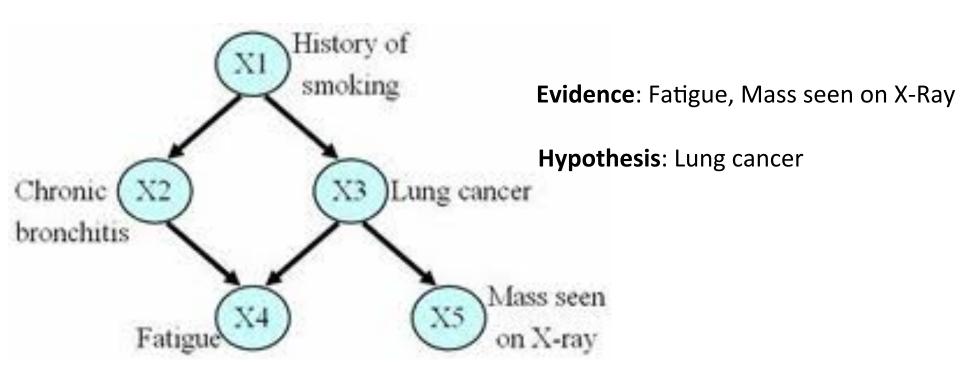
Consider the distribution defined by the directed acyclic GM:

$$p(x \mid \theta) = p(x_1 \mid \theta_1) p(x_2 \mid x_1, \theta_1) p(x_3 \mid x_1, \theta_3) p(x_4 \mid x_2, x_3, \theta_1)$$



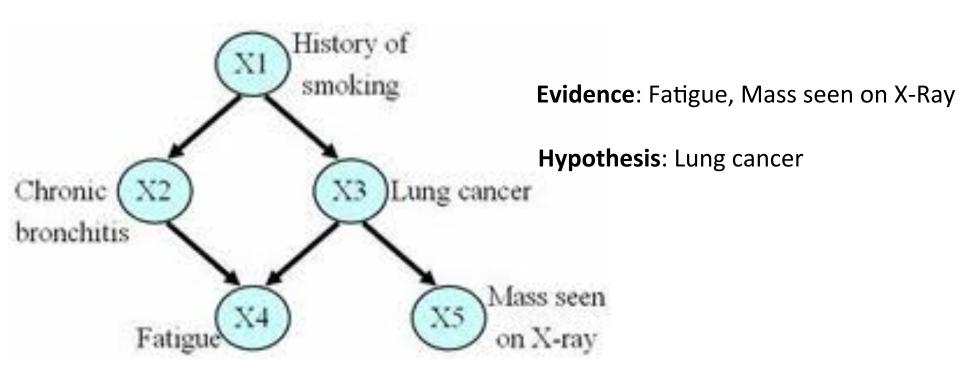
• Need to compute $p(x_H|x_V) \rightarrow inference$

An Example



P(Lung cancer = T | Fatigue = T, Mass X-Ray = T) = ?

An Example



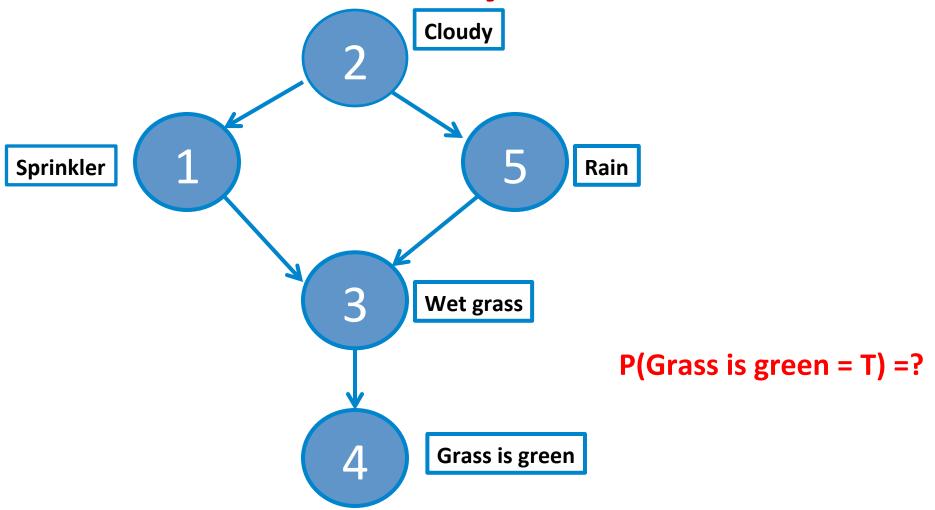
Inferential Query 1: Likelihood

- Most of the queries one may ask involve evidence
 - Evidence \mathbf{x}_v is an assignment of values to a set \mathbf{X}_v of nodes in the GM over variable set $\mathbf{X} = \{X_1, X_2, ..., X_n\}$
 - Without loss of generality X_v={X_{k+1}, ..., X_n},
 - Write $X_H = X \setminus X_v$ as the set of hidden variables, X_H can be \emptyset or X
- Simplest query: compute probability of evidence

$$P(\mathbf{X}_{\mathbf{v}}) = \sum_{\mathbf{x}_{\mathbf{H}}} P(\mathbf{X}_{\mathbf{H}}, \mathbf{X}_{\mathbf{v}}) = \sum_{x_1} \dots \sum_{x_k} P(x_1, \dots, x_k, \mathbf{X}_{\mathbf{v}})$$

this is often referred to as computing the likelihood of x_v

Assess Conditional Independence of Two Nodes in Bayesian Networks



Inferential Query 2: Conditional Probability

 Often we are interested in the conditional probability distribution of a variable given the evidence

$$P(\mathbf{X_H} \mid \mathbf{X_V} = \mathbf{x_V}) = \frac{P(\mathbf{X_H}, \mathbf{x_V})}{P(\mathbf{x_V})} = \frac{P(\mathbf{X_H}, \mathbf{x_V})}{\sum_{\mathbf{x_H}} P(\mathbf{X_H} = \mathbf{x_H}, \mathbf{x_V})}$$

- this is the a posteriori belief in X_H, given evidence x_v
- We usually query a subset Y of all hidden variables X_H={Y,Z} and "don't care" about the remaining, Z:

$$P(\mathbf{Y} \mid \mathbf{x}_{v}) = \sum_{\mathbf{z}} P(\mathbf{Y}, \mathbf{Z} = \mathbf{z} \mid \mathbf{x}_{v})$$

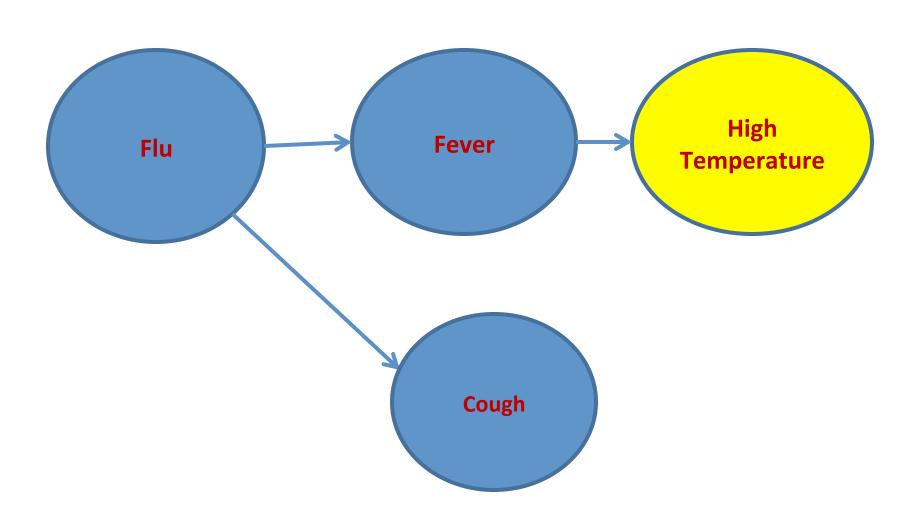
• the process of summing out the "don't care" variables z is called marginalization, and the resulting $P(Y|X_v)$ is called a marginal prob.

Applications of a posterior belief

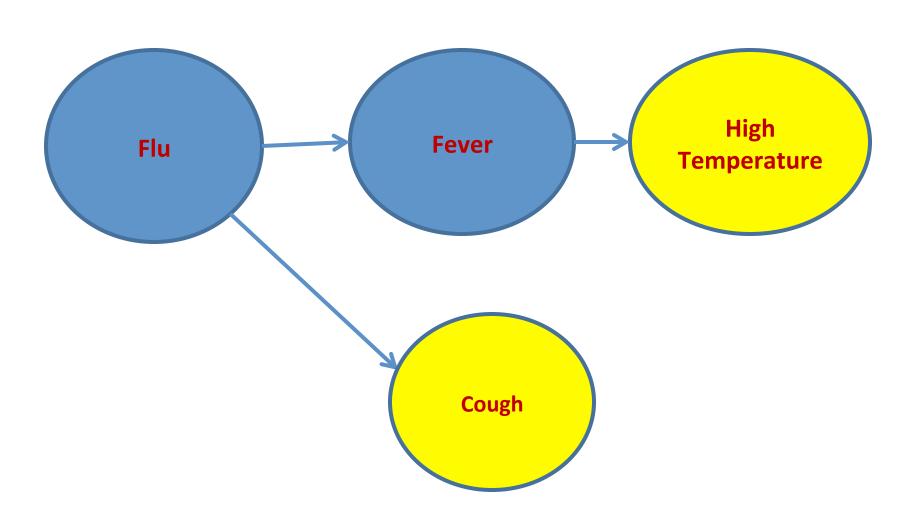
- Prediction: what is the probability of an outcome given the starting condition
 - the query node is a descendent of the evidence
- Diagnosis: what is the probability of disease/fault given symptoms

- the query node an ancestor of the evidence
- Learning under partial observation
 - fill in the unobserved values under an "EM" setting
- The directionality of information flow between variables is not restricted by the directionality of the edges in a GM
 - probabilistic inference can combine evidence form all parts of the network

An Example



An Example – Combining Evidences



Inferential query 3: most probable assignment

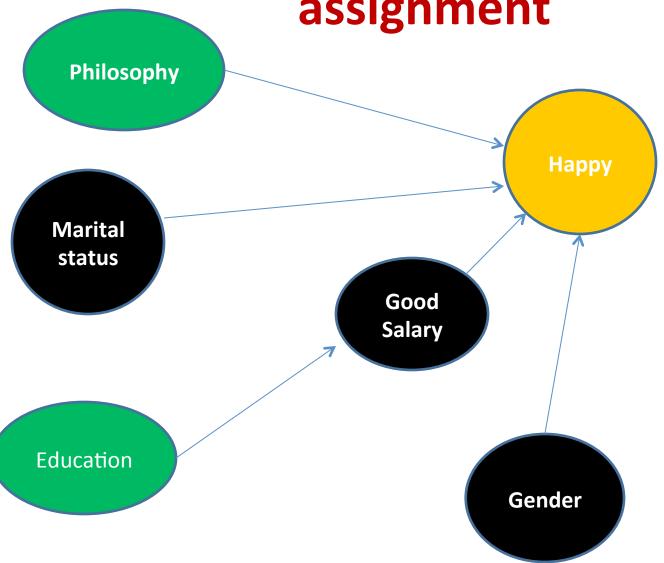
 In this query we want to find the most probable joint assignment (MPA) for some variables of interest

 Such reasoning is usually performed under some given evidence x_v, and ignoring (the values of) other variables Z:

$$\mathbf{Y}^* \mid \mathbf{x}_{\mathbf{V}} = \arg\max_{\mathbf{y}} P(\mathbf{Y} \mid \mathbf{x}_{\mathbf{V}}) = \arg\max_{\mathbf{y}} \sum_{\mathbf{z}} P(\mathbf{Y}, \mathbf{Z} = \mathbf{z} \mid \mathbf{x}_{\mathbf{V}})$$

this is the maximum a posteriori configuration of Y.

Inferential query 3: most probable assignment



Complexity of Inference

Thm:

Computing $P(X_H = x_H | x_v)$ in an arbitrary BN is NP-hard

- Hardness does not mean we cannot solve inference
 - It implies that we cannot find a general procedure that works efficiently for arbitrary BNs
 - For particular families of BNs, we can have provably efficient procedures

Approach to Inference

- Exact inference algorithms
 - The elimination algorithm

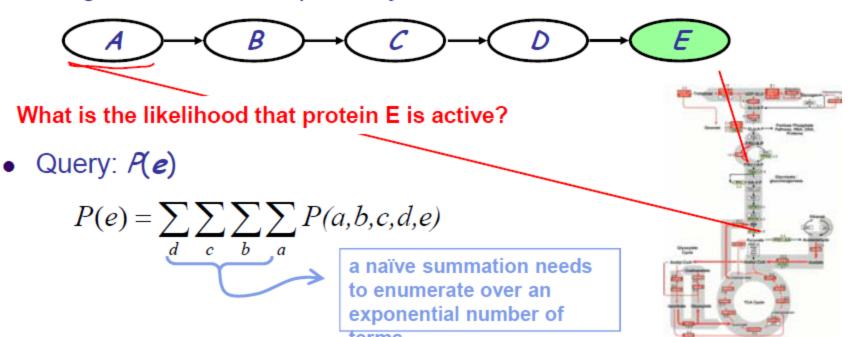
The junction tree algorithms

Approximate inference techniques

- Stochastic simulation / sampling methods
- Markov chain Monte Carlo methods
- Variational algorithms

Marginalization and Elimination

A signal transduction pathway:

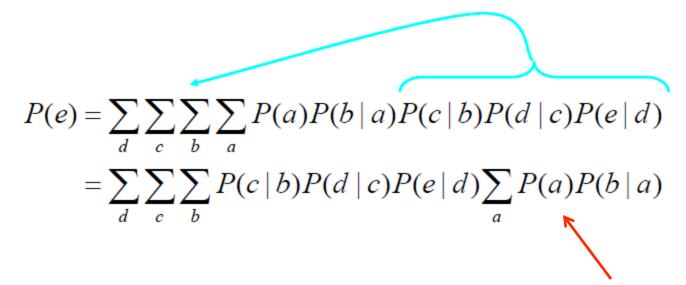


By chain decomposition, we get

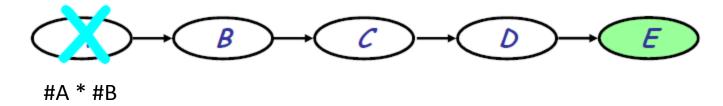
$$= \sum_{d} \sum_{c} \sum_{b} \sum_{a} P(a) P(b \mid a) P(c \mid b) P(d \mid c) P(e \mid d)$$

Elimination on Chains

Rearranging terms ...



Only calculated once for each b, i.e. #A * #B operations



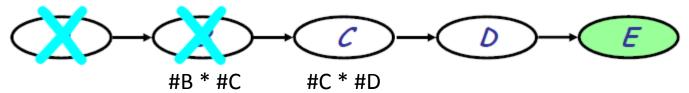
Now we can perform innermost summation

$$P(e) = \sum_{d} \sum_{c} \sum_{b} P(c | b) P(d | c) P(e | d) \sum_{a} P(a) P(b | a)$$

$$= \sum_{d} \sum_{c} \sum_{b} P(c | b) P(d | c) P(e | d) p(b)$$

 This summation "eliminates" one variable from our summation argument at a "local cost".

Elimination on Chains



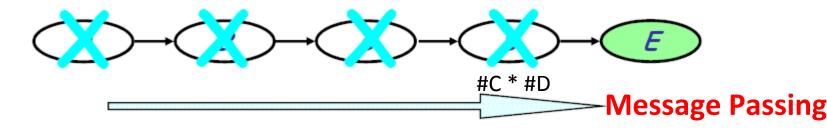
Rearranging and then summing again, we get

$$P(e) = \sum_{d} \sum_{c} \sum_{b} P(c | b) P(d | c) P(e | d) p(b)$$

$$= \sum_{d} \sum_{c} P(d | c) P(e | d) \sum_{b} P(c | b) p(b)$$

$$= \sum_{d} \sum_{c} P(d | c) P(e | d) p(c)$$

Elimination on Chains



Eliminate nodes one by one all the way to the end, we get

$$P(e) = \sum_{d} P(e \mid d) p(d)$$

- Complexity:
 - Each step costs $O(|Val(X_i)|^*|Val(X_{i+1})|)$ operations: $O(nk^2)$
 - Compare to naïve evaluation that sums over joint values of n-1 variables $O(k^n)$

Inference on General BN via Variable Elimination

General idea:

Write query in the form

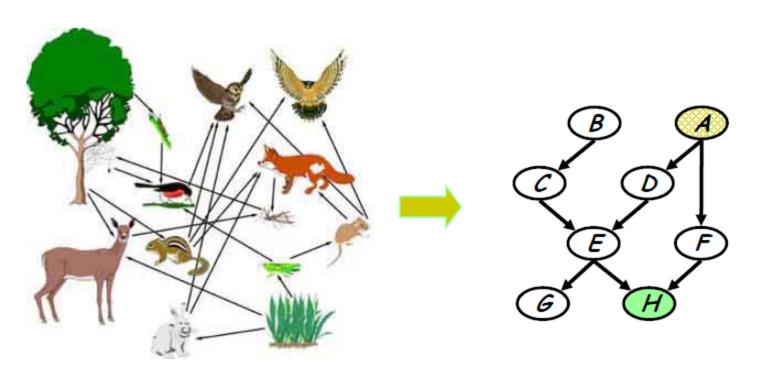
$$P(X_1, \mathbf{e}) = \sum_{x_n} \cdots \sum_{x_3} \sum_{x_2} \prod_i P(x_i \mid pa_i)$$

- this suggests an "elimination order" of latent variables to be marginalized
- Iteratively
 - Move all irrelevant terms outside of innermost sum
 - Perform innermost sum, getting a new term
 - Insert the new term into the product
- wrap-up

$$P(X_1 | e) = \frac{P(X_1, e)}{P(e)}$$

A more complex network

A food web

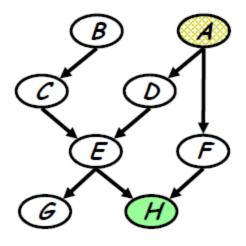


What is the probability that hawks are leaving given that the grass condition is poor?

- Query: P(A | h)
 - Need to eliminate: B,C,D,E,F,G,H
- Initial factors:

$$P(a)P(b)P(c \mid b)P(d \mid a)P(e \mid c,d)P(f \mid a)P(g \mid e)P(h \mid e,f)$$

Choose an elimination order: H,G,F,E,D,C,B

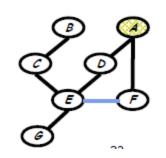


- Step 1:
 - Conditioning (fix the evidence node (i.e., h) on its observed value (i.e., h):

$$m_h(e, f) = p(h = \widetilde{h} \mid e, f)$$

This step is isomorphic to a marginalization step:

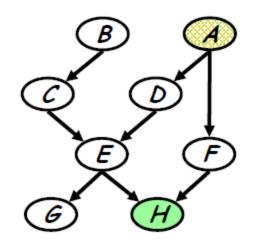
$$m_h(e, f) = \sum_h p(h \mid e, f) \delta(h = \widetilde{h})$$



- Query: P(B | h)
 - Need to eliminate: B,C,D,E,F,G
- Initial factors:

$$P(a)P(b)P(c \mid b)P(d \mid a)P(e \mid c,d)P(f \mid a)P(g \mid e)P(h \mid e,f)$$

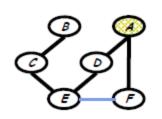
$$\Rightarrow P(a)P(b)P(c \mid b)P(d \mid a)P(e \mid c,d)P(f \mid a)P(g \mid e)m_h(e,f)$$



- Step 2: Eliminate G
 - compute

$$m_g(e) = \sum_g p(g \mid e) = 1$$

- $\Rightarrow P(a)P(b)P(c \mid b)P(d \mid a)P(e \mid c,d)P(f \mid a)m_g(e)m_h(e,f)$
- $= P(a)P(b)P(c | b)P(d | a)P(e | c, d)P(f | a)m_h(e, f)$

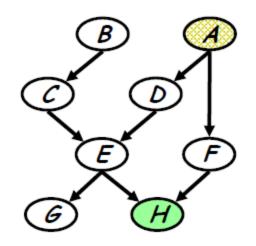


- Query: P(B | h)
 - Need to eliminate: B,C,D,E,F
- Initial factors:

$$P(a)P(b)P(c \mid b)P(d \mid a)P(e \mid c,d)P(f \mid a)P(g \mid e)P(h \mid e,f)$$

$$\Rightarrow P(a)P(b)P(c \mid b)P(d \mid a)P(e \mid c,d)P(f \mid a)P(g \mid e)m_h(e,f)$$

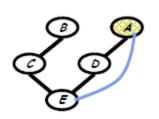
$$\Rightarrow P(a)P(b)P(c \mid b)P(d \mid a)P(e \mid c,d)P(f \mid a)m_h(e,f)$$



- Step 3: Eliminate F
 - compute

$$m_f(e,a) = \sum_f p(f \mid a) m_h(e,f)$$

 $\Rightarrow P(a)P(b)P(c \mid b)P(d \mid a)P(e \mid c,d)m_f(a,e)$



Calculations: #F * (#E * #A)

- Query: P(B | h)
 - Need to eliminate: B,C,D,E
- Initial factors:

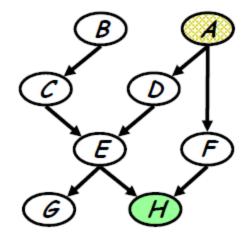
$$P(a)P(b)P(c\mid b)P(d\mid a)P(e\mid c,d)P(f\mid a)P(g\mid e)P(h\mid e,f)$$

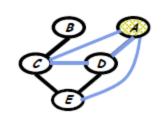
- $\Rightarrow P(a)P(b)P(c|b)P(d|a)P(e|c,d)P(f|a)P(g|e)m_h(e,f)$
- $\Rightarrow P(a)P(b)P(c|b)P(d|a)P(e|c,d)P(f|a)m_h(e,f)$
- $\Rightarrow P(a)P(b)P(c|b)P(d|a)P(e|c,d)m_f(a,e)$

compute

$$m_e(a,c,d) = \sum_e p(e \mid c,d) m_f(a,e)$$

 $\Rightarrow P(a)P(b)P(c \mid b)P(d \mid a)m_e(a,c,d)$



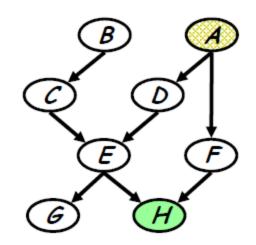


Calculations: #E * (#A * #C * #D)

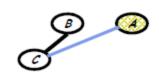
- Query: P(B | h)
 - Need to eliminate: B,C,D
- Initial factors:

$$P(a)P(b)P(c | b)P(d | a)P(e | c, d)P(f | a)P(g | e)P(h | e, f)$$

- $\Rightarrow P(a)P(b)P(c|b)P(d|a)P(e|c,d)P(f|a)P(g|e)m_h(e,f)$
- $\Rightarrow P(a)P(b)P(c|b)P(d|a)P(e|c,d)P(f|a)m_h(e,f)$
- $\Rightarrow P(a)P(b)P(c \mid b)P(d \mid a)P(e \mid c, d)m_f(a, e)$
- $\Rightarrow P(a)P(b)P(c|b)P(d|a)m_e(a,c,d)$



- Step 5: Eliminate D
 - compute $m_d(a,c) = \sum_d p(d \mid a) m_e(a,c,d)$



 $\Rightarrow P(a)P(b)P(c \mid d)m_d(a,c)$

Calculations: #D * (#A * #C)

- Query: P(B | h)
 - Need to eliminate: B,C
- Initial factors:

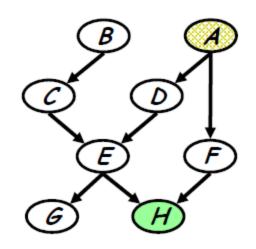
$$P(a)P(b)P(c \mid d)P(d \mid a)P(e \mid c, d)P(f \mid a)P(g \mid e)P(h \mid e, f)$$

- $\Rightarrow P(a)P(b)P(c \mid d)P(d \mid a)P(e \mid c, d)P(f \mid a)P(g \mid e)m_h(e, f)$
- $\Rightarrow P(a)P(b)P(c \mid d)P(d \mid a)P(e \mid c,d)P(f \mid a)m_h(e,f)$
- $\Rightarrow P(a)P(b)P(c \mid d)P(d \mid a)P(e \mid c,d)m_f(a,e)$
- $\Rightarrow P(a)P(b)P(c \mid d)P(d \mid a)m_e(a,c,d)$
- $\Rightarrow P(a)P(b)P(c \mid d)m_d(a,c)$

$$m_c(a,b) = \sum p(c \mid b) m_d(a,c)$$

$$\Rightarrow P(a)P(b)P(c \mid d)m_d(a,c)$$

Calculations: #C * (#A * #B)



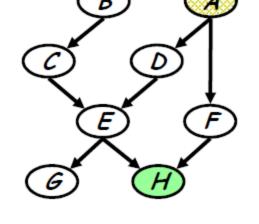
- Query: P(B | h)
 - Need to eliminate: B
- Initial factors:

$$P(a)P(b)P(c \mid d)P(d \mid a)P(e \mid c, d)P(f \mid a)P(g \mid e)P(h \mid e, f)$$

- $\Rightarrow P(a)P(b)P(c \mid d)P(d \mid a)P(e \mid c, d)P(f \mid a)P(g \mid e)m_h(e, f)$
- $\Rightarrow P(a)P(b)P(c \mid d)P(d \mid a)P(e \mid c, d)P(f \mid a)m_h(e, f)$
- $\Rightarrow P(a)P(b)P(c \mid d)P(d \mid a)P(e \mid c,d)m_f(a,e)$
- $\Rightarrow P(a)P(b)P(c \mid d)P(d \mid a)m_{s}(a,c,d)$
- $\Rightarrow P(a)P(b)P(c \mid d)m_d(a,c)$
- $\Rightarrow P(a)P(b)m_c(a,b)$
- Step 7: Eliminate B
 - compute

$$m_b(a) = \sum_b p(b) m_c(a,b)$$

 $\Rightarrow P(a)m_b(a)$



Calculations: #B * #A

- Query: P(B | h)
 - Need to eliminate: B
- Initial factors:

$$P(a)P(b)P(c \mid d)P(d \mid a)P(e \mid c,d)P(f \mid a)P(g \mid e)P(h \mid e,f)$$

$$\Rightarrow P(a)P(b)P(c \mid d)P(d \mid a)P(e \mid c, d)P(f \mid a)P(g \mid e)m_h(e, f)$$

$$\Rightarrow P(a)P(b)P(c \mid d)P(d \mid a)P(e \mid c, d)P(f \mid a)m_h(e, f)$$

$$\Rightarrow P(a)P(b)P(c \mid d)P(d \mid a)P(e \mid c, d)m_f(a, e)$$

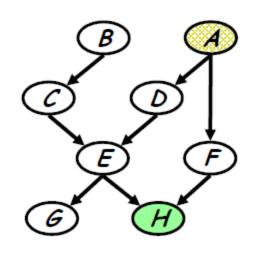
$$\Rightarrow P(a)P(b)P(c \mid d)P(d \mid a)m_{e}(a,c,d)$$

$$\Rightarrow P(a)P(b)P(c \mid d)m_d(a,c)$$

$$\Rightarrow P(a)P(b)m_c(a,b)$$

$$\Rightarrow P(a)m_b(a)$$

Step 8: Wrap-up
$$p(a,\widetilde{h}) = p(a)m_b(a), \quad p(\widetilde{h}) = \sum_a p(a)m_b(a)$$
$$\Rightarrow P(a \mid \widetilde{h}) = \frac{p(a)m_b(a)}{\sum_b p(a)m_b(a)}$$



Complexity of Variable Elimination

Suppose in one elimination step we compute

$$m_x(y_1,...,y_k) = \sum_x m'_x(x,y_1,...,y_k)$$

 $m'_x(x,y_1,...,y_k) = \prod_{i=1}^k m_i(x,\mathbf{y}_{c_i})$

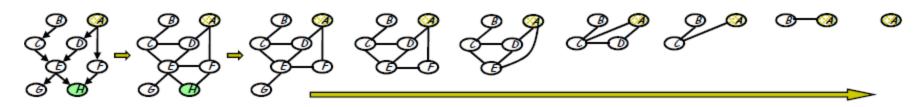
This requires

- $k \bullet |Val(X)| \bullet \prod_{i} |Val(\mathbf{Y}_{C_i})|$ multiplications
 - For each value of $x_1, y_2, ..., y_k$, we do k multiplications
- $|Val(X)| \bullet \prod_{i} |Val(\mathbf{Y}_{C_i})|$ additions
 - For each value of y_1 , ..., y_k , we do |Val(X)| additions

Complexity is **exponential** in number of variables in the intermediate factor

Understanding Variable Elimination

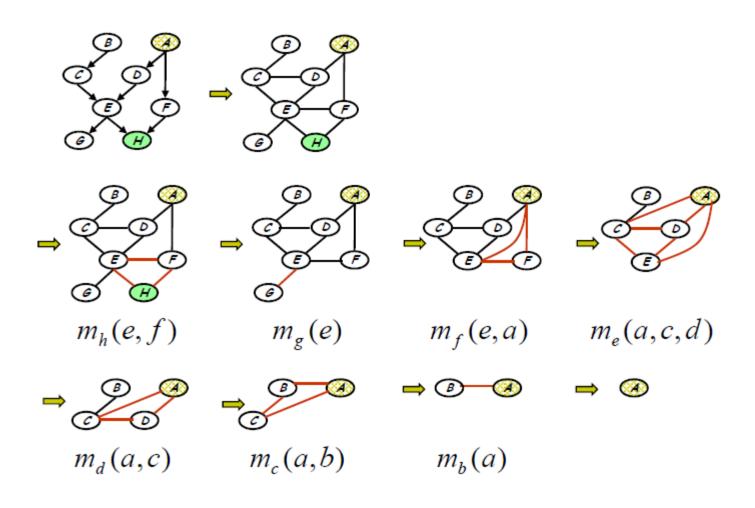
A graph elimination algorithm



moralization

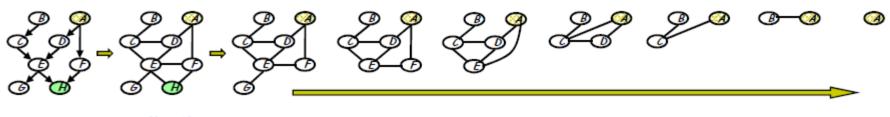
graph elimination

Elimination Cliques



Understanding Variable Elimination

A graph elimination algorithm

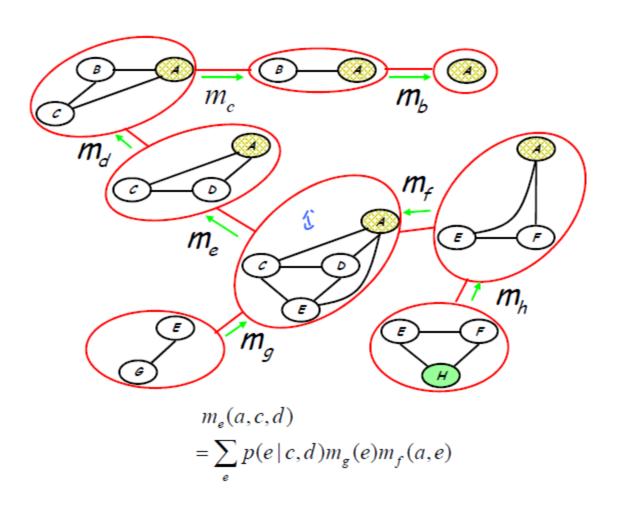


moralization

graph elimination

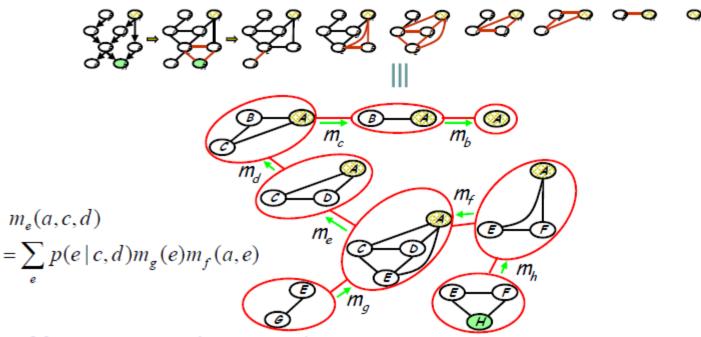
- Intermediate terms correspond to the cliques resulted from elimination
 - "good" elimination orderings lead to small cliques and hence reduce complexity (what will happen if we eliminate "e" first in the above graph?)
 - finding the optimum ordering is NP-hard, but for many graph optimum or nearoptimum can often be heuristically found
- Applies to undirected GMs

A Clique Tree



From Elimination to Message Passing

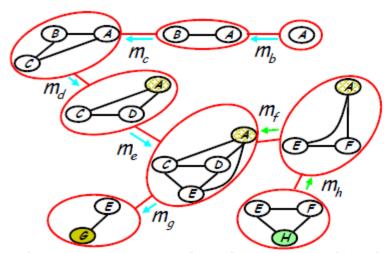
- Our algorithm so far answers only one query (e.g., on one node), do we need to do a complete elimination for every such query?
- Elimination = message passing on a clique tree



Messages can be reused

From Elimination to Message Passing

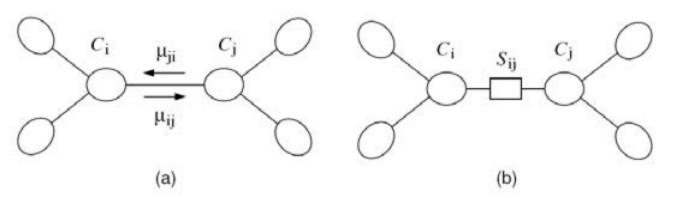
- Our algorithm so far answers only one query (e.g., on one node), do we need to do a complete elimination for every such query?
- Elimination = message passing on a clique tree
 - Another query ...



• Messages m_f and m_h are reused, others need to be recomputed

The Junction Tree Algorithm

Shafer-Shenoy algorithm



Message from clique / to clique j :

Potential of C_i itself

$$\mu_{i \to j} = \sum_{C_i \setminus S_{ii}} \psi_{C_i} \prod_{k \neq j} \mu_{k \to i}(S_{ki})$$

Clique marginal

$$p(C_i) \propto \psi_{C_i} \prod_k \mu_{k \to i}(S_{ki})$$

Message passed Into i from all sources Except j

Probability of C_i = its potential * messages coming from all sources

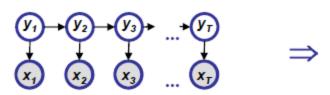
The Sketch of Junction Tree Algorithm

The algorithm

- Construction of junction trees --- a special clique tree
- Propagation of probabilities --- a message-passing protocol
- Results in marginal probabilities of all cliques --- solves all queries in a single run
- A generic exact inference algorithm for any GM
- Complexity: exponential in the size of the maximal clique --a good elimination order often leads to small maximal clique,
 and hence a good (i.e., thin) JT
- Many well-known algorithms are special cases of JT
 - Forward-backward, Kalman filter, Peeling, Sum-Product ...

A Junction Tree Algorithm for HMM

A junction tree for the HMM



Rightward pass

$$\mu_{t \to t+1}(y_{t+1}) = \sum_{y_t} \psi(y_t, y_{t+1}) \mu_{t-1 \to t}(y_t) \mu_{t\uparrow}(y_{t+1})$$

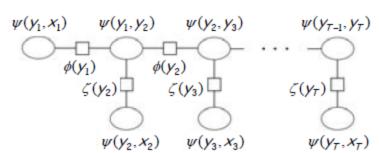
$$= \sum_{y_t} p(y_{t+1} \mid y_t) \mu_{t-1 \to t}(y_t) p(x_{t+1} \mid y_{t+1})$$

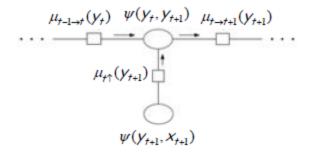
$$= p(x_{t+1} \mid y_{t+1}) \sum_{y_t} a_{y_t, y_{t+1}} \mu_{t-1 \to t}(y_t)$$

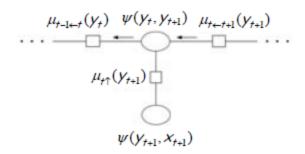
- This is exactly the forward algorithm!
- Leftward pass ...

$$\begin{split} \mu_{t-1 \leftarrow t}(y_t) &= \sum_{y_{t+1}} \psi(y_t, y_{t+1}) \mu_{t \leftarrow t+1}(y_{t+1}) \mu_{t \uparrow}(y_{t+1}) \\ &= \sum_{y_{t+1}} p(y_{t+1} \mid y_t) \mu_{t \leftarrow t+1}(y_{t+1}) p(x_{t+1} \mid y_{t+1}) \end{split}$$

This is exactly the backward algorithm!







Summary

- Represent dependency structure with a directed acyclic graph
 - Node <-> random variable
 - Edges encode dependencies
 - Absence of edge -> conditional independence
 - Plate representation
 - A BN is a database of prob. Independence statement on variables

- The factorization theorem of the joint probability
 - Local specification → globally consistent distribution
 - Local representation for exponentially complex state-space
- Support efficient inference and learning