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What is a Bayesian Network?




What is a Bayesian Network?

e A possible world for cellular signal transduction:

[ReceptorA ] X, [ReceptorB ] X,

[ Kinase C ] X; [ Kinase D ] X, [ Kinase E

()«

Gene G ] X, [ Gene H ] X;




Basic Probability Concepts

Representation: what is the joint probability dist. on multiple
variables?

P(‘XI’JXZ"X ,1&.4,1&5,‘:& "/X7"/X8’)

e How many state configurations in total? --- 28
e Are they all needed to be represented?
e Do we get any scientific/medical insight?

Learning: where do we get all this probabilities?

e Maximal-likelihood estimation? but how many data do we need?

e Where do we put domain knowledge in terms of plausible relationships between
variables, and plausible values of the probabilities?

Inference: If not all variables are observable, how to compute the
conditional distribution of latent variables given evidence?

e Computing p(H A) would require summing over all 2 configurations of the
unobserved variables



What is a Bayesian Network?

e A possible world for cellular signal transduction:

[ReceptorA ] X, [ReceptorB ] X,

[ Kinase C ] X; [ Kinase D ] X, [ Kinase E ]Xs

L

[ Gene G ] X, [ e ] X;




BN: Structure Simplify
Representations

e Dependencies among variables

[ Kinase D ] X, [KinaseE ]Xs




Bayesian Networks

a If X/'s are conditionally independent (as described by a BN), the
joint can be factored to a product of simpler terms, e.g.,

P (‘\}) *\'2’ *X':v ‘th *YS) ‘X,6’ ‘X.?’ ‘\'8)

= P(X;) P(X)) P(X5| X)) P(X,| X5) P(X5| X))
P(X{ X,, X)) P(X/| X)) P(X;| X5, X))

a Why we may favor a BN?
= Representation cost: how many probability statements are needed?

2+2+4+4+4+8+4+8=36, an 8-fold reduction from 28!

= Algorithms for systematic and efficient inference/learning computation
« Exploring the graph structure and probabilistic semantics

= Incorporation of domain knowledge and causal (logical) structures



Bayesian Network: Factorization
Theorem

P (‘Yb -\'2’ ‘\'3) *\,4’ *YS’ *‘\'6’ *'Y,-"’ ‘\'8)

= P(X;) P(X,) P(X;| X;) P(X,| X)) P(X;| X))
P(X,| X;, X,) P(X;| X,) P(Xy) X, X,)

e Theorem:

Given a DAG, The most general form of the probability distribution
that is consistent with the (probabilistic independence properties
encoded in the) graph factors according to “node given its parents”:

PO =TT P(X,IX,)

where X_is the set of parents of xi. d is the number of nodes
(variables) in the graph.



Proof

* P(Xy, Xy, ..., Xg) = P(X,1X,,Xs, ..., Xy) * P(X,, X3,
..y Xg) = P(X;| parent(X,)) * P(X,|X;, ..., X,) *
P(X3, ..., Xd) = ....



Conditional Probability Distribution

e Discrete variable: CPT, conditional
P(C=T)

probability table p(c=F)
0.5
C | P(S=F) P(S=T)
F | 0.5 0.5
T| 09

P(S|C) * P(RIC,S) * P(W|C,

“ P(R|C) * P(W|S,R).

P(C

S,
S,

R, W) = P(C) *
R) = P(C) * P(S|C)

P(R=F) P(R=T)

0.8 0.2
0.2 0.8

P(W=F) P(W=T)

e Rz 1%
— |

1.0 0.0
0.1 0.9
0.1 0.9
0.0  0.99
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Qualitative Specification

Where does the qualitative specification come from?

e Prior knowledge of causal relationships

e Prior knowledge of modular relationships

e Assessment from experts

e Learning from data

e We simply link a certain architecture (e.g. a layered graph)



Local Structures and Independencies

Common parent
e Fixing B decouples Aand C

CB_>

"given the level of gene B, the levels of A and C are independent” @ Q

Cascade

e Knowing B decouples A and C
"given the level of gene B, the level gene A provides no
extra prediction value for the level of gene C"

A O>—=>»CB >—=»C >

V-structure
A O B8 O

e Knowing C couples A and B

because A can "explain away" Bw.rt. C
"If A correlates to C, then chance for B to also correlate to B will decrease”

The language is compact, the concepts are rich!



Assess Conditional Independence of
Two Nodes in Bayesian Networks

Qdy

Sprinkler

Wet grass I

Grass is green I

1 +5

| $ 7
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Assess Conditional Independence of
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Assess Conditional Independence of
Two Nodes in Bayesian Networks

Q‘dy

Sprinkler

Wet grass I

Grass is green I

1 +5

| 2,4



Graph Separation Criterion

e D-separation criterion for Bayesian networks (D for Directed
edges):

Definition: variables x and y are D-separated (conditionally
Independent) given z if they are separated in the moralized
ancestral graph

e Example:

X
= Z y = 7 y

original graph ancestral moral ancestral



Global Markov Properties of DAGs

X is d-separated (directed-separated) from Z given Y if we can't
send a ball from any node in X to any node in Z using the "Bayes-
ball" algorithm illustrated bellow (and plus some boundary
conditions):

\ } / \ } 4

— @ P :
= » Defn: I[&)=all independence
o ®) properties that correspond to d-
O * separation:
Y Z A , I(G) = {X 1Z ’Y cdsepg(X:.Z \Y)}

L T « D-separation is sound and
“ > WL complete



D-Separation Algorithm

All the paths between two nodes must be D-
Separated.

A ->B->C (linear, Bis known, then the path
is blocked)

A <- B ->C (diverging, B is known, then the
path is blocked)

A -> B <- C (converging, B & and its
descendants are not known)



An Example

X e Complete the [(G) of this
4 graph:

X,

Essentially: A BN is a database of Pr. Independence statements among variables.



BN: Conditional Independence
Semantics

Structure: DAG

Ancestor

 Meaning: a node is
conditionally independent
of every other node in the
network outside its Markov
blanket

« Local conditional
distributions (CPD) and the
DAG completely determine
the joint dist.

- Children's co-parent

« Give causality
relationships, and facilitate

i Descendent
d generatlve process




Toward Quantitative Specification of
Probability Distribution

e Separation properties in the graph imply independence
properties about the associated variables

e For the graph to be useful, any conditional independence
properties we can derive from the graph should hold for the
probability distribution that the graph represents

e The Equivalence Theorem
For a graph G,
Let D, denote the family of all distributions that satisfy 1(G),

Let P, denote the family of all distributions that factor according to G,
Then 9.,=9,.



Quantitative Specification

@)

— p(A,B.C) =



Conditional Probability Tables (CPTs)

0.75 |

025 |

ho

033 |

b1

067 |

P(a)P(b)P(c|a,b)P(d|c)

P(a,b,c.d) =

albo alb? a'bl a'b’
cd | 045 1 0.9 0.7
c' 0.55 0 0.1 0.3
c? c!
0.3 |05
07 |05




Conditional Probability Density
Function (CPDs)

P(a,b,c.d) =
A~N(l, Z,) B~N(lp, %) P(a)P(b)P(c]a,b)P(d|c)

\\\ m‘ "“\"‘\
\\\
\ \\ \ §
“‘Ns %é‘ ‘\ i
\‘N\\ “

\‘s‘ ‘\‘
C~N(A+B, %)

‘ D~N(y,*C, £,)

AL




Conditional Independencies

GO ®0 -

What is the model?

Label

a)When Y is known?
b)When Y is not known?



Conditional Independent
Observations

Model parameters




“Plate” Notation

Model parameters

Data = {X,,...X,.}

i=1:n

Plate = rectangle in graphical model

variables within a plate are replicated
in a conditionally independent manner



Example: Gaussian Model

Q ’ Generative model:

p(X1,...Xn | M, 0) = P p(xi | M, O')
= p(data | parameters)
= p(D | 6)
i=1:n where 0 = {u, o}
= Likelihood = p(data | parameters)
=p(D]6)
=L (0)

= Likelihood tells us how likely the observed data are conditioned
on a particular setting of the parameters

= Often easier to work with log L (0)



Bayesian Model

S

i=1:q




More Examples

Density estimation

Parametric and nonparametric methods

Regression

Linear, conditional mixture, nonparametric

Classification

Generative and discriminative approach

m,s
O
X X
X Y
O O

Q Q

X X




Example, Con’d

e Evolution

ancestor

T years

Tree Model



Example, Con’d

e Genetic Pedigree




Example, Con’d

e Speech recognition
Word

)

q ))D Wﬁf:,h wave 0 e e 0
=illiii."0006.¢

Vl cooam

Commp=n n waxd

Phoneme (spectral code)
Hidden Markov Model



BN and Graphical Models

e A Bayesian network is a special case of Graphical Models

e A Graphical Model refers to a family of distributions on a set of
random variables that are compatible with all the probabilistic

Independence propositions encoded by a graph that connects these
variables

e |tis a smart way to write/specify/compose/design exponentially-large
probability distributions without paying an exponential cost, and at
the same time endow the distributions with structured semantics

4] (-
) o) &)
—>
(- -2l CH )
P(X X, XX, X X, X7,X,) P(X,,)=P(X,)P(X,)P(X,| X, X,)P(X,| X,)P(X, | X.)

P(X,| X5, X )P X, ) P(X, | Xy X,)



Two Types of GMs

e Directed edges give causality relationships (Bayesian
Network or Directed Graphical Model):

P(X, X, X5, X, X X, X-, X)

= P(X,) P(X)) P(X;| X)) P(X,| X;) P(X] X))
P(X,| X,, X)) P(X-| X)) P(X;| X5, X))

e Undirected edges simply give correlations between
variables (Markov Random Field or Undirected Graphical
model):

P(X;, X5 Xs Xy X, X X, X)

= 1/Z exp{E(X))+E(X,)*EX;, X)tE(X, X,)*E(X;, X))
+E (‘X’6’ ‘\,3’ ‘YJ)+E (-Y') -Yg )+E (-X'gy ‘\'5, ‘X'6)}




Probabilistic Inference

Computing statistical queries regarding the network, e.g.:

e Is node X independent on node Y given nodes ZW ?

e What is the probability of X=true if (Y=false and Z=true)?

e What is the joint distribution of (X,Y) if Z=false?

e What is the likelihood of some full assignment?

e What is the most likely assignment of values to all or a subset the nodes of the network?

General purpose algorithms exist to fully automate such

computation
e Computational cost depends on the topology of the network

e Exactinference:
The junction tree algorithm

e Approximate inference;
Loopy belief propagation, variational inference, Monte Carlo sampling



Learning in BN

The goal:

Given set of independent samples (assignments of

random variables), find the best (the most likely?)

Bayesian Network (both DAG and CPDs)

S &S

RO O
O

(B,E,A,C,R)=(T,F,F,T,F)
(B,E,A,C,R)=(T,F,T,T,F)

(B,E,A,C,R)=(F,T,T,T,F)

r

CED CBD
CRDO A
@

E B| P4/ EB)
e b| 09 0.1
e b5loz os
e b|l0o9 o1

e Bb|oot 099




MLE Learning

e If we assume the parameters for each CPD are globally
iIndependent, and all nodes are fully observed, then the log-
likelihood function decomposes into a sum of local terms, one

per node:
((0:D)=logp(D|6)=log] [| | [ p(x., | %, -9.-)) = Z(Z log p(x,; | x,,.,,,-é’,-)]

\ i i

AY




Example: Decomposable likelihood of

a directed model
e Consider the distribution defined by the directed acyclic GM:

p(x]8)=p(x,|6)p(x, | x,.6,) p(x5 | x,.6;) p(x, | x,.%5.6,)

e This is exactly like learning four separate small BNs, each of
which consists of a node and its parents.




MLEs for BNs with Tabular CPDs

e Assume each CPD is represented as a table (multinomial)

where def
yk p(X - .] IX ) \3

Note that in case of multiple parents, x_will have a composite

state, and the CPD will be a high-dimensional table X

The sufficient statistics are counts of family configurations

B

e The log-likelihood is £(6:0)=log] [ 6 O, = D Ny logby,
I.j.k

I.j.k
e Using a Lagrange multiplier
to enforce Z L« =1, we get: ik Z”




An Example

Three variables: C - Cloudy, R - Rain, S -
Sprinkler

Data: (C=T,R=T,S=F),(C=T,R=F,S=F), (C
=F,R=F,S=T)

P(C=T)=?P(C=F)="?
PR=T|C=T) =?P(R=F|C=F)=?
P(S=T|C=T)=?,P(S=T|C=F)=?



Summary

e Represent dependency structure with a directed acyclic graph
e Node <->random variable

e Edges encode dependencies O

e Absence of edge -> conditional independence v
e Plate representation O
e A BN is a database of prob. Independence statement on variables é

e The factorization theorem of the joint probability

e Local specification = globally consistent distribution
e Local representation for exponentially complex state-space

e Support efficient inference and learning



What if some nodes are not

observed?
e Consider the distribution defined by the directed acyclic GM:

p(x|60)=p(x; | 6)p(x, | x;.6) p(x3 | x,.605) p(x, | x,.%5.6))

e Need to compute p(x,|x,) = inference



An Example

History of

smoking Evidence: Fatigue, Mass seen on X-Ray

Hypothesis: Lung cancer
Chronic @ Lung cancer

bronchitis
F :mguc‘®

P(Lung cancer =T | Fatigue =T, Mass X-Ray=T) = ?

Mass seen

on N-ray



An Example

History of

smoking Evidence: Fatigue, Mass seen on X-Ray

Hypothesis: Lung cancer
Chronic @ Lung cancer

bronchitis
F ;mgu@

P(Lung cancer =T | Fatigue =T, Mass X-Ray =T) =
P(Lung cancer =T, Fatigue =T, Mass X-Ray =T) /
P(Fatigue = T, Mass X-Ray =T)

Mass seen

on N-ray



Inferential Query 1: Likelihood

e Most of the queries one may ask involve evidence

e Evidence x_ is an assignment of values to a set X, of nodes in the GM
over varialbe set X={X,. X,. .... X}

e Without loss of generality X ={X,.,. ... . X}.

e Write Xz=X\X, as the set of hidden variables, X can be & or X

e Simplest query: compute probability of evidence

P(x,) =Y P(Xy,, X,) = Do 2 P(xpee e XX,

e this is often referred to as computing the likelihood of x_



Assess Conditional Independence of
Two Nodes in Bayesian Networks

Qdy

Sprinkler

Wet grass I

Grass is green I

P(Grass is green =T) =?



Inferential Query 2: Conditional
Probability

e Often we are interested in the conditional probability
distribution of a variable given the evidence

P(Xy | Xy =xy) = P Xy) _ PXy.xy)
P(X\') ZP(XH :XHaX\')

e thisis the a posteriori belief in Xy, given evidence x,

e We usually query a subset Y of all hidden variables X,={Y,Z}
and "don't care" about the remaining, Z:

P(Y|xy)=> P(Y.Z=z|xy)

e the process of summing out the "don't care" variables zis called
marginalization, and the resulting P(Y|x,) is called a marginal prob.



Applications of a posterior belief

Prediction: what is the probability of an out‘c):ome given the starting
condition :
ar'> C B > O

e the query node is a descendent of the evidence

Diagnosis: what is the probability of disease/fault given symptoms
9

A o= O >
e the query node an ancestor of the evidence

Learning under partial observation

e fill in the unobserved values under an "EM" setting

The directionality of information flow between variables is not
restricted by the directionality of the edges in a GM

e probabilistic inference can combine evidence form all parts of the network



An Example

High
Temperature




An Example — Combining Evidences

High
Temperature




Inferential query 3: most probable
assignment

e In this query we want to find the most probable joint
assignment (MPA) for some variables of interest

e Such reasoning is usually performed under some given
evidence x_, and ignoring (the values of) other variables Z:

Y |x, =arg max  P(Y [ xy) =argmax_ Z P(Y.Z=1z|x)
z

e this is the maximum a posteriori configuration of Y.



Inferential query 3: most probable
assignment

Philosophy

Marital
status



Complexity of Inference

Thm:
Computing P(X;=x4| x,) in an arbitrary BN is NP-hard

e Hardness does not mean we cannot solve inference

e Itimplies that we cannot find a general procedure that works
efficiently for arbitrary BNs

e For particular families of BNs, we can have provably efficient
procedures



Approach to Inference

e EXxact inference algorithms

e The elimination algorithm v
e The junction tree algorithms

e Approximate inference techniques

e Stochastic simulation / sampling methods
e Markov chain Monte Carlo methods
e Variational algorithms



Marginalization and Elimination

e A signal transduction pathway:

O \5(

What is the likelihood that protein E is active?

e Query: Ae) \
P(e):ZZZZP(abcde) g

- -~ "‘ 3
c b a T ]
L/_) a naive summation needs -
to enumerate over an » $ L "
exponential number of LE S
terms -

e By chain decomposition, we get

=>">"3"S" P(a)P(b| a)P(c|b)P(d | c)P(e| d)
d ¢ b a



Elimination on Chains

ChodboddodP oD

e Rearranging terms ...

P(e) = ZZZZ P(a)P(b|a)P(c|b)P(d|c)P(e|d)
d ¢ b a
=>" > P(c|b)P(d |c)P(e|d)Y. P(a)P(b| a)
d ¢ b a

X

Only calculated once for each
b, i.e. #A * #B operations



CLo—Ce o= o—Co o~

#A * #B

e Now we can perform innermost summation
P(e) = ZZZP(C |b)P(d | c)P(e| d)Z P(a)P(b|a)
d ¢ b a
=2 2> P(c|b)P(d | )Pe| d) p(D)
d ¢ b

e This summation "eliminates" one variable from our
summation argument at a "local cost".



Elimination on Chains

CEDO—C DO~ o—Coo—ED>

H#B * #C H#C * #D
e Rearranging and then summing again, we get

P(e)=>">">"P(c|b)P(d |c)P(e|d)p(b)
d ¢ b
=>">"P(d|c)P(e|d)Y P(c|b)p(b)
d ¢ b
=>">" P(d|c)P(e|d)p(c)
d \c



Elimination on Chains

<>~<>~<>~<>~®

#C * #D

Message Passing

e Eliminate nodes one by one all the way to the end, we get

P(e)=) P(e|d)p(d)
d

e Complexity:
e Each step costs O(|Val(X)|*|Val(X:.,)|) operations: O(nk?)
e Compare to naive evaluation that sums over joint values of n-1 variables O(k")



Inference on General BN via Variable
Elimination

General idea:

e Write query in the form

P(X ’e):Z”.ZZHP(xi |pai)

X3 X2 I
e this suggests an "elimination order" of latent variables to be marginalized

o lteratively

e Move all irrelevant terms outside of innermost sum
e Perform innermost sum, getting a new term
e Insert the new term into the product

e wrap-up

P(X,,e)

P(X,|e)= P(e)




A more complex network

A food web

What is the probability that hawks are leaving given that the grass condition is poor?



Example: Variable Elimination —
Message Passing

Query: P(A | A)
e Needtoeliminate: BCODEFGH 0 o

//////

Initial factors: e Q
P(a)P(b)P(c|b)P(d | a)P(e|c.d)P(f | a)P(g|e)P(h|e. f) GG

//////

Step 1:

e Conditioning (fix the evidence node (i.e., A) on its observed value (i.e., })):

mh(e,f):p(hzi;le,f)

e This step is isomorphic to a marginalizatiori‘step:

m, (e, )= Zp(h le, f)o(h= 7{)
h




Example: Variable Elimination —
Message Passing

e Query: P(B|h)

e Needto eliminate: BC D EF & 0 o
e Initial factors: o 0

P(a)P(b)P(c|b)P(d |a)P(e|c.d)P(f |a)P(g|e)P(h|e.[) CE) CF)

= P(a)P(b)P(c|b)P(d |a)P(e|c.d)P(f |a)P(g|e)m,(e. )

& D

e Step 2: Eliminate &

e compute .

m,(e)=> p(gle)=1
g ) L
= P(a)P(b)P(c|b)P(d|a)P(e|c.d)P(f |a)m, (e)m,(e. [) O g

= P(a)P(D)P(c|b)P(d |a)P(e|c.d)P(f |a)m,(e. f)

\Only be calculated once:

HE * HF




Example: Variable Elimination —
Message Passing

e Query: P(B|h) (B @

e Needtoeliminate: BC D EF

e |nitial factors: O O

P(a)P(D)P(c|b)P(d |a)P(e|c.d)P(f |a)P(g|e)P(h]e. f) CE) CF)
= P(a)P(D)P(c|D)P(d |a)P(e|c.d)P(f |a)P(g|e)m,(e. [f)

— P(a)P(b)P(c|b)P(d | a)P(e|c.d)P(f | a)m, (e. f) (&) CH)

e Step 3: Eliminate F~
e compute
mf(e,a) = Zf:p(f | a)ym, (e, 1)

= P(a)P(b)P(c|b)P(d | a)P(e[c.d)mf(a.e) ©, y
N =

Calculations: #F * (#E * H#A)



Example: Variable Elimination —
Message Passing

e Query: P(B|h) (B D

e Needto eliminate: BC D E

e Initial factors: 0 0

P(a)P(b)P(c| b)P(d |a)P(e|c.d)P(f | a)P(g | &)P(h|e. f) GG
= P(a)P(b)P(c|b)P(d | a)P(e|c.d)P(f | a)P(g | )m, (e. f)

= P(a)P(b)P(c|b)P(d | a)P(e| c.d)P(f | a)m, e. f) (& WD
= P(a)P(b)P(c|b)P(d|a)P(e|c.d)m (a.e)

e Step 4: Eliminate £

e compute
m,(a,c,d) = Z pelc,d)ym,(a,e)
e ) (A
= P(a)P(b)P(c|b)P(d | a)m_(a.c.d) og
(EJ

Calculations: #E * (HA * #C * #D)



Example: Variable Elimination —

Message Passing
e Query: P(B|h) O

e Needto eliminate: B D

e Initial factors: 0 0

P(a)P(b)P(c|D)P(d | a)P(e|c.d)P(f|a)P(g|e)P(h|e.f) G
= P(a)P(D)P(c|b)P(d|a)P(e|c.d)P(f |a)P(g|e)m,(e.f)

= P(a)P(D)P(c|b)P(d |a)P(e|c.d)P(f |a)m,(e. f) e 0
= P(a)P(b)P(c|b)P(d |a)P(e|c.d)m 5 (a.e)
= P(a)P(b)P(c|D)P(d|a)m,(a.c.d)

e Step 5: Eliminate D O
e compute m, (a,c) = Z p(d | a)me(a,c,d) (&
d

= P(a)P(b)P(c|d)m (a.c)

[ —

—> Calculations: #D * (#A * #C)



Example: Variable Elimination —
Message Passing

e Query: P(B|h) B D

e Need to eliminate: B C

e Initial factors: 0 0

P(a)P(b)P(c|d)P(d |a)P(e|c.d)P(f |a)P(g|e)P(hle.f) e e
= P(a)P(D)P(c|d)P(d |a)P(e|c.d)P(f |a)P(g|e)m,(e.f)

= P(a)P(b)P(c|d)P(d|a)P(e|c.d)P(f |a)m,(e. f) e @

= P(a)P(b)P(c|d)P(d|a)P(e|c.d)m 5 (a.e)

= P(a)P(b)P(c|d)P(d|a)ym,(a.c.d)

= P(a)P(b)P(c|d)m,(a.c)

e Step 6: Eliminate €
e compute m, (a’b) = ZP(C | b)ﬂ'?d (a_., C')

= P(a)P(D)P(c|d)m (a.c)

Calculations: #C * (#A * #B)



Example: Variable Elimination —
Message Passing

Query: P(B | h) O @

e Needto eliminate: 2

Initial factors: e 0

P(a)P(D)P(c|d)P(d |a)P(e|c.d)P(f |a)P(g|e)P(h|e.f)

= P(a)P(b)P(c|d)P(d |a)P(e|c.d)P(f |a)P(g|e)m,(e. ) e o
= P(a)P(D)P(c|d)P(d |a)P(e|c.d)P(f |aym,(e. ) e g

= P(a)P(D)P(c|d)P(d |a)P(e|c.d)m (a.e)

= P(a)P(b)P(c|d)P(d |a)ym (a.c.d)

= P(a)P(D)P(c|d)my(a.c)

= P(a)P(b)ym_(a.b)

e Step 7: Eliminate A @

e compute m, (a) = Z p(b)mc (a,b)
b

= P(a)ym,(a) \

Calculations: #B * #A




Example: Variable Elimination —
Message Passing

Query: P(B | h) (B @

e Needto eliminate: 2

Initial factors: 0 O

P(a)P(b)P(c|d)P(d |a)P(e|c.d)P(f|a)P(g|e)P(h|e.f) e o
= P(a)P(D)P(c|d)P(d |a)P(e|c.d)P(f|a)P(g|e)m,(e. f)

= P(a)P(D)P(c|d)P(d |a)P(e|c.d)P(f | aym,(e.f) o 0

= P(a)P(b)P(c|d)P(d|a)P(e|c.d)m,(a.e)

= P(a)P(b)P(c|d)P(d|a)m,(a.c.d)

= P(a)P(D)P(c|d)my(a.c)

= P(a)P(b)m_(a.D)

= P(a)ym,(a)

Step 8: Wrap-up _p(aj;) = p(a)ymy(a), p(l?) = Zp(a)mb (a)

~  pla)m,(a)
= Flalh)= > p(aym,(a)




Complexity of Variable
Elimination
e Suppose in one elimination step we compute
M (Vyseea Vi) = Z m' (X, Ypa-ee Vi)
m'x (x.* yl 20> yk) = H 7771-(.1‘, Yc,- )

This requires
o ko|Val(X)oH‘Val(YCi)‘ multiplications

— For each value of x, y;, ..., v, we do Amultiplications

° |Val(X)

°H]Val(‘/c,. )\ additions
— For each value of y,, ..., y,, we do /Va/(X)/ additions

Complexity is exponential in number of variables in the
iIntermediate factor



Understanding Variable Elimination

e A graph elimination algorithm |

@A AT T

moralization graph elimination




Elimination Cliques
B OJO
03 Roso
Zr
B W B W B W OP=<h
:. :. < )
e & O,

m, (e, [) m, (e) m,(e,a) m,(a,c,d)

@ @ @ = &O—®@ = @
:’ :'.j

m,(a,c) m_(a,b) m, (a)



Understanding Variable Elimination

e A graph elimination algorithm

&1 & & 2

——

moralization graph elimination

e Intermediate terms correspond to the cliques resulted from
elimination

e “good’ elimination orderings lead to small cliques and hence reduce complexity
(what will happen if we eliminate "e" first in the above graph?)

e finding the optimum ordering is NP-hard, but for many graph optimum or near-
optimum can often be heuristically found

e Applies to undirected GMs



A Clique Tree

m,(a.c.d)
= plelc.d)m_ (e)m(a.e)



From Elimination to Message Passing

|
e Our algorithm so far answers only one query (e.g., on one node), do

we need to do a complete elimination for every such query?
e Elimination = message passing on a clique tree

G AY 2

m,(a.c.d)
=D plelc.d)m_ (e)m(a.e)

(&

e Messages can be reused



From Elimination to Message Passing

e Our algorithm so far answers only one query (e.g., on one node), do
we need to do a complete elimination for every such query?

e Elimination = message passing on a clique tree
e Another query ...

e Messages m.and m, are reused, others need to be recomputed



The Junction Tree Algorithm

e Shafer-Shenoy algorithm

(b)

e Message from clique /to clique j: / Potential of C, itself

My = z WCiH/lk—)i(Sld)

. . C\S. k#j
e Cligue marginal v J

Message passed
p(C)ocwe [ ] #4si(Su) Into i from all sources

/I k Except j

Probability of C, = its potential * messages coming from all sources



The Sketch of Junction Tree Algorithm

e The algorithm

e Construction of junction trees --- a special clique tree

e Propagation of probabilities --- a message-passing protocol

e Results in marginal probabilities of all cliques --- solves all
queries in a single run

e A generic exact inference algorithm for any GM

e Complexity: exponential in the size of the maximal clique ---
a good elimination order often leads to small maximal clique,
and hence a good (i.e., thin) JT

e Many well-known algorithms are special cases of JT

e Forward-backward, Kalman filter, Peeling, Sum-Product ...



A Junction Tree Algorithm for HMM

e A junction tree for the HMM

e Rightward pass
r—»r—l(‘r+l) Z‘/IO

= Zp(1r+l | V )/ut l—n(‘ )p(xr-)-l I vh-l)

r+l),ur 1—):(" )/1 (1‘r+1)

- p(xrol ‘ vH—l )Z a\ Yl /1 —l—)r(1 )
This is exactly the forward algorithm!

e Leftward pass ...
M 1(—:‘(‘ ) Z‘//(‘t ‘r+1)/ (—r—l(‘r+l)/u,1‘(‘r+l)

Yrs1

=2 P | Yl (V) POXrt | Yisn)
This i§"éxactly the backward algorithm!

v(y.x)

Ch
=
ONONO N

v(yi-y2) v (y2.¥3) (V- yr)
0O - O
(1) #(y2)
£(ys)! ¢(ya) ¢(yr)
Kl O D
v(ye- %) wlys.Xs) v (yr.-Xr)

Hyar (V3) v (s Yea) B spd (Vr1)
: O— O—0} .
M (Vs1) #l
W(yﬂ—!’ Xﬂ-l)
Hpacr () YO Ye1) i (Vra)

M (Vs1) ;i;

W(yﬂ—! > Xﬂ-l )



Summary

e Represent dependency structure with a directed acyclic graph
e Node <-> random variable

e Edges encode dependencies ?
Absence of edge -> conditional independence

e Plate representation O

e A BN is a database of prob. Independence statement on variables é)

e The factorization theorem of the joint probability

e Local specification = globally consistent distribution
e Local representation for exponentially complex state-space

e Support efficient inference and learning



