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Deterministic Learning Machine

• Learning a mapping: xi |à yi. 
• The machine is defined by a set of mappings 

(functions): f(x, a)
• f(x,a) are defined by the adjustable 

parameters a. The machine is assumed to be 
deterministic. 

• A particular choice of a generates a “trained” 
machine (examples?)



Linear Classification Hyperplane
• A set of labeled training data {xi, yi}, i = 1, …, l, xi in 

Rd, yi in {-1, 1}. 
• A linear machine trained on the separable data. 
• A linear hyperplane f(x) = w.x+b, separates the 

positive from negative examples, w is normal to the 
hyperplane.

• The points which lie on the hyperplane satisfy w.x + b 
= 0, positives w.x+b > 0, and negatives w.x+b < 0. 
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xi . w + b >= +1 for yi = +1
xi . w + b <= -1, for yi = -1

combined into: yi(xi.w+b) >= 1 

Comments: equivalent to general form yi(xi.w+b) >= c
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Prove w is normal (perpendicular) to the hyperplane

(x2 – x1) . w = x2.w – x1.w = -b – (-b) = 0 
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x2
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• Choose a point x on wx+b=0 such that vector (0, x) is 
perpendicular to wx+b = 0. So x is λw because w is 
norm of wx+b=0.

• So λw.w+b = 0 è λ = -b/ w.w = -b  / |w|2

• So x = -b / |w|2 *w è |x| = |b| / |w|. 

Distance from origin to wx + b=0 is |b| / |w| 
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Q2: From your intuition,
which one is better?

Q1: How logistic regression
finds a linear hyperplane?
Is the function found by
logistic regression unique?
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Margin

wx + b = 1

wx + b = 0

wx + b = -1

M



How to Compute Margin?

A. Moore, 2003
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wx+b = 0

wx+b = +1

wx+b = -1

origin
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Constrained Optimization Problem



A. Moore, 2003



Margin and Support Vectors

wx + b = 1

wx + b = 0

wx + b = -1

M = 2 / |w|

Support vectors,
lying on the 
hyperplane

H1

H2

H



Relationship with Vapnik Chevonenkis
(VC) Dimension Learning Theory



Expectation of Test Error
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R(a) is called expected risk / loss, the same as before except 
the ½ ratio.   

Empirical Risk Remp(a) is defined to be the measured 
mean error rate on l training examples. 
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Vapnik Risk Bound
• ½|yi – f(Xi, a)| is also called the loss.  It can only 

take the values 0 and 1. 
• Choose η such that 0 <= η <= 1. With probability 1 –

η, the following bound holds (Vapnik, 1995)
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Where h is a non-negative integer called the Vapnik Chevonenkis
(VC) dimension, and is a measure of the notion of capacity. 
The second part of  the right is called VC confidence. 



Insights about Risk Bound
• Independent of p(X,y). 
• Often not possible to compute the left hand 

side.
• Easily compute right hand side if h is known. 
• Structural Risk Minimization: Given 

sufficiently small η, taking the machine which 
minimizes the right hand side and gives the 
lowest upper bound on the actual risk. 

• Question: how does the bound change 
according to η? 



VC Dimension
• VC dimension is a property of a set of functions { 
f(a) }. Here we consider functions that correspond 
to two-class pattern recognition case, so that 
f(X,a)      {-1, +1}. 

• If a given set of l points can be labeled in all 
possible 2l ways, and for each labeling, a member 
of set {f(a)} can be found to correctly assign those 
labels, we say that set of points is shattered by 
that set of functions.

Î



VC Dimension
• VC dimension for a set of functions {f(a)} is 

defined as the maximum number of training 
points that can be shattered by {f(a)}. 

• If the VC dimension is h, then there exists at least 
one set of h points that can be shattered. But not 
necessary for every set of h points.



8 possible labeling of 3 points can be separated by lines.

A linear function has VC dimension 3



Simply can not separate the labeling of these four points
using a line. So the VC dimension of a line is 3.



VC Dimension and the Number of 
Parameters

• Intuitively, more parameters è higher VC 
dimension?

• However, 1 parameter function can have infinite 
VC dimension. (see Burge’s tutorial) 

If sin(ax) > 0, f(x,a) = 1, -1 otherwise



VC Confidence and  VC Dimension h

VC confidence is monotonic in h. (here l = 10,000, η = 0.05 (95%))
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Structural Risk Minimization
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Given some selection of learning machines whose empirical
risk is zero, one wants to choose that learning machine
whose associated set of functions has minimal VC dimension.
This is called Occam’s Razor: "All things being equal, the 
simplest solution tends to be the best one." 



http://www.svms.org/srm/



Comments
• The risk bound equation gives a probabilistic upper 

bound on the actual risk. This does not prevent a 
particular machine with the same value for empirical 
risk, and whose function set has higher VC dimension 
from having better performance. 

• For higher h value, the bound is guaranteed not 
tight. 

• h/l > 0.37, VC confidence exceeds unity. 



Example
• What is the VC dimension of one-nearest 

neighbor method?
• Nearest neighbor classifier can still perform 

well. 
• For any classifier with an infinite VC 

dimension, the bound is not even valid. 



Structure Risk Minimization for SVM

• Margin (M) is a measure of capacity / 
complexity of a linear support vector machine

• The objective is to find a linear hyperplane
with maximum margin

• Maximum margin classifier



Maximum Margin Classifier



Support Vector Machines Optimization



Lagrange Optimization
• An mathematical optimization technique named 

after Joseph Louis Lagrange
• A method for finding local minima of a function of 

several variables subject to one or more constraints
• The method reduces a problem in n variables with k

constraints to a solvable problem in n+k variables 
with no constraints. 

• The method introduces a new unknown scalar 
variable, the Lagrange multiplier, for each constraint 
and forms a linear combination involving the 
multipliers as coefficients. 

http://en.wikipedia.org/wiki/Lagrange_multipliers



Langrangian Duality



Lagrangian Duality



Primal and Dual Problems
Primal 

Dual
f(w*)



KKT Condition



Solve Maximum Margin Classifier



The Dual Problem



Proof

(



The Dual Problem



Support Vectors



Support Vector Machines

Question: how to get b?



How to Determine w and b
• Use quadratic programming to solve ai and compute 

w is trivial. (use KKT condition (1))
• How to compute b?
• Use KKT condition (5), for any support vector (point 
ai > 0), yi(w.xi+b)-1 = 0. 

• We compute b in terms of a support vector.  Better: 
we computer b in terms of all support vectors and 
take the average.



Interpretation of Support Vector 
Machines



Non-Separable Case
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Can’t satisfy the constraints yi(wxi+b) >=1 for 
some data points? What can we do?



Non-Linearly Separable Problem



Relax Constraints – Soft Margin
• Introduce positive slack variables ξi, i = 1, …, l to relax 

constraints. (ξi  >= 0)
• New constraints:
• xi.w + b >= +1 - ξi  for yi = +1
• xi.w + b <= -1 + ξi  for yi = -1
• Or yi(wxi +b) >= 1- ξi 
• ξi >= 0
• For an classification error to happen, the 

corresponding ξi  must exceed unity, so Σ ξi is an 
upper bound on the number of training errors. 



Soft Margin Hyperplane
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ui is the Lagrange multipliers introduced to enforce
Non-negativity of ξi

Primal Optimization



Max Welling, 2005

KKT Conditions



Proof of Soft Margin Optimization
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The Optimization Problem



Values of Multipliers
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ai = C, ξi > 0, ui = 0 

ai = 0, ξi = 0, ui > 0 

ai < C, ξi = 0, ui > 0 



Solution of w and b
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Use complementary slackness to compute b. Choose
a support vector (0 < ai < C ) to compute b, where
ξi = 0. ξi = 0 is derived by combining equations 3 and 9.



New Objective Function
• Minimize |w|2/2 + C(Σξi)k. 
• C is parameter to be chosen by the user, a larger C 

corresponding to assigning a higher penalty to errors.
• This is a convex programming problem for any 

positive integer k. 



SVM Demo

https://www.youtube.com/watch?v=bqwAlpumoPM

http://cs.stanford.edu/people/karpathy/svmj
s/demo/


