

# Boosting

**Dr. Jianlin Cheng**

**Department of Electrical Engineering  
and Computer Science**

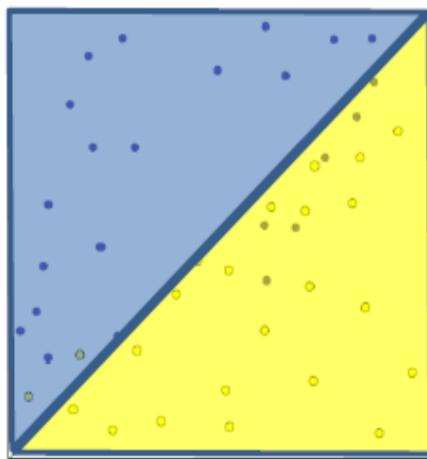
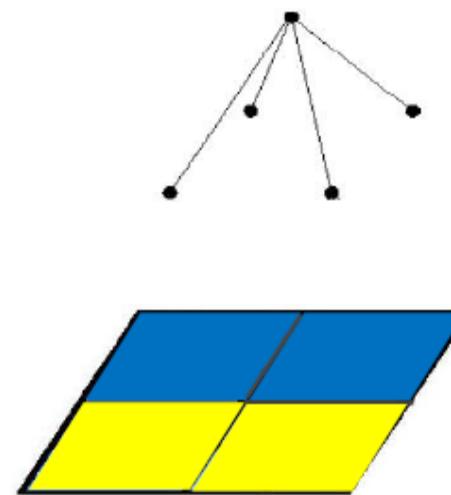
**University of Missouri, Columbia**

**Fall, 2019**

**Slides Adapted from Book and CMU, Stanford Machine Learning Courses**

# Fighting the bias-variance tradeoff

- **Simple (a.k.a. weak) learners** e.g., naïve Bayes, logistic regression, decision stumps (or shallow decision trees)



**Are good ☺** - Low variance, don't usually overfit

**Are bad ☹** - High bias, can't solve hard learning problems

- **Can we make weak learners always good???**
  - No!!!
  - But often yes...

# Voting (Ensemble Methods)

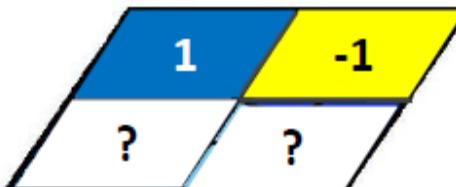
- Instead of learning a single (weak) classifier, learn **many weak classifiers** that are **good at different parts of the input space**
- Output class:** (Weighted) vote of each classifier
  - Classifiers that are most “sure” will vote with more conviction
  - Classifiers will be most “sure” about a particular part of the space
  - On average, do better than single classifier!



$h_1(X)$



$h_2(X)$



$H: X \rightarrow Y (-1, 1)$

$H(X) = h_1(X) + h_2(X)$

$H(X) = \text{sign}(\sum_t \alpha_t h_t(X))$

↓

weights

# Voting (Ensemble Methods)

- Instead of learning a single (weak) classifier, learn **many weak classifiers** that are **good at different parts of the input space**
- **Output class:** (Weighted) vote of each classifier
  - Classifiers that are most “sure” will vote with more conviction
  - Classifiers will be most “sure” about a particular part of the space
  - On average, do better than single classifier!
- **But how do you ???**
  - force classifiers  $h_t$  to learn about different parts of the input space?
  - weigh the votes of different classifiers?  $\alpha_t$

# Boosting [Schapire'89]

- **Idea:** given a weak learner, run it multiple times on (reweighted) training data, then let learned classifiers vote
- On each iteration  $t$ :
  - weight each training example by how incorrectly it was classified
  - Learn a weak hypothesis –  $h_t$
  - A strength for this hypothesis –  $\alpha_t$
- Final classifier: 
$$H(X) = \text{sign}(\sum \alpha_t h_t(X))$$
- **Practically useful**
- **Theoretically interesting**

# Learning from weighted data

- Consider a **weighted dataset**
  - $D(i)$  – weight of  $i$  th training example  $(x^i, y^i)$
  - Interpretations:
    - $i$  th training example counts as  $D(i)$  examples
    - If I were to “resample” data, I would get more samples of “heavier” data points
- Now, in all calculations, whenever used,  $i$  th training example counts as  $D(i)$  “examples”
  - e.g., in MLE redefine  $Count(Y=y)$  to be weighted count

## Unweighted data

$$Count(Y=y) = \sum_{i=1}^m \mathbf{1}(Y^i=y)$$

## Weights $D(i)$

$$Count(Y=y) = \sum_{i=1}^m D(i) \mathbf{1}(Y^i=y)$$

# AdaBoost [Freund & Schapire'95]

Given:  $(x_1, y_1), \dots, (x_m, y_m)$  where  $x_i \in X, y_i \in Y = \{-1, +1\}$

Initialize  $D_1(i) = 1/m$ . **Initially equal weights**

For  $t = 1, \dots, T$ :

- Train **weak learner** using distribution  $D_t$ . **Naïve bayes, decision stump**
- Get **weak classifier**  $h_t : X \rightarrow \mathbb{R}$ .
- Choose  $\alpha_t \in \mathbb{R}$ . **Magic (+ve)**
- Update:

$$D_{t+1}(i) = \frac{D_t(i)}{Z_t} \begin{cases} e^{-\alpha_t} & \text{if } y_i = h_t(x_i) \\ e^{\alpha_t} & \text{if } y_i \neq h_t(x_i) \end{cases}$$

$$= \frac{D_t(i) \exp(-\alpha_t y_i h_t(x_i))}{Z_t}$$

**Increase weight  
if wrong on pt i  
 $y_i h_t(x_i) = -1 < 0$**

where  $Z_t$  is a normalization factor

# AdaBoost [Freund & Schapire'95]

Given:  $(x_1, y_1), \dots, (x_m, y_m)$  where  $x_i \in X, y_i \in Y = \{-1, +1\}$

Initialize  $D_1(i) = 1/m$ . **Initially equal weights**

For  $t = 1, \dots, T$ :

- Train **weak** learner using distribution  $D_t$ . **Naïve bayes, decision stump**
- Get **weak** classifier  $h_t : X \rightarrow \mathbb{R}$ .
- Choose  $\alpha_t \in \mathbb{R}$ . **Magic (+ve)**
- Update:

$$D_{t+1}(i) = \frac{D_t(i) \exp(-\alpha_t y_i h_t(x_i))}{Z_t}$$

**Increase weight  
if wrong on pt i  
 $y_i h_t(x_i) = -1 < 0$**

where  $Z_t$  is a normalization factor

$$Z_t = \sum_{i=1}^m D_t(i) \exp(-\alpha_t y_i h_t(x_i))$$

**Weights for all  
pts must sum to 1  
 $\sum_t D_{t+1}(i) = 1$**

# AdaBoost [Freund & Schapire'95]

Given:  $(x_1, y_1), \dots, (x_m, y_m)$  where  $x_i \in X, y_i \in Y = \{-1, +1\}$

Initialize  $D_1(i) = 1/m$ . Initially equal weights

For  $t = 1, \dots, T$ :

- Train weak learner using distribution  $D_t$ . Naïve bayes, decision stump
- Get weak classifier  $h_t : X \rightarrow \mathbb{R}$ .
- Choose  $\alpha_t \in \mathbb{R}$ . Magic (+ve)
- Update:

$$D_{t+1}(i) = \frac{D_t(i) \exp(-\alpha_t y_i h_t(x_i))}{Z_t}$$

Increase weight  
if wrong on pt i  
 $y_i h_t(x_i) = -1 < 0$

where  $Z_t$  is a normalization factor

Output the final classifier:

$$H(x) = \text{sign} \left( \sum_{t=1}^T \alpha_t h_t(x) \right).$$

# What $\alpha_t$ to choose for hypothesis $h_t$ ?

Weight Update Rule:

$$D_{t+1}(i) = \frac{D_t(i) \exp(-\alpha_t y_i h_t(x_i))}{Z_t}$$

$$\alpha_t = \frac{1}{2} \ln \left( \frac{1 - \epsilon_t}{\epsilon_t} \right)$$

[Freund & Schapire '95]

## Weighted training error

$$\epsilon_t = P_{i \sim D_t(i)}[h_t(x^i) \neq y^i] = \sum_{i=1}^m D_t(i) \underbrace{\delta(h_t(x_i) \neq y_i)}_{\text{Does } h_t \text{ get } i^{\text{th}} \text{ point wrong}}$$

$\epsilon_t = 0$  if  $h_t$  perfectly classifies all weighted data pts

$\alpha_t = \infty$

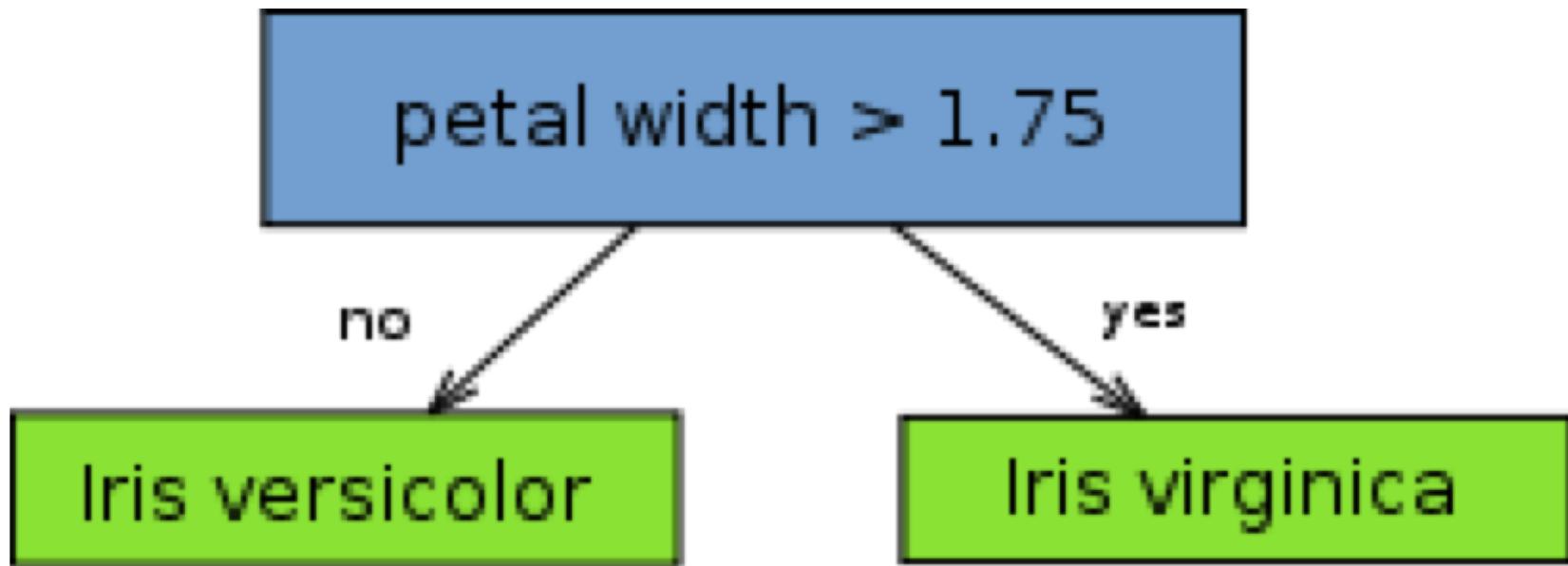
$\epsilon_t = 1$  if  $h_t$  perfectly wrong  $\Rightarrow -h_t$  perfectly right

$\alpha_t = -\infty$

$\epsilon_t = 0.5$

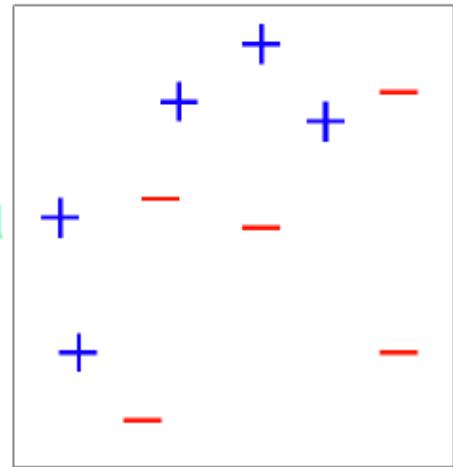
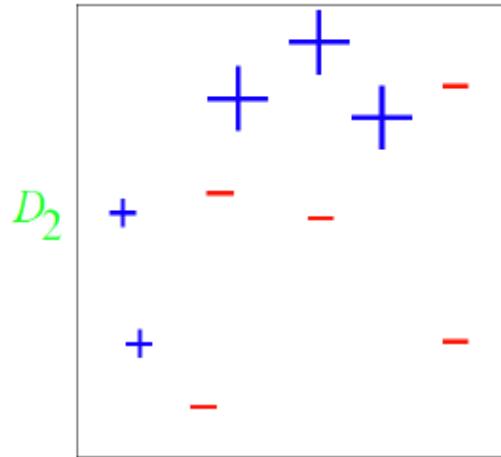
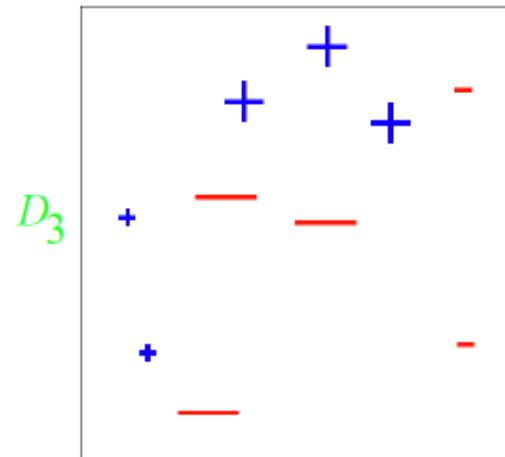
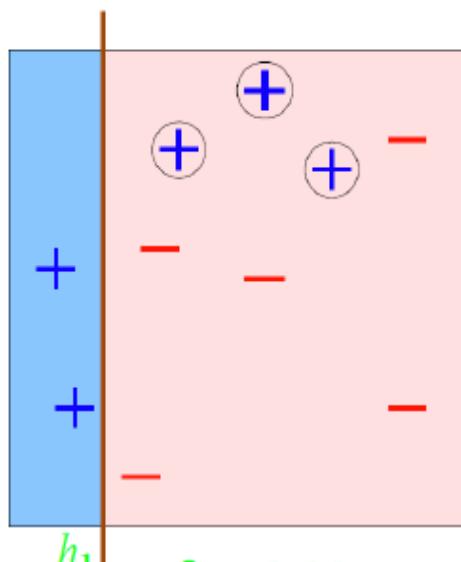
$\alpha_t = 0$

# Decision Stump

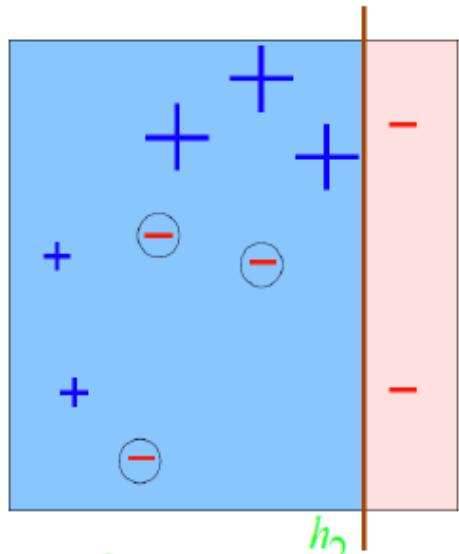


Source: Wikipedia

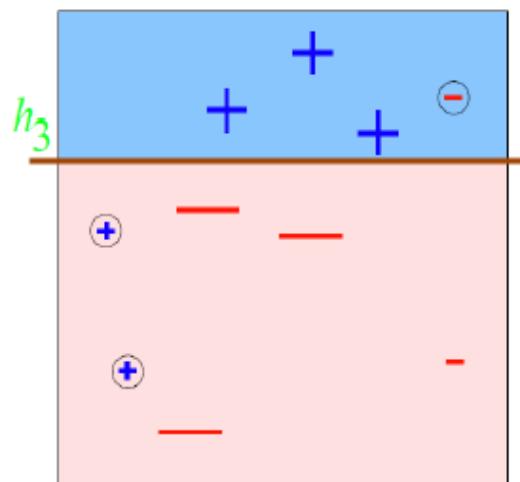
# Boosting Example (Decision Stumps)



$$\begin{aligned}\epsilon_1 &= 0.30 \\ \alpha_1 &= 0.42\end{aligned}$$



$$\begin{aligned}\epsilon_2 &= 0.21 \\ \alpha_2 &= 0.65\end{aligned}$$

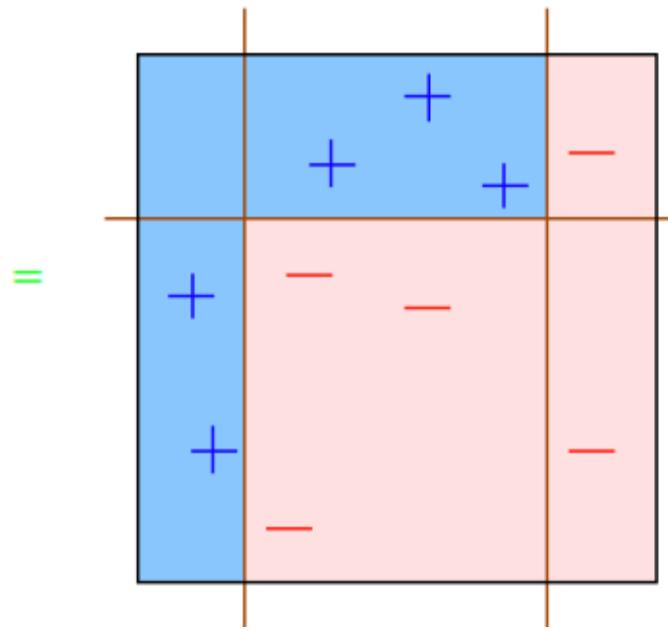


$$\begin{aligned}\epsilon_3 &= 0.14 \\ \alpha_3 &= 0.92\end{aligned}$$

# Boosting Example (Decision Stumps)

$H_{\text{final}}$

$$= \text{sign} \left( 0.42 \begin{array}{|c|c|} \hline \text{blue} & \text{pink} \\ \hline \end{array} + 0.65 \begin{array}{|c|c|} \hline \text{blue} & \text{pink} \\ \hline \end{array} + 0.92 \begin{array}{|c|c|} \hline \text{blue} & \text{pink} \\ \hline \end{array} \right)$$



# Analyzing training error

Analysis reveals:

- What  $\alpha_t$  to choose for hypothesis  $h_t$ ?

$$\alpha_t = \frac{1}{2} \ln \left( \frac{1 - \epsilon_t}{\epsilon_t} \right)$$

$\epsilon_t$  - weighted training error

- If each weak learner  $h_t$  is slightly better than random guessing ( $\epsilon_t < 0.5$ ), then training error of AdaBoost decays exponentially fast in number of rounds  $T$ .

$$\frac{1}{m} \sum_{i=1}^m \delta(H(x_i) \neq y_i) \leq \exp \left( -2 \sum_{t=1}^T (1/2 - \epsilon_t)^2 \right)$$

**Training Error**

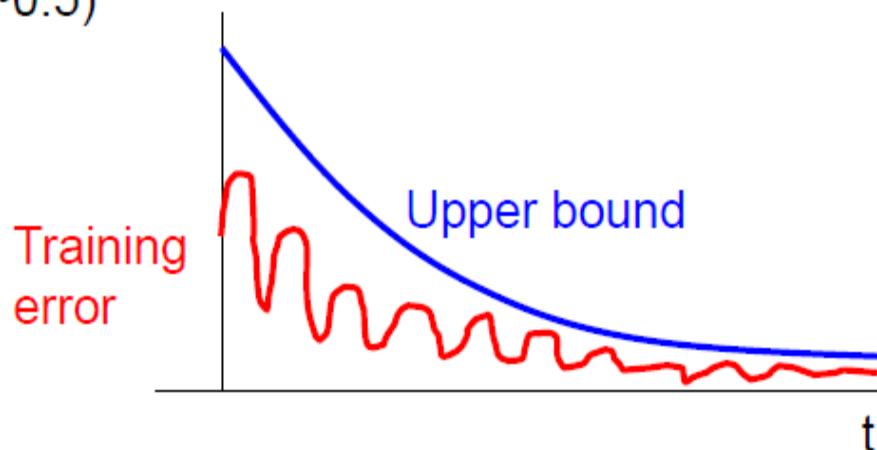
# Analyzing training error

Training error of final classifier is bounded by:

$$\frac{1}{m} \sum_{i=1}^m \delta(H(x_i) \neq y_i) \leq \frac{1}{m} \sum_{i=1}^m \exp(-y_i f(x_i)) = \prod_t Z_t$$

Where  $f(x) = \sum_t \alpha_t h_t(x); H(x) = \text{sign}(f(x))$

If  $Z_t < 1$ , training error decreases exponentially (even though weak learners may not be good  $\varepsilon_t \sim 0.5$ )



# What $\alpha_t$ to choose for hypothesis $h_t$ ?

Training error of final classifier is bounded by:

$$\frac{1}{m} \sum_{i=1}^m \delta(H(x_i) \neq y_i) \leq \frac{1}{m} \sum_{i=1}^m \exp(-y_i f(x_i)) = \prod_t Z_t$$

Where  $f(x) = \sum_t \alpha_t h_t(x)$ ;  $H(x) = \text{sign}(f(x))$

If we minimize  $\prod_t Z_t$ , we minimize our training error

We can tighten this bound greedily, by choosing  $\alpha_t$  and  $h_t$  on each iteration to minimize  $Z_t$ .

$$Z_t = \sum_{i=1}^m D_t(i) \exp(-\alpha_t y_i h_t(x_i))$$

# What $\alpha_t$ to choose for hypothesis $h_t$ ?

We can minimize this bound by choosing  $\alpha_t$  on each iteration to minimize  $Z_t$ .

$$Z_t = \sum_{i=1}^m D_t(i) \exp(-\alpha_t y_i h_t(x_i))$$

For boolean target function, this is accomplished by [Freund & Schapire '97]:

$$\alpha_t = \frac{1}{2} \ln \left( \frac{1 - \epsilon_t}{\epsilon_t} \right)$$

**Proof:**  $Z_t = \sum_{i:y_i \neq h_t(x_i)} D_t(i) e^{\alpha_t} + \sum_{i:y_i = h_t(x_i)} D_t(i) e^{-\alpha_t}$

$$= \epsilon_t e^{\alpha_t} + (1 - \epsilon_t) e^{-\alpha_t}$$

$$\frac{\partial Z_t}{\alpha_t} = \epsilon_t e^{\alpha_t} - (1 - \epsilon_t) e^{-\alpha_t} = 0 \quad \Rightarrow e^{2\alpha_t} = \frac{1 - \epsilon_t}{\epsilon_t}$$

# What $\alpha_t$ to choose for hypothesis $h_t$ ?

We can minimize this bound by choosing  $\alpha_t$  on each iteration to minimize  $Z_t$ .

$$Z_t = \sum_{i=1}^m D_t(i) \exp(-\alpha_t y_i h_t(x_i))$$

For boolean target function, this is accomplished by [Freund & Schapire '97]:

$$\alpha_t = \frac{1}{2} \ln \left( \frac{1 - \epsilon_t}{\epsilon_t} \right)$$

**Proof:**

$$\begin{aligned} Z_t &= \sum_{i:y_i \neq h_t(x_i)} D_t(i) e^{\alpha_t} + \sum_{i:y_i = h_t(x_i)} D_t(i) e^{-\alpha_t} \\ &= \epsilon_t e^{\alpha_t} + (1 - \epsilon_t) e^{-\alpha_t} \\ &= 2\sqrt{\epsilon_t(1 - \epsilon_t)} = \sqrt{1 - (1 - 2\epsilon_t)^2} \end{aligned}$$

# Dumb classifiers made Smart

Training error of final classifier is bounded by:

$$\frac{1}{m} \sum_{i=1}^m \delta(H(x_i) \neq y_i) \leq \prod_t Z_t = \prod_t \sqrt{1 - (1 - 2\epsilon_t)^2}$$

$$\leq \exp \left( -2 \sum_{t=1}^T (1/2 - \epsilon_t)^2 \right)$$

grows as  $\epsilon_t$  moves away from 1/2

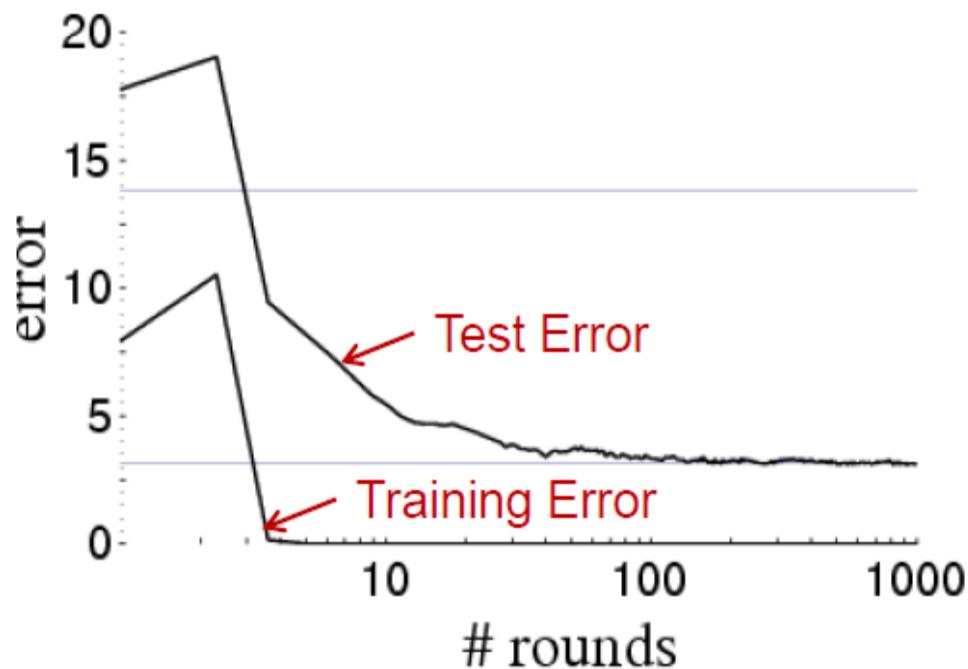
If each classifier is (at least slightly) better than random  $\epsilon_t < 0.5$

AdaBoost will achieve zero training error exponentially fast (in number of rounds T) !!

What about test error?

# Boosting results – Digit recognition

[Schapire, 1989]



- Boosting often, **but not always**
  - Robust to overfitting
  - Test set error decreases even after training error is zero

# Generalization Error Bounds

[Freund & Schapire'95]

$$\text{error}_{\text{true}}(H) \leq \text{error}_{\text{train}}(H) + \tilde{\mathcal{O}} \left( \sqrt{\frac{Td}{m}} \right)$$

|               | bias  | variance |         |
|---------------|-------|----------|---------|
| ↑<br>tradeoff | large | small    | T small |
|               | small | large    | T large |

- $T$  – number of boosting rounds
- $d$  – VC dimension of weak learner, measures complexity of classifier
- $m$  – number of training examples

# Generalization Error Bounds

[Freund & Schapire'95]

$$\text{error}_{\text{true}}(H) \leq \text{error}_{\text{train}}(H) + \tilde{\mathcal{O}}\left(\sqrt{\frac{Td}{m}}\right)$$

With high probability

Boosting can overfit if T is large

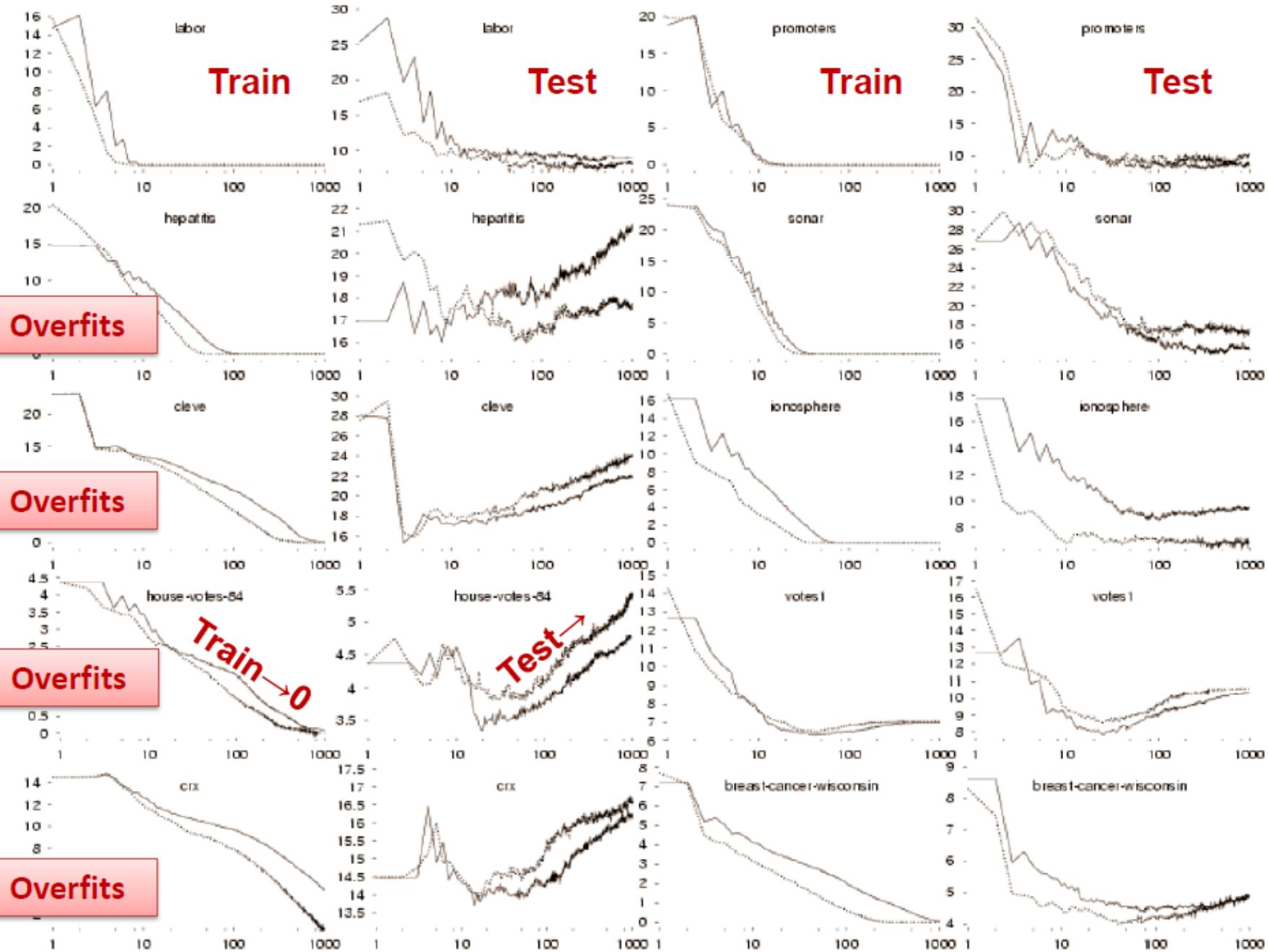
Boosting often,

- Robust to overfitting
- Test set error decreases even after training error is zero

**Contradicts experimental results**

Need better analysis tools – margin based bounds

AdaBoost and AdaBoost.MH on Train (left) and Test (right) data from Irvine repository. [Schapire and Singer, ML 1999]



# Boosting and Logistic Regression

Logistic regression assumes:

$$P(Y = 1|X) = \frac{1}{1 + \exp(-f(x))}$$

$$f(x) = w_0 + \sum_j w_j x_j$$

And tries to maximize data likelihood:

$$P(\mathcal{D}|f) = \prod_{i=1}^m \frac{1}{1 + \exp(-y_i f(x_i))}$$

$$Y_i = 1 \text{ or } -1$$

Equivalent to minimizing log loss

$$-\log P(\mathcal{D}|f) = \sum_{i=1}^m \ln(1 + \exp(-y_i f(x_i)))$$

# Boosting and Logistic Regression

Logistic regression equivalent to minimizing log loss

$$\sum_{i=1}^m \ln(1 + \exp(-y_i f(x_i)))$$

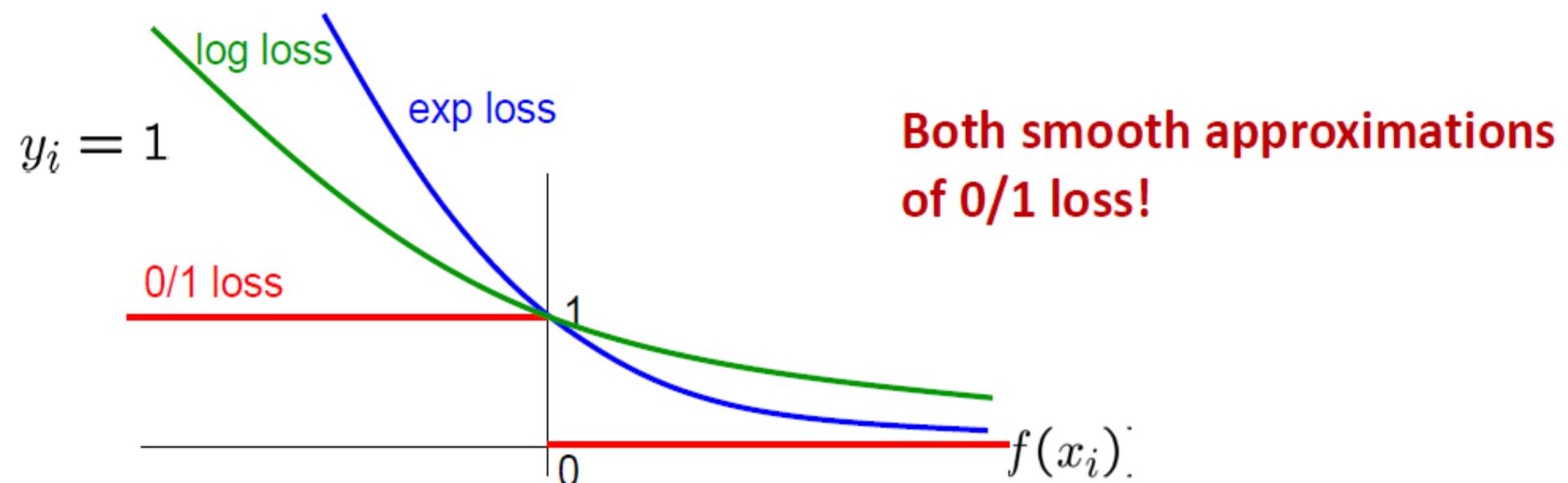
$$f(x) = w_0 + \sum_j w_j x_j$$

Boosting minimizes similar loss function!!

$$\frac{1}{m} \sum_{i=1}^m \exp(-y_i f(x_i)) = \prod_t Z_t$$

$$f(x) = \sum_t \alpha_t h_t(x)$$

Weighted average of weak learners



# Boosting and Logistic Regression

## Logistic regression:

- Minimize log loss

$$\sum_{i=1}^m \ln(1 + \exp(-y_i f(x_i)))$$

- Define

$$f(x) = \sum_j w_j x_j$$

where  $x_j$  predefined features

(linear classifier)

- Jointly optimize over all weights  $w_0, w_1, w_2\dots$

## Boosting:

- Minimize exp loss

$$\sum_{i=1}^m \exp(-y_i f(x_i))$$

- Define

$$f(x) = \sum_t \alpha_t h_t(x)$$

where  $h_t(x)$  defined dynamically to fit data

(not a linear classifier)

- Weights  $\alpha_t$  learned per iteration t incrementally

# Hard & Soft Decision

Weighted average of weak learners  $f(x) = \sum_t \alpha_t h_t(x)$

Hard Decision/Predicted label:  $H(x) = \text{sign}(f(x))$

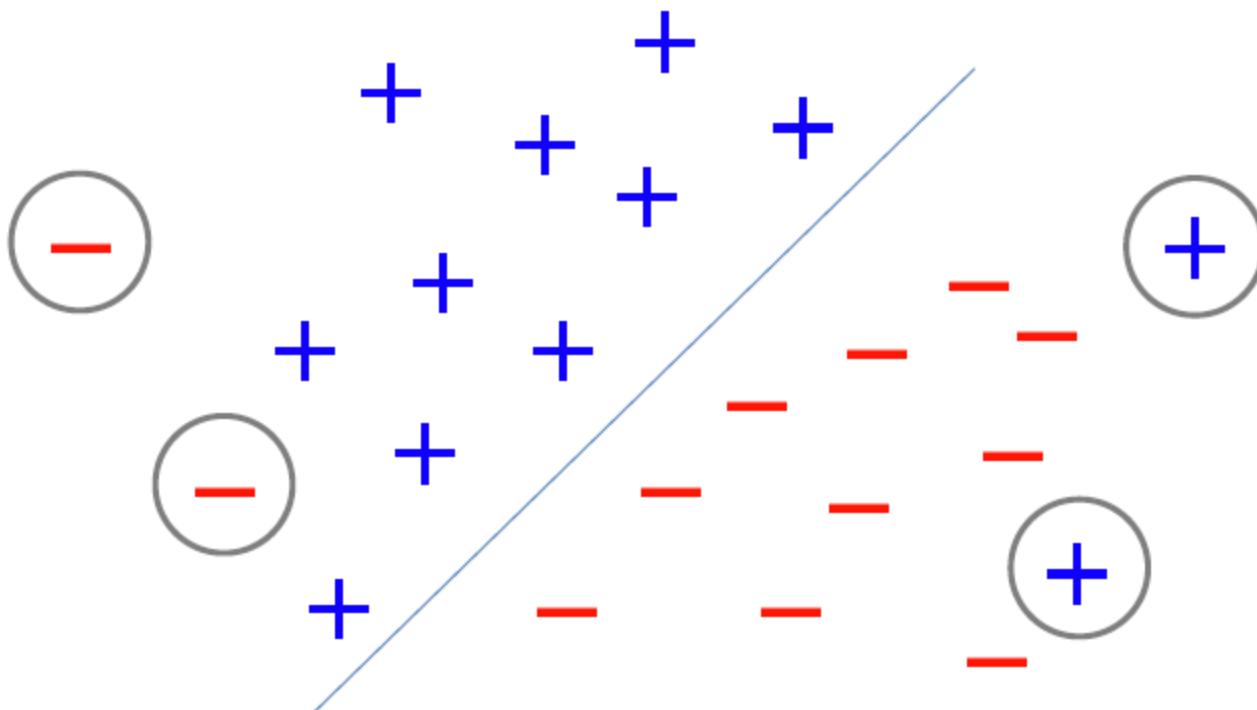
Soft Decision:  
(based on analogy with  
logistic regression)

$$P(Y = 1|X) = \frac{1}{1 + \exp(-f(x))}$$

# Effect of Outliers

**Good ☺** : Can identify outliers since focuses on examples that are hard to categorize

**Bad ☹** : Too many outliers can degrade classification performance  
dramatically increase time to convergence



# Bagging

[Breiman, 1996]

Related approach to combining classifiers:

1. Run independent weak learners on bootstrap replicates (sample with replacement) of the training set
2. Average/vote over weak hypotheses

## Bagging

Resamples data points

Weight of each classifier  
is the same

Only variance reduction

vs.

## Boosting

Reweights data points (modifies their distribution)

Weight is dependent on  
classifier's accuracy

Both bias and variance reduced –  
learning rule becomes more complex  
with iterations

# Boosting Summary

- Combine weak classifiers to obtain very strong classifier
  - Weak classifier – slightly better than random on training data
  - Resulting very strong classifier – can eventually provide zero training error
- AdaBoost algorithm
- Boosting v. Logistic Regression
  - Similar loss functions
  - Single optimization (LR) v. Incrementally improving classification (B)
- Most popular application of Boosting:
  - Boosted decision stumps!
  - Very simple to implement, very effective classifier