Dr. Jianlin Cheng

Department of Electrical Engineering
and Computer Science

University of Missouri, Columbia
Fall, 2019

Slides Adapted from Book and CMU, Stanford Machine Learning Courses

Fighting the bias-variance tradeoff

* Simple (a.k.a. weak) learners e.g., naive Bayes, logistic
regression, decision stumps (or shallow decision trees)

VARS
/
2 -
//
&

Are good © - Low variance, don’t usually overfit
Are bad ® - High bias, can’t solve hard learning problems

* Can we make weak learners always good???
— No!ll But often yes...

Voting (Ensemble Methods)

* Instead of learning a single (weak) classifier, learn many weak
classifiers that are good at different parts of the input space

* Output class: (Weighted) vote of each classifier
— Classifiers that are most “sure” will vote with more conviction
— Classifiers will be most “sure” about a particular part of the space
— On average, do better than single classifier!

H: X — Y (-1,1)

hX) /o haX) //\™
// /\ // /\ * H(X) = hi(X)+h2(X)

= sign(> at ht(X))

H(X)
t
? ? l
? ? -1 weights

Voting (Ensemble Methods)

Instead of learning a single (weak) classifier, learn many weak
classifiers that are good at different parts of the input space

Output class: (Weighted) vote of each classifier
— Classifiers that are most “sure” will vote with more conviction
— Classifiers will be most “sure” about a particular part of the space

— On average, do better than single classifier!

But how do you ?7??
— force classifiers h, to learn about different parts of the input
space?

— weigh the votes of different classifiers? a,

Boosting [Schapire’89]

Idea: given a weak learner, run it multiple times on (reweighted)
training data, then let learned classifiers vote

On each iteration t:

— weight each training example by how incorrectly it was
classified

— Learn a weak hypothesis — h,
— A strength for this hypothesis — a,

Final classifier: H(X) = sign(Sat ht(X))

Practically useful

Theoretically interesting

Learning from weighted data

* Consider a weighted dataset
— D(i) — weight of i th training example (x',y')
— Interpretations:

* jth training example counts as D(i) examples

* |f | were to “resample” data, | would get more samples of “heavier”
data points

* Now, in all calculations, whenever used, i th training example
counts as D(i) “examples”

— e.g., in MLE redefine Count(Y=y) to be weighted count

Unweighted data Weights D(i)
Count(Y=y) = § 1(Y '=y) Count(Y=y) = § D(i)1(Y '=y)
=1 =1

AdaBoost [Freund & Schapire’95)

Given: (21,Yy1),. -, (¥m, ym) Where z; € X, y; € Y = {—1,+1}

Initialize Dy (i) = 1/m. Initially equal weights
Fort=1,...,T:

e Trainweak learner using distribution D;. Naive bayes, decision stump
e Getweak classifier iy : X — R.

e Choose Ot € R. Magic (+ve)

Update:

e if y; # hi(x;)

. Increase weight
Dt(z) exp(_atyiht(xi)) if wrong on pt i

Zt yihe(x) =-1<0

mm{eﬂtw%=mw»

where Z; is a normalization factor

AdaBoost [Freund & Schapire’95)

Given: (Z1,Y1),---, (¥m, Ym) Where z; € X, y; € Y = {—1,+1}

Initialize D1 (i) = 1/m. Initially equal weights
Fort=1,...,T:

e Trainweak learner using distribution D;. Naive bayes, decision stump
e Getweak classifier h : X — R.
e Choose Ot € R. Magic (+ve)

¢ Update: . Increase weight
N Dy (i) exp(—auyihy(z;) if wrong on pt i

Dy (i) =
Zy yiht(xi)=-1<0

where Z; is a normalization factor

Weights for all
pts must sumto 1
Y Dt+1i) =1

t

m
Zi =Y Di(i) exp(—oqy;hi(z;))
i=1

AdaBoost [Freund & Schapire’95]

Given: (z1,Y1),---,(Tm, ym) where z; € X, y; € Y = {—1,+1}

Initialize Dy (i) = 1/m. Initially equal weights
Fort=1,...,T:

e Trainweak learner using distribution D,. Naive bayes, decision stump
e Getweak classifier hy : X — R.

e Choose 't € R. Magic (+ve)
o

Update: . Increase weight
o _ Di(t) exp(—auyihi(zi)) if wrong on pti

Diy1(2) =
Zt Yi ht(Xi) =-1<0

where Z; is a normalization factor

Output the final classifier:

T
H(z) = sign (Z atht(:c)) :

t=1

What ¢, to choose for hypothesis 4,?

Weight Update Rule: Dyy1 (i) = Dy(7) exp(;atyiht(xi))
t

o = Ln (1 — et) [Freund & Schapire’95]

Weighted training error

Py py iy [() # 3] = z Di(0)3(hu(:) # v3)

Does ht get i™" point wrong

= 0 if h, perfectly classifies all weighted data pts Oy =
g, = 11if h, perfectly wrong => -h, perfectly right Oy = -0
£=0.5 a, =0

Decision Stump

Source: Wikipedia

Boosting Example (Decision Stumps)

+ + = _|__ + _|__
Dil4+ — _ Dyl + T - Dy + T —

Ml e;=0.30

Boosting Example (Decision Stumps)

+ UQZ‘ >

H_
final

- \1311<4:I

Analyzing training error

Analysis reveals:

1 —e€
* What ¢, to choose for hypothesis /,? ap = % In (t)
€t

g, - weighted training error

* If each weak learner h, is slightly better than random guessing (g,< 0.5),

then training error of AdaBoost decays exponentially fast in number of
rounds T.

m T
> O(H () # y;) < exp (—2 > (1/2— ét)Q)
t=1

1
m;—1

Training Error

Analyzing training error

Training error of final classifier is bounded by:

f S(H (1) # i) < iexp(—yz-f(a:i>>=nzt
=1 i—1 t

1 1
m m

Where f(2) = Zatht(a}); H(x) = sign(f(x))
t

If Zt <1, training error decreases exponentially (even though weak learners may
not be good ¢,~0.5)

Training | Upper bound

error

What g, to choose for hypothesis A,?

Training error of final classifier is bounded by:

S 5 £) < - Y- e(-if @) =[] Z
1=1 t

1
m

Where f(2) =) awhy(z); H(z) = sign(f(z))
t

If we minimize [], Z,, we minimize our training error

We can tighten this bound greedily, by choosing &, and &, on each iteration
to minimize Z,

Zy = i Dy(i) exp(—agy;hi(z;))

1=1

What «, to choose for hypothesis A,?

We can minimize this bound by choosing ¢, on each iteration to minimize Z,
m
Zy = Y Dy(i) exp(—asy;hi (;))
1=1

For boolean target function, this is accomplished by [Freund & Schapire '97]:
1 —e¢
oy = %ln (t)
€t

Proof: 7, = Y Di()e™+ > Dy(i)e™
iy 7Fhe (x;) iy =hi(z;)
Eteat -|— (1 — Et)e_at

07 _
L eteat — (1 — et)e =0 = 62at =
Q €t

1 —¢

What ¢, to choose for hypothesis #,?

We can minimize this bound by choosing ¢, on each iteration to minimize Z,

Zp = i Dy(i) exp(—azy;he(x;))

1=1

For boolean target function, this is accomplished by [Freund & Schapire '97]:

1 —
atz%ln(Get)
t

Proof: Z; = Dy(i)e

ere™ + (1 —e)e” @

= 2\/€t(1 —€) = \/1 —(1-2¢)°

Dumb classifiers made Smart

Training error of final classifier is bounded by:

LS 5@ £) <112 =[1V1 - 1 - 26)?
M i=1 t t

< exp (—2 i (1/2 — et)2)

t=1 | J
Y

grows as g, moves
away from 1/2

If each classifier is (at least slightly) better than random ¢,<0.5

AdaBoost will achieve zero training error exponentially fast (in
number of rounds T) !!

What about test error?

Boosting results — Digit recognition

[Schapire, 1989]

Test Error

Training Error
10 100 1000

rounds
Boosting often, but not always

— Robust to overfitting
— Test set error decreases even after training error is zero

Generalization Error Bounds

[Freund & Schapire’95]
~ Td
errorirue(H) < errorypein(H) + O —
m
bias variance
large small T small
tradeoff
small large T large

* T-number of boosting rounds
* d-VCdimension of weak learner, measures complexity of classifier

* m-—number of training examples

Generalization Error Bounds

[Freund & Schapire’d3]

~ Td T
6rrortrue(H) < 67“7'07'”&7;”(.[‘]) + O (E) \é\l{ggaht;ﬁiTy

Boosting can overfit if T is large

Boosting often, Contradicts experimental results

— Robust to overfitting
— Test set error decreases even after training error is zero

Need better analysis tools — margin based bounds

AdaBoost and AdaBoost. MH on Train (left) and Test (right) data from Irvine repository. [Schapire and Singer. ML 1999]

16 P! dhor - A Bboi =
145 25~ |\
12 - 'I l'l P 15
10 R — Vi
s, Train = " Test .
6 .'-.t 1 15 |.l |
4 1 |"|| 5
2- .'.k.ll 10 - ‘}'WM
o e : ‘ LTRSS o
1 10 100 1000 1 0 100 1000
20 22 25
e hepatt 2y hepatts
s e z; .y
\\-_\y\ ‘9 L ...‘-
|° - ".v\\ ‘ A 3
I 18 /'\ "‘A R=
rf- [\ J‘\ W
Overfits |-
1

Overfits

T\

promotars

@ -

promots s

N

3 25 - \%
I :
& — \
b Train . | Test
".I ‘l:‘
| 1
A 1s- \y
3 |y
. \ ? \ \A,fu
- o - '~‘/ A
10 100 1000 1 10 100 1000
) sonar AV sonar
kY > M
\’v' 2 - ‘\ .
L ot W\
N e T
N 18 M
10 100 1000 10 100 1000
\ wrosphere '8 E'__ \ oo here
L\ 16 -2
" \s/.\ 4 - \-/\" A
CO Y \
=,) \\ 12 - V\«.»
% N\
LU 10 “‘\W
\ 8-
) T T '-\.'f-“‘-f’o-uuw
10 100 1000 1 10 100 1000
17 -
votes| 16 - votes |
) 15 -
\ \ 14 -
%\ 13 - 3
"W\ 12 Y
\\ " - W, .
X 10 \ ».: - L
\ B 9 - LA\‘"""“-""\"',
T i 8- l\‘\u‘w”' B))
10 100 l(l? 1 10 100 1000
*\ bieastcancer-wisconsin 8 ‘\ breast-cance-wEconsin
A 4
.}"\\\ ! ','l“
e s HAL
~~ 5 - - “\ s
e S ,},—_' 4 - . ..‘_l.-k,‘/'
10 100 1000 1 10 10 1000

Boosting and Logistic Regression

Logistic regression assumes:

1
P(Y =1|X) = f(x) =wo+ Z'u;_,,-q;j
=) = @) ;
And tries to maximize data likelihood:
oy om
P(D|f)”= 11 L Y,=1lor-1

1 1+ exp(—yif(x;))

Equivalent to minimizing log loss

Clog P(D|f) = 3 In(1 + exp(—yif (=)

1=1

Boosting and Logistic Regression

Logistic regression equivalent to minimizing log loss

3 In(1 4 exp(—y:f (2:)) F@) = wo+ 3wy

i=1
Boosting minimizes similar loss function!!

3 exp(—yif (e)) =[] 2 f(2) =Y ah(x)
=1 t {

Weighted average of weak learners

exp loss Both smooth approximations

of 0/1 loss!

Yy =1

0/1 loss

- = (1),

Boosting and Logistic Regression

Logistic regression: Boosting:
* Minimize log loss * Minimize exp loss

m m

> In(1 + exp(—y;f(x;))) > exp(—yif(x:)
* Define * Define

flx) =) wjz; flx) =) ahi(x)
g t

where x; predefined where /.(x) defined dynamically

features to fit data

(linear classifier) (not a linear classifier)
* Jointly optimize over all * Weights o, learned per iteration

weights wo, w1, wa... t incrementally

Hard & Soft Decision

Weighted average of weak learners f(z) =) aihy(x)
t

Hard Decision/Predicted label: H(x) = sign(f(x))

Soft Decision: P(Y =1|X) = 1
(based on analogy with 1+ exp(f(x))
logistic regression)

Effect of Qutliers

Good © : Can identify outliers since focuses on examples that are
hard to categorize

Bad ® : Too many outliers can degrade classification performance
dramatically increase time to convergence

Baggl ng [Breiman, 1996]

Related approach to combining classifiers:

1. Runindependent weak learners on bootstrap replicates (sample with
replacement) of the training set

2. Average/vote over weak hypotheses

Bagging VS. Boosting

Resamples data points Reweights data points (modifies their
distribution)

Weight of each classifier Weight is dependent on
is the same classifier’s accuracy
Only variance reduction Both bias and variance reduced -

learning rule becomes more complex
with iterations

Boosting Summary

Combine weak classifiers to obtain very strong classifier

— Weak classifier — slightly better than random on training data

— Resulting very strong classifier — can eventually provide zero training
error

AdaBoost algorithm

Boosting v. Logistic Regression
— Similar loss functions

— Single optimization (LR) v. Incrementally improving classification (B)

Most popular application of Boosting:
— Boosted decision stumps!

— Very simple to implement, very effective classifier

