

Boosting

Dr. Jianlin Cheng

**Department of Electrical Engineering
and Computer Science**

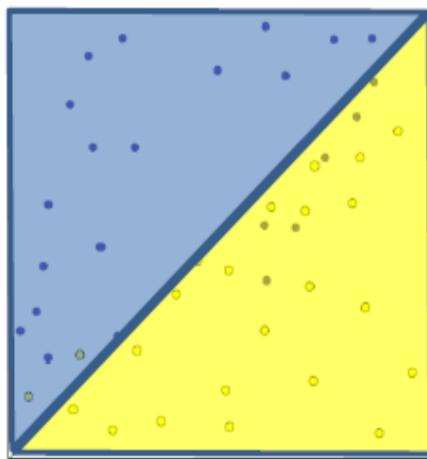
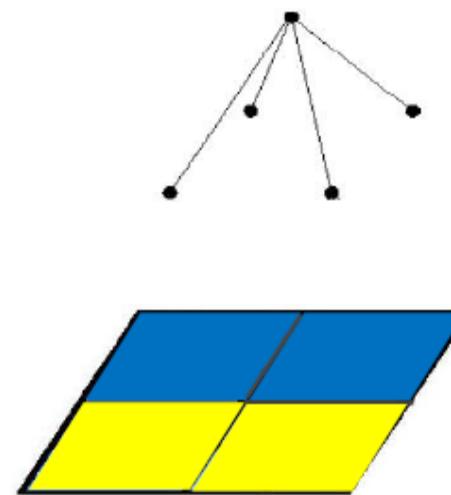
University of Missouri, Columbia

Fall, 2019

Slides Adapted from Book and CMU, Stanford Machine Learning Courses

Fighting the bias-variance tradeoff

- **Simple (a.k.a. weak) learners** e.g., naïve Bayes, logistic regression, decision stumps (or shallow decision trees)



Are good ☺ - Low variance, don't usually overfit

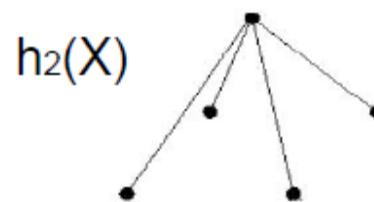
Are bad ☹ - High bias, can't solve hard learning problems

- **Can we make weak learners always good???**
 - No!!!
 - But often yes...

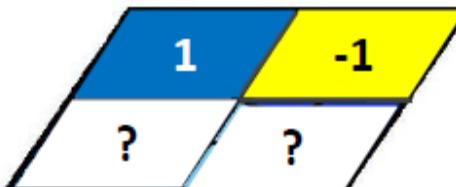
Voting (Ensemble Methods)

- Instead of learning a single (weak) classifier, learn **many weak classifiers** that are **good at different parts of the input space**
- Output class:** (Weighted) vote of each classifier
 - Classifiers that are most “sure” will vote with more conviction
 - Classifiers will be most “sure” about a particular part of the space
 - On average, do better than single classifier!

$h_1(X)$



$h_2(X)$



$H: X \rightarrow Y (-1, 1)$

$H(X) = h_1(X) + h_2(X)$

$H(X) = \text{sign}(\sum_t \alpha_t h_t(X))$

↓

weights

Voting (Ensemble Methods)

- Instead of learning a single (weak) classifier, learn **many weak classifiers** that are **good at different parts of the input space**
- **Output class:** (Weighted) vote of each classifier
 - Classifiers that are most “sure” will vote with more conviction
 - Classifiers will be most “sure” about a particular part of the space
 - On average, do better than single classifier!
- **But how do you ???**
 - force classifiers h_t to learn about different parts of the input space?
 - weigh the votes of different classifiers? α_t

Boosting [Schapire'89]

- **Idea:** given a weak learner, run it multiple times on (reweighted) training data, then let learned classifiers vote
- On each iteration t :
 - weight each training example by how incorrectly it was classified
 - Learn a weak hypothesis – h_t
 - A strength for this hypothesis – α_t
- Final classifier:
$$H(X) = \text{sign}(\sum \alpha_t h_t(X))$$
- **Practically useful**
- **Theoretically interesting**

Learning from weighted data

- Consider a **weighted dataset**
 - $D(i)$ – weight of i th training example (x^i, y^i)
 - Interpretations:
 - i th training example counts as $D(i)$ examples
 - If I were to “resample” data, I would get more samples of “heavier” data points
- Now, in all calculations, whenever used, i th training example counts as $D(i)$ “examples”
 - e.g., in MLE redefine $Count(Y=y)$ to be weighted count

Unweighted data

$$Count(Y=y) = \sum_{i=1}^m \mathbf{1}(Y^i=y)$$

Weights $D(i)$

$$Count(Y=y) = \sum_{i=1}^m D(i) \mathbf{1}(Y^i=y)$$

AdaBoost [Freund & Schapire'95]

Given: $(x_1, y_1), \dots, (x_m, y_m)$ where $x_i \in X, y_i \in Y = \{-1, +1\}$

Initialize $D_1(i) = 1/m$. **Initially equal weights**

For $t = 1, \dots, T$:

- Train **weak learner** using distribution D_t . **Naïve bayes, decision stump**
- Get **weak classifier** $h_t : X \rightarrow \mathbb{R}$.
- Choose $\alpha_t \in \mathbb{R}$. **Magic (+ve)**
- Update:

$$D_{t+1}(i) = \frac{D_t(i)}{Z_t} \begin{cases} e^{-\alpha_t} & \text{if } y_i = h_t(x_i) \\ e^{\alpha_t} & \text{if } y_i \neq h_t(x_i) \end{cases}$$

$$= \frac{D_t(i) \exp(-\alpha_t y_i h_t(x_i))}{Z_t}$$

**Increase weight
if wrong on pt i
 $y_i h_t(x_i) = -1 < 0$**

where Z_t is a normalization factor

AdaBoost [Freund & Schapire'95]

Given: $(x_1, y_1), \dots, (x_m, y_m)$ where $x_i \in X, y_i \in Y = \{-1, +1\}$

Initialize $D_1(i) = 1/m$. **Initially equal weights**

For $t = 1, \dots, T$:

- Train **weak** learner using distribution D_t . **Naïve bayes, decision stump**
- Get **weak** classifier $h_t : X \rightarrow \mathbb{R}$.
- Choose $\alpha_t \in \mathbb{R}$. **Magic (+ve)**
- Update:

$$D_{t+1}(i) = \frac{D_t(i) \exp(-\alpha_t y_i h_t(x_i))}{Z_t}$$

**Increase weight
if wrong on pt i
 $y_i h_t(x_i) = -1 < 0$**

where Z_t is a normalization factor

$$Z_t = \sum_{i=1}^m D_t(i) \exp(-\alpha_t y_i h_t(x_i))$$

**Weights for all
pts must sum to 1
 $\sum_t D_{t+1}(i) = 1$**

AdaBoost [Freund & Schapire'95]

Given: $(x_1, y_1), \dots, (x_m, y_m)$ where $x_i \in X, y_i \in Y = \{-1, +1\}$

Initialize $D_1(i) = 1/m$. Initially equal weights

For $t = 1, \dots, T$:

- Train weak learner using distribution D_t . Naïve bayes, decision stump
- Get weak classifier $h_t : X \rightarrow \mathbb{R}$.
- Choose $\alpha_t \in \mathbb{R}$. Magic (+ve)
- Update:

$$D_{t+1}(i) = \frac{D_t(i) \exp(-\alpha_t y_i h_t(x_i))}{Z_t}$$

Increase weight
if wrong on pt i
 $y_i h_t(x_i) = -1 < 0$

where Z_t is a normalization factor

Output the final classifier:

$$H(x) = \text{sign} \left(\sum_{t=1}^T \alpha_t h_t(x) \right).$$

What α_t to choose for hypothesis h_t ?

Weight Update Rule:

$$D_{t+1}(i) = \frac{D_t(i) \exp(-\alpha_t y_i h_t(x_i))}{Z_t}$$

$$\alpha_t = \frac{1}{2} \ln \left(\frac{1 - \epsilon_t}{\epsilon_t} \right)$$

[Freund & Schapire '95]

Weighted training error

$$\epsilon_t = P_{i \sim D_t(i)}[h_t(x^i) \neq y^i] = \sum_{i=1}^m D_t(i) \underbrace{\delta(h_t(x_i) \neq y_i)}_{\text{Does } h_t \text{ get } i^{\text{th}} \text{ point wrong}}$$

$\epsilon_t = 0$ if h_t perfectly classifies all weighted data pts

$\alpha_t = \infty$

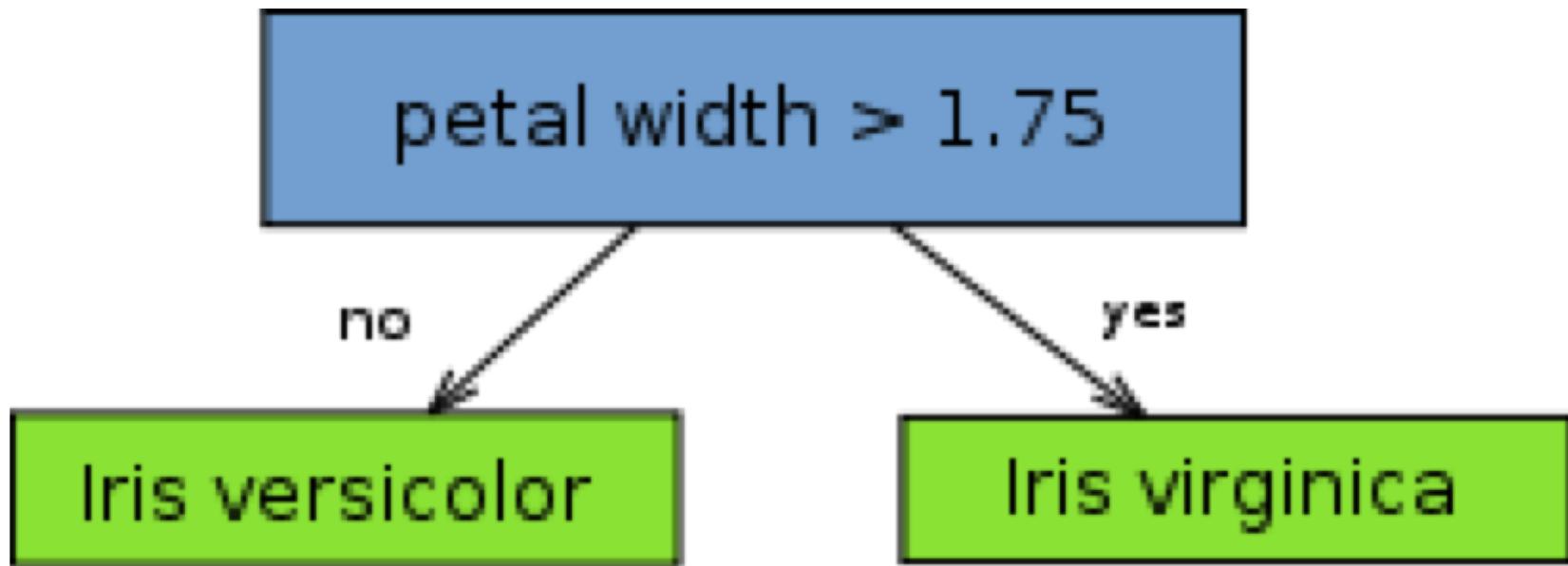
$\epsilon_t = 1$ if h_t perfectly wrong $\Rightarrow -h_t$ perfectly right

$\alpha_t = -\infty$

$\epsilon_t = 0.5$

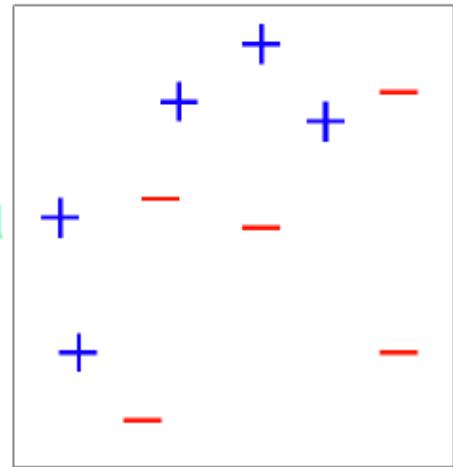
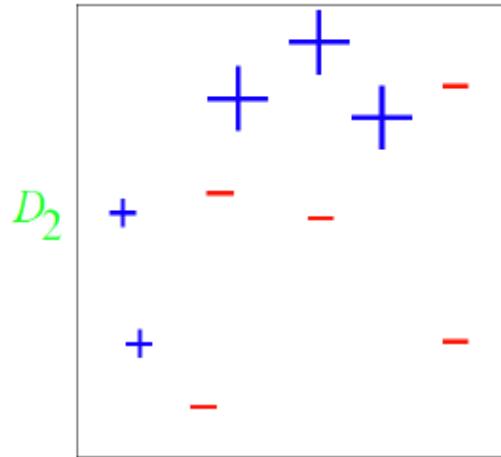
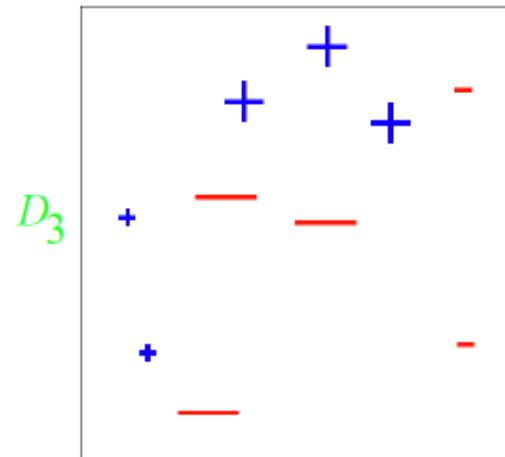
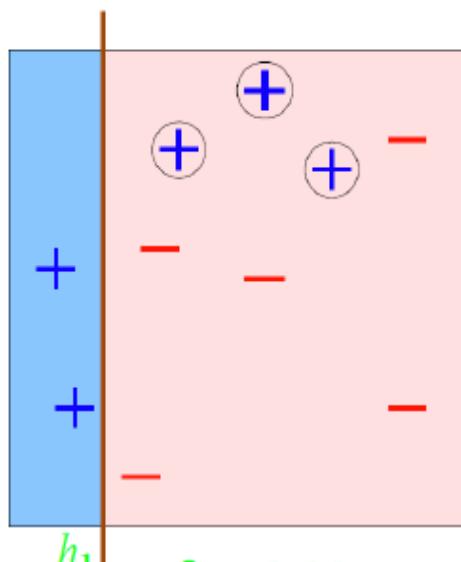
$\alpha_t = 0$

Decision Stump

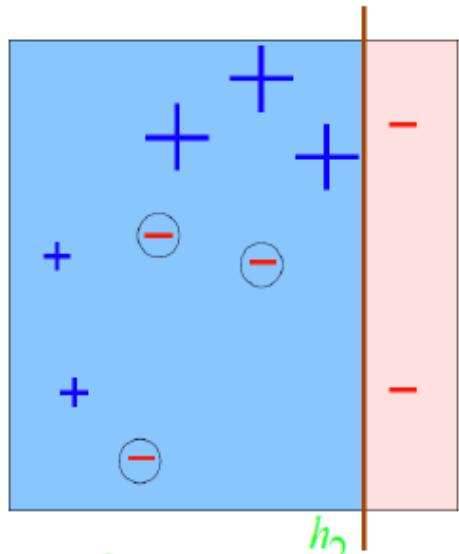


Source: Wikipedia

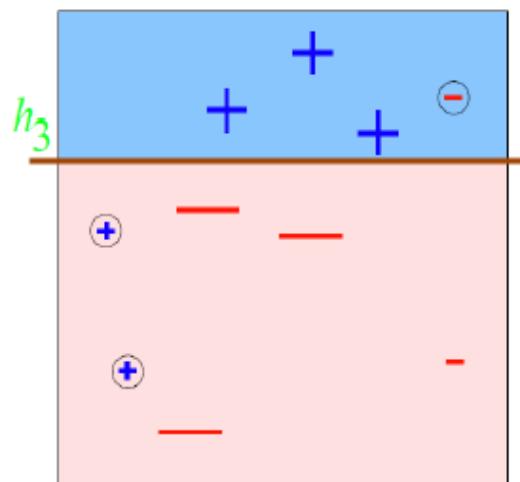
Boosting Example (Decision Stumps)



$$\begin{aligned}\epsilon_1 &= 0.30 \\ \alpha_1 &= 0.42\end{aligned}$$



$$\begin{aligned}\epsilon_2 &= 0.21 \\ \alpha_2 &= 0.65\end{aligned}$$

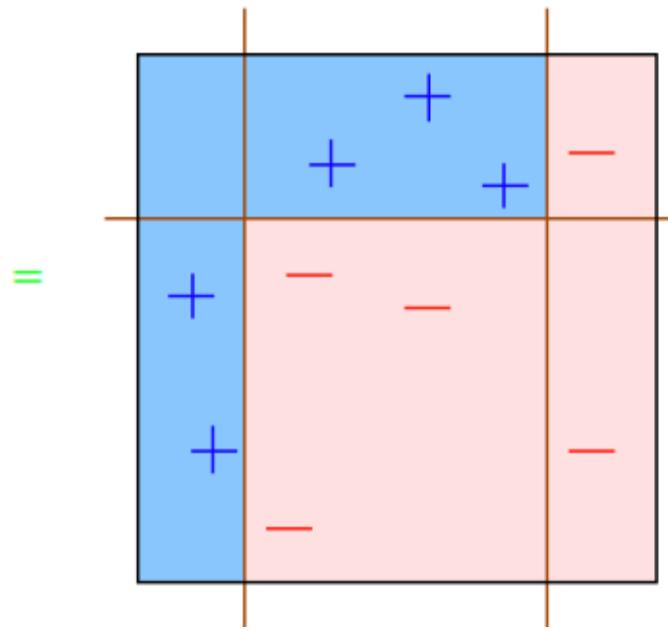


$$\begin{aligned}\epsilon_3 &= 0.14 \\ \alpha_3 &= 0.92\end{aligned}$$

Boosting Example (Decision Stumps)

H_{final}

$$= \text{sign} \left(0.42 \begin{array}{|c|c|} \hline \text{blue} & \text{pink} \\ \hline \end{array} + 0.65 \begin{array}{|c|c|} \hline \text{blue} & \text{pink} \\ \hline \end{array} + 0.92 \begin{array}{|c|c|} \hline \text{blue} & \text{pink} \\ \hline \end{array} \right)$$



Analyzing training error

Analysis reveals:

- What α_t to choose for hypothesis h_t ?

$$\alpha_t = \frac{1}{2} \ln \left(\frac{1 - \epsilon_t}{\epsilon_t} \right)$$

ϵ_t - weighted training error

- If each weak learner h_t is slightly better than random guessing ($\epsilon_t < 0.5$), then training error of AdaBoost decays exponentially fast in number of rounds T .

$$\frac{1}{m} \sum_{i=1}^m \delta(H(x_i) \neq y_i) \leq \exp \left(-2 \sum_{t=1}^T (1/2 - \epsilon_t)^2 \right)$$

Training Error

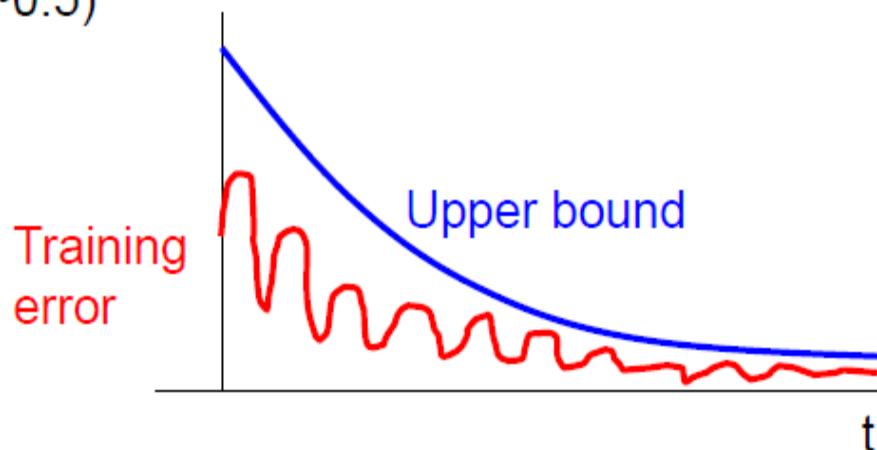
Analyzing training error

Training error of final classifier is bounded by:

$$\frac{1}{m} \sum_{i=1}^m \delta(H(x_i) \neq y_i) \leq \frac{1}{m} \sum_{i=1}^m \exp(-y_i f(x_i)) = \prod_t Z_t$$

Where $f(x) = \sum_t \alpha_t h_t(x); H(x) = \text{sign}(f(x))$

If $Z_t < 1$, training error decreases exponentially (even though weak learners may not be good $\varepsilon_t \sim 0.5$)



What α_t to choose for hypothesis h_t ?

Training error of final classifier is bounded by:

$$\frac{1}{m} \sum_{i=1}^m \delta(H(x_i) \neq y_i) \leq \frac{1}{m} \sum_{i=1}^m \exp(-y_i f(x_i)) = \prod_t Z_t$$

Where $f(x) = \sum_t \alpha_t h_t(x)$; $H(x) = \text{sign}(f(x))$

If we minimize $\prod_t Z_t$, we minimize our training error

We can tighten this bound greedily, by choosing α_t and h_t on each iteration to minimize Z_t .

$$Z_t = \sum_{i=1}^m D_t(i) \exp(-\alpha_t y_i h_t(x_i))$$

What α_t to choose for hypothesis h_t ?

We can minimize this bound by choosing α_t on each iteration to minimize Z_t .

$$Z_t = \sum_{i=1}^m D_t(i) \exp(-\alpha_t y_i h_t(x_i))$$

For boolean target function, this is accomplished by [Freund & Schapire '97]:

$$\alpha_t = \frac{1}{2} \ln \left(\frac{1 - \epsilon_t}{\epsilon_t} \right)$$

Proof: $Z_t = \sum_{i:y_i \neq h_t(x_i)} D_t(i) e^{\alpha_t} + \sum_{i:y_i = h_t(x_i)} D_t(i) e^{-\alpha_t}$

$$= \epsilon_t e^{\alpha_t} + (1 - \epsilon_t) e^{-\alpha_t}$$

$$\frac{\partial Z_t}{\alpha_t} = \epsilon_t e^{\alpha_t} - (1 - \epsilon_t) e^{-\alpha_t} = 0 \quad \Rightarrow e^{2\alpha_t} = \frac{1 - \epsilon_t}{\epsilon_t}$$

What α_t to choose for hypothesis h_t ?

We can minimize this bound by choosing α_t on each iteration to minimize Z_t .

$$Z_t = \sum_{i=1}^m D_t(i) \exp(-\alpha_t y_i h_t(x_i))$$

For boolean target function, this is accomplished by [Freund & Schapire '97]:

$$\alpha_t = \frac{1}{2} \ln \left(\frac{1 - \epsilon_t}{\epsilon_t} \right)$$

Proof:

$$\begin{aligned} Z_t &= \sum_{i:y_i \neq h_t(x_i)} D_t(i) e^{\alpha_t} + \sum_{i:y_i = h_t(x_i)} D_t(i) e^{-\alpha_t} \\ &= \epsilon_t e^{\alpha_t} + (1 - \epsilon_t) e^{-\alpha_t} \\ &= 2\sqrt{\epsilon_t(1 - \epsilon_t)} = \sqrt{1 - (1 - 2\epsilon_t)^2} \end{aligned}$$

Dumb classifiers made Smart

Training error of final classifier is bounded by:

$$\frac{1}{m} \sum_{i=1}^m \delta(H(x_i) \neq y_i) \leq \prod_t Z_t = \prod_t \sqrt{1 - (1 - 2\epsilon_t)^2}$$

$$\leq \exp \left(-2 \sum_{t=1}^T (1/2 - \epsilon_t)^2 \right)$$

grows as ϵ_t moves away from 1/2

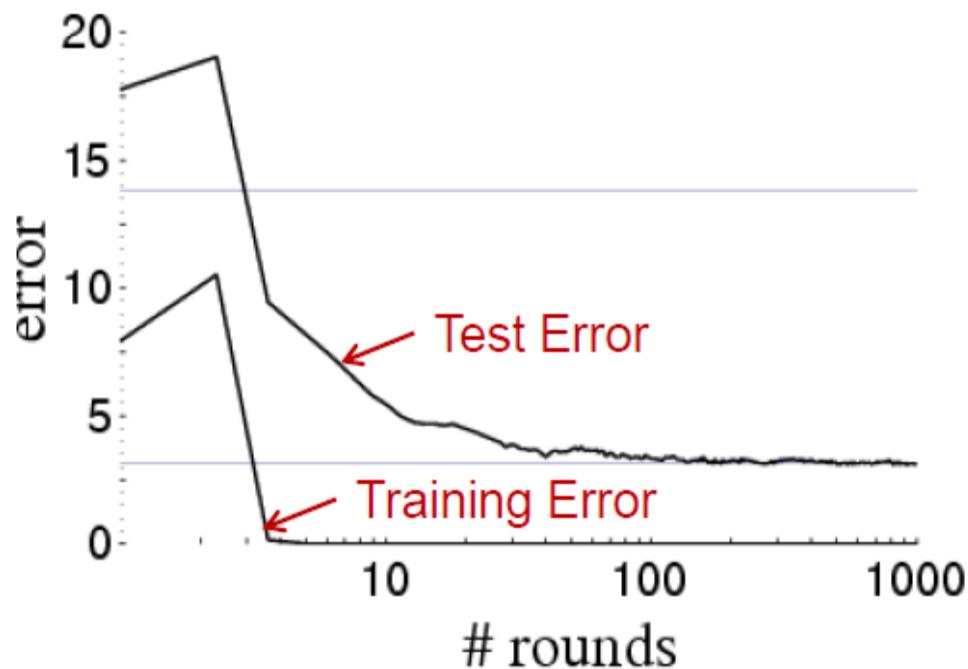
If each classifier is (at least slightly) better than random $\epsilon_t < 0.5$

AdaBoost will achieve zero training error exponentially fast (in number of rounds T) !!

What about test error?

Boosting results – Digit recognition

[Schapire, 1989]



- Boosting often, **but not always**
 - Robust to overfitting
 - Test set error decreases even after training error is zero

Generalization Error Bounds

[Freund & Schapire'95]

$$\text{error}_{\text{true}}(H) \leq \text{error}_{\text{train}}(H) + \tilde{\mathcal{O}} \left(\sqrt{\frac{Td}{m}} \right)$$

	bias	variance	
↑ tradeoff	large	small	T small
	small	large	T large

- T – number of boosting rounds
- d – VC dimension of weak learner, measures complexity of classifier
- m – number of training examples

Generalization Error Bounds

[Freund & Schapire'95]

$$\text{error}_{\text{true}}(H) \leq \text{error}_{\text{train}}(H) + \tilde{\mathcal{O}}\left(\sqrt{\frac{Td}{m}}\right)$$

With high probability

Boosting can overfit if T is large

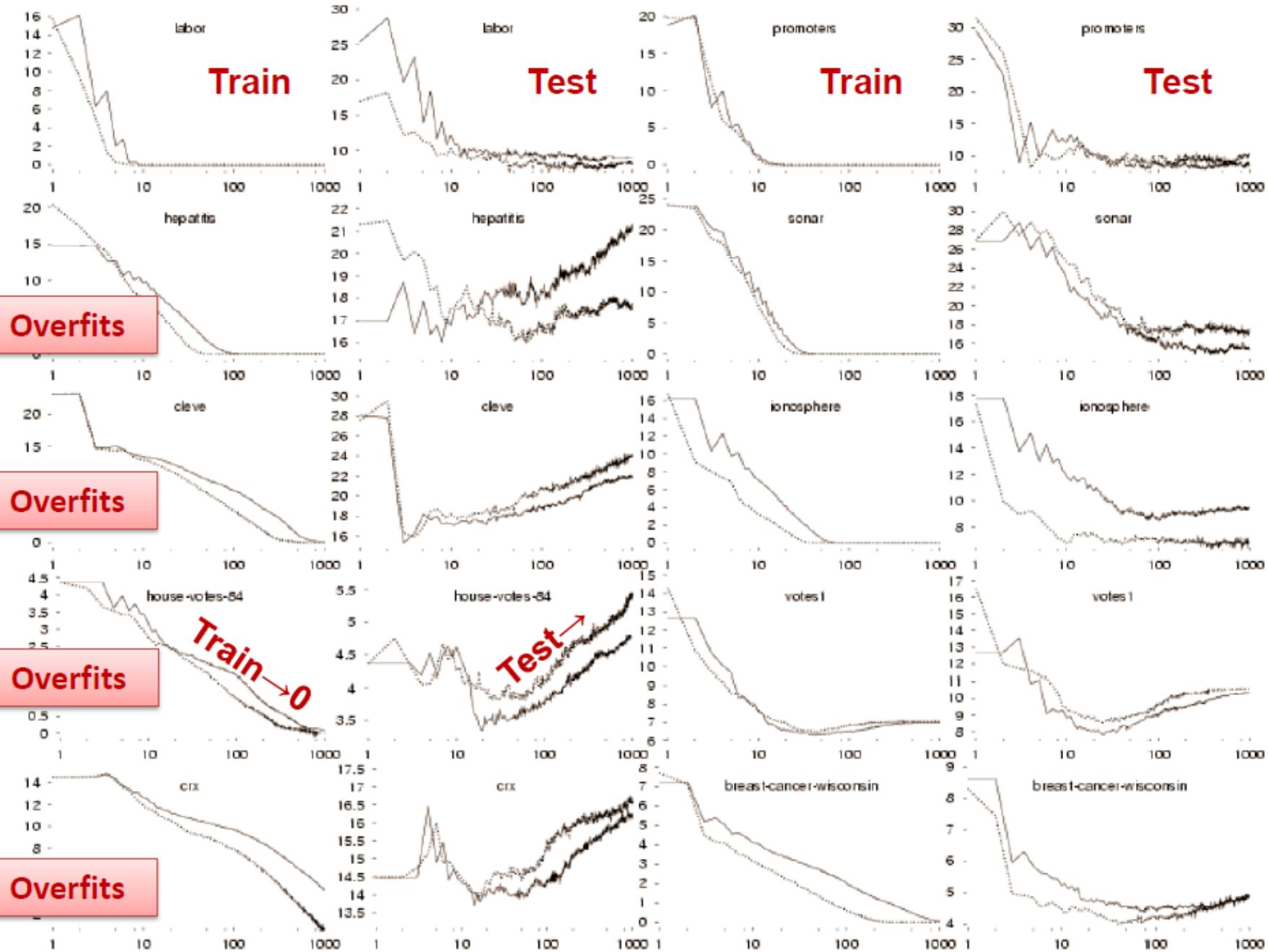
Boosting often,

- Robust to overfitting
- Test set error decreases even after training error is zero

Contradicts experimental results

Need better analysis tools – margin based bounds

AdaBoost and AdaBoost.MH on Train (left) and Test (right) data from Irvine repository. [Schapire and Singer, ML 1999]



Boosting and Logistic Regression

Logistic regression assumes:

$$P(Y = 1|X) = \frac{1}{1 + \exp(-f(x))}$$

$$f(x) = w_0 + \sum_j w_j x_j$$

And tries to maximize data likelihood:

$$P(\mathcal{D}|f) = \prod_{i=1}^m \frac{1}{1 + \exp(-y_i f(x_i))}$$

$$Y_i = 1 \text{ or } -1$$

Equivalent to minimizing log loss

$$-\log P(\mathcal{D}|f) = \sum_{i=1}^m \ln(1 + \exp(-y_i f(x_i)))$$

Boosting and Logistic Regression

Logistic regression equivalent to minimizing log loss

$$\sum_{i=1}^m \ln(1 + \exp(-y_i f(x_i)))$$

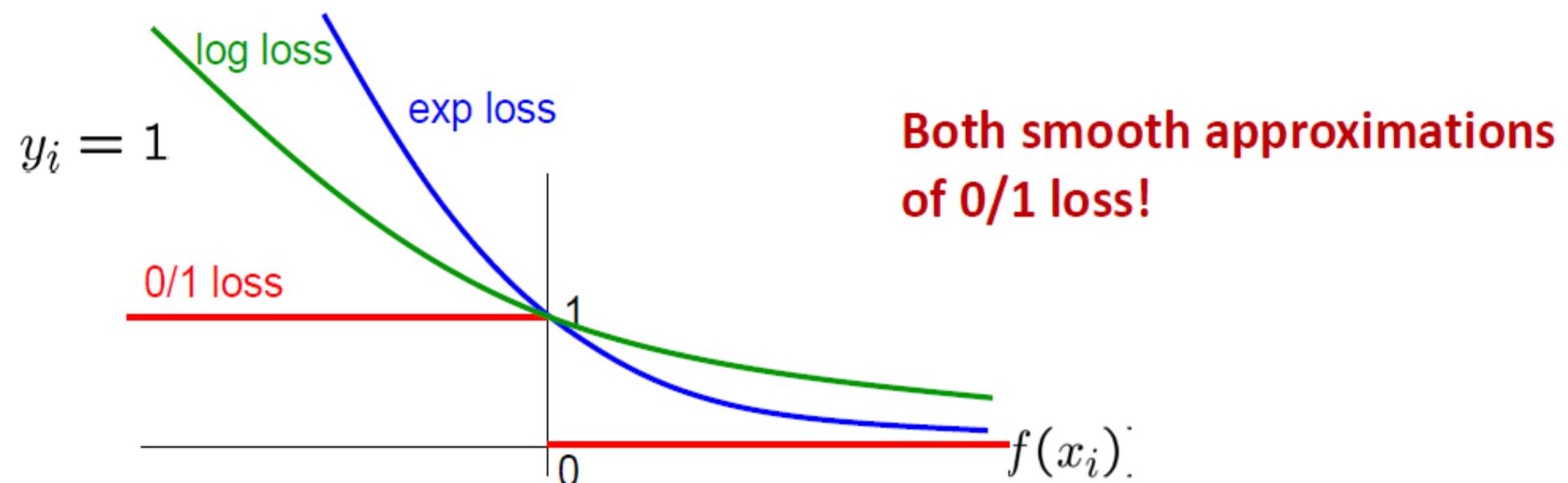
$$f(x) = w_0 + \sum_j w_j x_j$$

Boosting minimizes similar loss function!!

$$\frac{1}{m} \sum_{i=1}^m \exp(-y_i f(x_i)) = \prod_t Z_t$$

$$f(x) = \sum_t \alpha_t h_t(x)$$

Weighted average of weak learners



Boosting and Logistic Regression

Logistic regression:

- Minimize log loss

$$\sum_{i=1}^m \ln(1 + \exp(-y_i f(x_i)))$$

- Define

$$f(x) = \sum_j w_j x_j$$

where x_j predefined features

(linear classifier)

- Jointly optimize over all weights $w_0, w_1, w_2\dots$

Boosting:

- Minimize exp loss

$$\sum_{i=1}^m \exp(-y_i f(x_i))$$

- Define

$$f(x) = \sum_t \alpha_t h_t(x)$$

where $h_t(x)$ defined dynamically to fit data

(not a linear classifier)

- Weights α_t learned per iteration t incrementally

Hard & Soft Decision

Weighted average of weak learners $f(x) = \sum_t \alpha_t h_t(x)$

Hard Decision/Predicted label: $H(x) = \text{sign}(f(x))$

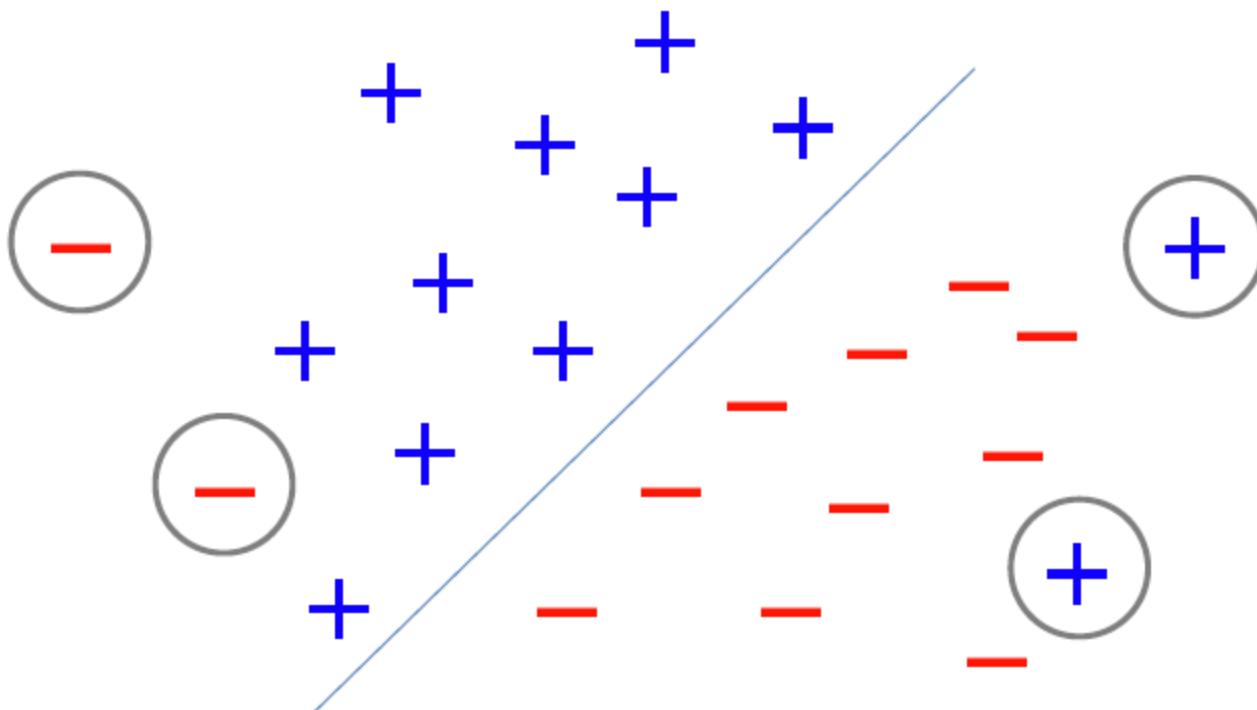
Soft Decision:
(based on analogy with
logistic regression)

$$P(Y = 1|X) = \frac{1}{1 + \exp(-f(x))}$$

Effect of Outliers

Good ☺ : Can identify outliers since focuses on examples that are hard to categorize

Bad ☹ : Too many outliers can degrade classification performance
dramatically increase time to convergence



Bagging

[Breiman, 1996]

Related approach to combining classifiers:

1. Run independent weak learners on bootstrap replicates (sample with replacement) of the training set
2. Average/vote over weak hypotheses

Bagging

Resamples data points

Weight of each classifier
is the same

Only variance reduction

vs.

Boosting

Reweights data points (modifies their distribution)

Weight is dependent on
classifier's accuracy

Both bias and variance reduced –
learning rule becomes more complex
with iterations

Boosting Summary

- Combine weak classifiers to obtain very strong classifier
 - Weak classifier – slightly better than random on training data
 - Resulting very strong classifier – can eventually provide zero training error
- AdaBoost algorithm
- Boosting v. Logistic Regression
 - Similar loss functions
 - Single optimization (LR) v. Incrementally improving classification (B)
- Most popular application of Boosting:
 - Boosted decision stumps!
 - Very simple to implement, very effective classifier