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True vs. Empirical Risk

True Risk: Target performance measure

Classification — Probability of misclassification P(f(X) # Y)
Regression — Mean Squared Error E[(f(X) — Y)2]

performance on a random test point (X,Y)

Empirical Risk: Performance on training data

1 n
Classification — Proportion of misclassified examples — Z Lrix;)£Y;

6

Z(f(X)—Y>2

Regression — Average Squared Error 1



Overfitting

Is the following predictor a good one? *(x)
Yi, r=X;,fori=1,....n
fl@) = { any value, otherwise |

f(x)

[

What is its empirical risk? (performance on training data)
zero |

Whalt about true risk?
> Zero

Will predict very poorly on new random test point:
Large generalization error |

|z



Overfitting

If we allow very complicated predictors, we could overfit the
training data.

Examples: Classification 1-NN classifier

Football player ?

A N

@ No
@ Yes

Weight
Weight

A 4

A 4



Overfitting

If we allow very complicated predictors, we could overfit the
training data.

Examples: Regression (Polynomial of order k — degree up to k-1)
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Effect of Model Complexity

If we allow very complicated predictors, we could overfit the
training data.

Prediction 4 - —
Error / | fixed # training data |
true risk
empirical risk -~
— - >
> .
underfitting overfitting Complexity

Best

Model @

Empirical risk is no longer a
good indicator of true risk



Behavior of True Risk

Want f, to be as good as optimal predictor f*

Excess Risk E [R(f:,)} —R* = (E[R(f,,)] — inf R(f)) + <inf R(f) — R*)

JEF feF
estimation error approximation error
ini le si Due to randomness Due to restriction
fn‘resarnpesze s ar
+ noise of training data of model class

R(fn) F

Estimation
error

Excess risk

jo S

Approx. error R*



Behavior of True Risk

-~

)] R — (E[R(fn)] — 1inf R(f)) + (inf R(f) —R*)

fEF feF
“
estimation error approximation error

estimation
error

approximation
error

»
»

Complexity of F



Bias — Variance Tradeoftf

f(X)
¥ 2 Y vw-'/.\/\‘é
Y=f(X)+6 6NN(O7O') N .

Regression:
X
R* = Exy[(f*(X) - Y)?] = E[¢?] = 62 Notice: Optimal predictor
does not have zero error
Ep, [R(fn)] = Ex.y p,[(fa(X) — Y)?] D, - training data of size n

= Ex, ’)’f,.D,,[(ﬁ?f(X)_lED,, [Fn (X)) + Ex y[(Ep, [Fn(X)]=f*(X))?] + o
‘ , - , S

variance bias”2 Noise var

Excess Risk = Ep, [R(fn)] — R® =variance + bias"2

Random component = est err = approx err



Bias — Variance Tradeoff: Derivation

Regression:

fH(X)
¥ 2 Y -q/'\/\é
Y=f(X)+6 CNN(O?O') v N .

X

R* = Exy[(f*(X) — Y)?] = E[6?] = 0? Notice: Optimal predictor

Ep,[R(fn)] = Ex,v,p,

=Ex v p,

= Ex.v.p,

(fa(X) —Y)?

(Fn(X) ~Ep,

does not have zero error

Dy - training data of size n

(X014 Ep, [fn(X)] - Y)?]

(Fa(X) —Ep,

Fn(X)])2 4+ (Ep, [fn(X)] - Y)?

+2(fn(X) = Ep, [fn(OD(Ep, [fa(X)] - Y)

=Ex.v.0, |(}n(X) = Ep,[fn(OD?|+Ex.v.0, | (Epn[fn(X)] ~ Y)?]

HEx,v 2B, nCOA=ED, [fa (X)) (Ep,[fn(X)] - V)]

0



Bias — Variance Tradeoff: Derivation

fH(X)
¥ 2 Y vv/\/\é
Y=f(X)+e €e~N(0,0%) =~ .

Regression:
X
R* = Exy[(f*(X) — Y)?] = E[¢?] = 0? Notice: Optimal predictor
does not have zero error
Ep, [R(fn)] = Ex v, b, (fa(X) — Y)Q] Dy, - training data of size n

= Ex,v,0, | (fa(X) = Epu[fa(X)D)?|+Ex,v,p, |(Ep,[fn(X)] = V)|

L

I

variance - how much does the predictor vary about its mean
for different training datasets

Now, lets look at the second term:

Ex,y,p, |(Ep[fa(3)] = Y)?| = Ex,y [(Ep,[fn(X)] - Y)?|

Note: this term doesn’t depend on D,



Bias — Variance Tradeoff: Derivation

Ex,y [(Ep,[fn(X)] = Y)?] = Exy |(Ep,[fa(X)] = £(X) —€)?]
— IEX,Y [(EDn[th(X)] - f*(X))2 + 62
—2¢(Ep, [fn(X)] = f*(X))]

= Ex,y [(ED'n [fn(X)] - f*(X))Q] + Ex vy [62]

~2Bxy [(Ep LT =T7(X)))

0 since noise is independent
and zero mean

= Exy [Epalfn(0] - £(X))?] +Exy []

\ J \ J
! I

bias”2 - how much does the noise variance
mean of the predictor differ from the
optimal predictor




Bias — Variance Tradeoff

3 Independent training datasets

Large bias, Small variance — poor approximation but robust/stable

0s

06 QSt
04r 04
02p 0.2 "
Y -.. e .
DD 0.1 0.2 0.3 04 0s 06 0.7 0.3 0s 1 cO 0.1 0.2 0.3 0.4 0.5 0.6 0.7 08 09 1 00 0.1 0.2 0.3 0.4 0.5 06 0.7 08 09 1
Small bias, Large variance — good approximation but instable
2 2 2

r r : r : r r r : r : r : r : r : r r : : r r L r : r
0 01 02 03 04 05 06 07 038 08 1 0 01 02 03 04 05 06 07 08 08 1 0 01 02 03 04 05 o0& 07 08 08 1



Examples of Model Spaces

Model Spaces with increasing complexity:

* Nearest-Neighbor classifiers with varying neighborhood sizes k=1,2,3, ...
Small neighborhood => Higher complexity

* Decision Trees with depth k or with k leaves
Higher depth/ More # leaves => Higher complexity

* Regression with polynomials of order k=0, 1, 2, ...
Higher degree => Higher complexity

* Kernel Regression with bandwidth h
Small bandwidth => Higher complexity

How can we select the right complexity model ?



Model Selection

Setup:
Model Classes {F)} can of increasing complexity 7y < F» < ...

min min J(f, A
jin min J(f,3)

We can select the right complexity model in a data-driven/adaptive way:
 Cross-validation
A Structural Risk Minimization
J Complexity Regularization

d Information Criteria - AIC, BIC, Minimum Description Length (MDL)



Hold-out method

We would like to pick the model that has smallest generalization error.

Can judge generalization error by using an independent sample of data.

Hold - out procedure:

n data points available D = {X; V;}I',

1) Splitinto two sets:  Training dataset ~ Validation dataset NOT test
Dy = {‘Xz Y; ;’;l Dy = {X,. }/'i}?:m-#l Data !l

2) Use D, for training a predictor from each model class:

f\ = arg min R
I gfelj-' 7(f)

A
L) Evaluated on training dataset D;



Hold-out method

3) Use Dv to select the model class which has smallest empirical error on D,

A= argmin Ry (f
g min v(f)

‘—) Evaluated on validation dataset D,

4) Hold-out predictor
=5

Intuition: Small error on one set of data will not imply small error on
a randomly sub-sampled second set of data

Ensures method is “stable”



Hold-out method

Drawbacks:

* May not have enough data to afford setting one subset aside for

getting a sense of generalization abilities
* Validation error may be misleading (bad estimate of generalization

error) if we get an “unfortunate” split

Limitations of hold-out can be overcome by a family of random sub-
sampling methods at the expense of more computation.



Cross-validation

K-fold cross-validation

Create K-fold partition of the dataset.

Form K hold-out predictors, each time using one partition as validation and
rest K-1 as training datasets.

Final predictor is average/majority vote over the K hold-out estimates.

I:l training I:lvalidation

Run 1 = fi

Total number of examples

Run 2 = f

Run K > Ik




Cross-validation

Leave-one-out (LOQ) cross-validation

Special case of K-fold with K=n partitions
Equivalently, train on n-1 samples and validate on only one sample per run
for nruns

[I training |:|validation
Total number of examples

< >

Run 1 = f1

Run 2 = fo

Run K = fi




Cross-validation

Random subsampling

Randomly subsample a fixed fraction an (0< a <1) of the dataset for validation.
Form hold-out predictor with remaining data as training data.

Repeat K times

Final predictor is average/majority vote over the K hold-out estimates.

[I training [lvalidation
Total number of examples

< >

Run 1 = f1

Run 2 —. f2

Run K = [k




Estimating generalization error

Generalization error Ep[R(fn)]
Hold-out = 1-fold: Error estimate = Ry (fr)

K
K-fold/LOO/random Error estimate = — > Ry (fr)
sub-sampling: K=

We want to estimate the error of a predictor l] training I]validation
based on n data points. Total number of examples
If Kis large (close to n), bias of error estimate b "
is small since each training set has close to n Run 1
data points.

Run 2

However, variance of error estimate is high since
each validation set has fewer data points and

Ry might deviate a lot from the mean.

k Run K

>

» fl\'



Practical Issues in Cross-validation

How to decide the values for Kand a?

" largeK
+ The bias of the error estimate will be small
- The variance of the error estimate will be large (few validation pts)
- The computational time will be very large as well (many experiments)

* Small K
+ The # experiments and, therefore, computation time are reduced
+ The variance of the error estimate will be small (many validation pts)
- The bias of the error estimate will be large

Common choice: K=10, 0 =0.1 ©



Structural Risk Minimization

Penalize models using bound on deviation of true and empirical risks.

f, = aromin {ﬁn(f) + C(f)}

- feF

. Bound on deviation from true

risk
With high probability, |R(f) — Ra(f)| < C(f) Vf€eF  Concentration bounds
(later)
PreEdiction High probability

rror Upper bound
on true risk
true risk

empirical risk = | | C(f) - large for complex models

Complexity




Structural Risk Minimization

Deviation bounds are typically pretty loose, for small sample sizes. In practice,

fn = arg ereijrg {Rn(f) @)}
Choose by cross-validation!

Problem: Identify flood plain from noisy satellite images
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Noiseless image Noisy image True Flood plain
(elevation level > x)




Structural Risk Minimization

Deviation bounds are typically pretty loose, for small sample sizes. In practice,

fn = arg min {Bn(f) (N}

Choose by cross-validation!

Problem: Identify flood plain from noisy satellite images

True Flood plain Zero penalty CV penalty Theoretical penalty
(elevation level > x)




Occam’s Razor

William of Ockham (1285-1349) Principle of
Parsimony:

“One should not increase, beyond what is

necessary, the number of entities required to
explain anything.”

Alternatively, seek the simplest explanation.

Penalize complex models based on

* Prior information (bias)
* Information Criterion (MDL, AIC, BIC)




Importance of Domain knowledg

f(x)

f(=)

Distribution of photon arrivals
P Compton Gamma-Ray Observatory Burst

and Transient Source Experiment (BATSE)



Complexity Regularization

Penalize complex models using prior knowledge.
fo = agmin{Ba(f) +C(f)}
feF
Cost of model
(log prior)
Bayesian viewpoint:
prior probability of £ p(f) = ¢~ ¢/)
cost is small if fis highly probable, cost is large if f is improbable

ERM (empirical risk minimization) over a restricted class F
= uniform prior on f € F, zero probability for other predictors

fL'— arg min R
In ngJ:L. n(f)



Complexity Regularization

Penalize complex models using prior knowledge.

fn = alomm{ﬁ (f)+C(f)}

- feF

> Cost of model
(log prior)

Examples: MAP estimators
Regularized Linear Regression - Ridge Regression, Lasso

Omap = arg max log p(D|6) + log p(6)

e = arg min z: (i - X:8) HY 8l

l—’ Penalize models based

on some norm of
How to choose tuning parameter A? Cross-validation regression coefficients



Information Criteria — AlC, BIC

Penalize complex models based on their information content.
fn = argmin {ﬁn (f) + Cy(f)}
feF

# bits needed to describe f
(description length)

AIC (Akiake IC) C(f) = # parameters

Allows # parameters to be infinite as # training data n become large

BIC (Bayesian IC) C(f) = # parameters * log n

Penalizes complex models more heavily — limits complexity of models
as # training data n become large



Information Criteria - MDL

Penalize complex models based on their information content.

fo = argmin{R,(f)+C }
n 11}1%1)1;{ n(f) (f)
|—> # bits needed to describe f

MDL (Minimum Description Length) (description length)

Example: Binary Decision trees ~ F; = {tree classifiers with k leafs)

C(f) = 3k — 1 bits

k leaves => 2k — 1 nodes

2k — 1 bits to encode tree structure

+ k bits to encode label of each leaf (0/1)
5 leaves => 9 bits to encode structure



Summary

True and Empirical Risk
Over-fitting
Approx err vs Estimation err, Bias vs Variance tradeoff

Model Selection, Estimating Generalization Error

"  Hold-out, K-fold cross-validation
" Structural Risk Minimization
"  Complexity Regularization

=  |nformation Criteria — AlIC, BIC, MDL



