Model Selection

Dr. Jianlin Cheng

Department of Electrical Engineering and Computer Science Department
University of Missouri, Columbia
Fall, 2019

Slides Adapted from Book and CMU, Stanford Machine Learning Courses
True vs. Empirical Risk

True Risk: Target performance measure

- Classification – Probability of misclassification \(P(f(X) \neq Y) \)
- Regression – Mean Squared Error \(\mathbb{E}[(f(X) - Y)^2] \)

Performance on a random test point \((X,Y)\)

Empirical Risk: Performance on training data

- Classification – Proportion of misclassified examples \(\frac{1}{n} \sum_{i=1}^{n} 1_{f(X_i) \neq Y_i} \)
- Regression – Average Squared Error \(\frac{1}{n} \sum_{i=1}^{n} (f(X_i) - Y_i)^2 \)
Overfitting

Is the following predictor a good one?

\[
f(x) = \begin{cases}
 Y_i, & x = X_i \text{ for } i = 1, \ldots, n \\
 \text{any value,} & \text{otherwise}
\end{cases}
\]

What is its empirical risk? (performance on training data)

zero!

What about true risk?

> zero

Will predict very poorly on new random test point:
Large generalization error!
Overfitting

If we allow very complicated predictors, we could overfit the training data.

Examples: Classification 1-NN classifier
Overfitting

If we allow very complicated predictors, we could overfit the training data.

Examples: Regression (Polynomial of order k – degree up to $k-1$)
Effect of Model Complexity

If we allow very complicated predictors, we could overfit the training data.

Empirical risk is no longer a good indicator of true risk.
Behavior of True Risk

Want \(\hat{f}_n \) to be as good as optimal predictor \(f^* \)

Excess Risk

\[
E \left[R(\hat{f}_n) \right] - R^* = \left(E[R(\hat{f}_n)] - \inf_{f \in \mathcal{F}} R(f) \right) + \left(\inf_{f \in \mathcal{F}} R(f) - R^* \right)
\]

finite sample size + noise

Due to randomness of training data

Due to restriction of model class

\[\mathcal{F} \]

\[
R(\hat{f}_n)
\]

Estimation error

inf_{f \in \mathcal{F}} R(f)

Excess risk

Approx. error

\[R^* \]
Behavior of True Risk

\[E \left[R(\hat{f}_n) \right] - R^* = \left(E[R(\hat{f}_n)] - \inf_{f \in \mathcal{F}} R(f) \right) + \left(\inf_{f \in \mathcal{F}} R(f) - R^* \right) \]

- estimation error
- approximation error

Graph showing risk, estimation error, and approximation error as functions of complexity of \(\mathcal{F} \).
Bias – Variance Tradeoff

Regression: \(Y = f^*(X) + \epsilon \quad \epsilon \sim \mathcal{N}(0, \sigma^2) \)

\[
R^* = \mathbb{E}_{XY}[(f^*(X) - Y)^2] = \mathbb{E}[\epsilon^2] = \sigma^2
\]

\[
\mathbb{E}_{D_n}[R(\hat{f}_n)] = \mathbb{E}_{X,Y,D_n}[(\hat{f}_n(X) - Y)^2]
\]

\[
= \mathbb{E}_{X,Y,D_n}[(\hat{f}_n(X) - \mathbb{E}_{D_n}[\hat{f}_n(X)])^2] + \mathbb{E}_{X,Y}[(\mathbb{E}_{D_n}[\hat{f}_n(X)] - f^*(X))^2] + \sigma^2
\]

Excess Risk = \(\mathbb{E}_{D_n}[R(\hat{f}_n)] - R^* = \text{variance} + \text{bias}^2 \)

Random component ≡ est err ≡ approx err

Notice: Optimal predictor does not have zero error

\(D_n \) - training data of size \(n \)
Regression: \[Y = f^*(X) + \epsilon \quad \epsilon \sim \mathcal{N}(0, \sigma^2) \]

\[R^* = \mathbb{E}_{XY}[(f^*(X) - Y)^2] = \mathbb{E}[\epsilon^2] = \sigma^2 \]

\[\mathbb{E}_{D_n}[R(\widehat{f}_n)] = \mathbb{E}_{X,Y,D_n}[(\widehat{f}_n(X) - Y)^2] \]

\[= \mathbb{E}_{X,Y,D_n}[(\widehat{f}_n(X) - \mathbb{E}_{D_n}[\widehat{f}_n(X)]) + \mathbb{E}_{D_n}[\widehat{f}_n(X)] - Y)^2] \]

\[= \mathbb{E}_{X,Y,D_n}[(\widehat{f}_n(X) - \mathbb{E}_{D_n}[\widehat{f}_n(X)])^2 + (\mathbb{E}_{D_n}[\widehat{f}_n(X)] - Y)^2 \]

\[+2(\widehat{f}_n(X) - \mathbb{E}_{D_n}[\widehat{f}_n(X)])(\mathbb{E}_{D_n}[\widehat{f}_n(X)] - Y) \]

\[= \mathbb{E}_{X,Y,D_n}[(\widehat{f}_n(X) - \mathbb{E}_{D_n}[\widehat{f}_n(X)])^2] + \mathbb{E}_{X,Y,D_n}[(\mathbb{E}_{D_n}[\widehat{f}_n(X)] - Y)^2] \]

\[+ \mathbb{E}_{X,Y} [2(\mathbb{E}_{D_n}[\widehat{f}_n(X)] - \mathbb{E}_{D_n}[\widehat{f}_n(X)])(\mathbb{E}_{D_n}[\widehat{f}_n(X)] - Y) \]

\[D_n - \text{training data of size } n \]

Notice: Optimal predictor does not have zero error.
Bias – Variance Tradeoff: Derivation

Regression: \(Y = f^*(X) + \epsilon \), \(\epsilon \sim \mathcal{N}(0, \sigma^2) \)

\[
R^* = \mathbb{E}_{XY}[(f^*(X) - Y)^2] = \mathbb{E}[\epsilon^2] = \sigma^2
\]

\[
\mathbb{E}_{D_n}[R(\hat{f}_n)] = \mathbb{E}_{X,Y,D_n}[(\hat{f}_n(X) - Y)^2]
\]

\[
= \mathbb{E}_{X,Y,D_n}[(\hat{f}_n(X) - \mathbb{E}_{D_n}[\hat{f}_n(X)])^2] + \mathbb{E}_{X,Y,D_n}[(\mathbb{E}_{D_n}[\hat{f}_n(X)] - Y)^2]
\]

Variance – how much does the predictor vary about its mean for different training datasets

Now, let's look at the second term:

\[
\mathbb{E}_{X,Y,D_n}[(\mathbb{E}_{D_n}[\hat{f}_n(X)] - Y)^2] = \mathbb{E}_{X,Y}[(\mathbb{E}_{D_n}[\hat{f}_n(X)] - Y)^2]
\]

Note: this term doesn’t depend on \(D_n \)
Bias – Variance Tradeoff: Derivation

\[\mathbb{E}_{X,Y} \left[(\mathbb{E}_{Dn}[\hat{f}_n(X)] - Y)^2 \right] = \mathbb{E}_{X,Y} \left[(\mathbb{E}_{Dn}[\hat{f}_n(X)] - f^*(X) - \epsilon)^2 \right] \]

\[= \mathbb{E}_{X,Y} \left[(\mathbb{E}_{Dn}[\hat{f}_n(X)] - f^*(X))^2 + \epsilon^2 - 2\epsilon(\mathbb{E}_{Dn}[\hat{f}_n(X)] - f^*(X)) \right] \]

\[= \mathbb{E}_{X,Y} \left[(\mathbb{E}_{Dn}[\hat{f}_n(X)] - f^*(X))^2 \right] + \mathbb{E}_{X,Y} \left[\epsilon^2 \right] - 2\mathbb{E}_{X,Y} \left[\epsilon(\mathbb{E}_{Dn}[\hat{f}_n(X)] - f^*(X)) \right] \]

\[= \mathbb{E}_{X,Y} \left[(\mathbb{E}_{Dn}[\hat{f}_n(X)] - f^*(X))^2 \right] + \mathbb{E}_{X,Y} \left[\epsilon^2 \right] \]

\[\text{bias}^2 - \text{how much does the mean of the predictor differ from the optimal predictor} \]

\[\text{noise variance} \]
Bias – Variance Tradeoff

3 Independent training datasets

Large bias, Small variance – poor approximation but robust/stable

Small bias, Large variance – good approximation but unstable
Examples of Model Spaces

Model Spaces with increasing complexity:

• Nearest-Neighbor classifiers with varying neighborhood sizes \(k = 1, 2, 3, \ldots \)
 Small neighborhood => Higher complexity

• Decision Trees with depth \(k \) or with \(k \) leaves
 Higher depth/ More # leaves => Higher complexity

• Regression with polynomials of order \(k = 0, 1, 2, \ldots \)
 Higher degree => Higher complexity

• Kernel Regression with bandwidth \(h \)
 Small bandwidth => Higher complexity

How can we select the right complexity model?
Model Selection

Setup:

Model Classes \(\{ \mathcal{F}_\lambda \}_{\lambda \in \Lambda} \) of increasing complexity \(\mathcal{F}_1 \prec \mathcal{F}_2 \prec \ldots \)

\[
\min_{\lambda} \min_{f \in \mathcal{F}_\lambda} J(f, \lambda)
\]

We can select the right complexity model in a data-driven/adaptive way:

- Cross-validation
- Structural Risk Minimization
- Complexity Regularization
- Information Criteria - AIC, BIC, Minimum Description Length (MDL)
Hold-out method

We would like to pick the model that has smallest generalization error.

Can judge generalization error by using an independent sample of data.

Hold-out procedure:

n data points available \[D \equiv \{X_i, Y_i\}_{i=1}^n \]

1) Split into two sets: Training dataset \[D_T = \{X_i, Y_i\}_{i=1}^m \]
 Validation dataset \[D_V = \{X_i, Y_i\}_{i=m+1}^n \]

2) Use \(D_T \) for training a predictor from each model class:
 \[\hat{f}_\lambda = \arg \min_{f \in \mathcal{F}_\lambda} \hat{R}_T(f) \]

 Evaluated on training dataset \(D_T \)
3) Use D_v to select the model class which has smallest empirical error on D_v

$$\hat{\lambda} = \arg \min_{\lambda \in \Lambda} \hat{R}_V(\hat{f}_{\lambda})$$

Evaluated on validation dataset D_v

4) Hold-out predictor

$$\hat{f} = \hat{f}_{\hat{\lambda}}$$

Intuition: Small error on one set of data will not imply small error on a randomly sub-sampled second set of data

Ensures method is “stable”
Hold-out method

Drawbacks:

- May not have enough data to afford setting one subset aside for getting a sense of generalization abilities
- Validation error may be misleading (bad estimate of generalization error) if we get an “unfortunate” split

Limitations of hold-out can be overcome by a family of random subsampling methods at the expense of more computation.
K-fold cross-validation

Create K-fold partition of the dataset.
Form K hold-out predictors, each time using one partition as validation and rest K-1 as training datasets.
Final predictor is average/majority vote over the K hold-out estimates.
Cross-validation

Leave-one-out (LOO) cross-validation

Special case of K-fold with K=n partitions
Equivalently, train on n-1 samples and validate on only one sample per run for n runs

Run 1

Run 2

\[\Rightarrow \hat{f}_1 \]

Run K

\[\Rightarrow \hat{f}_K \]
Cross-validation

Random subsampling

Randomly subsample a fixed fraction αn ($0 < \alpha < 1$) of the dataset for validation. Form hold-out predictor with remaining data as training data. Repeat K times. Final predictor is average/majority vote over the K hold-out estimates.

\[\Rightarrow \hat{f}_1 \]
\[\Rightarrow \hat{f}_2 \]
\[\Rightarrow \hat{f}_K \]
Estimating generalization error

Generalization error: $E_D[R(\hat{f}_n)]$

Hold-out ≡ 1-fold:

Error estimate = $\hat{R}_V(\hat{f}_T)$

K-fold/LOO/random sub-sampling:

Error estimate = $\frac{1}{K} \sum_{k=1}^{K} \hat{R}_{V_k}(\hat{f}_{T_k})$

We want to estimate the error of a predictor based on n data points.

If K is large (close to n), bias of error estimate is small since each training set has close to n data points.

However, variance of error estimate is high since each validation set has fewer data points and \hat{R}_{V_k} might deviate a lot from the mean.
Practical Issues in Cross-validation

How to decide the values for K and α?

- Large K
 - The bias of the error estimate will be small
 - The variance of the error estimate will be large (few validation pts)
 - The computational time will be very large as well (many experiments)

- Small K
 - The # experiments and, therefore, computation time are reduced
 - The variance of the error estimate will be small (many validation pts)
 - The bias of the error estimate will be large

Common choice: $K = 10, \alpha = 0.1$ 😊
Structural Risk Minimization

Penalize models using bound on deviation of true and empirical risks.

\[\hat{f}_n = \arg\min_{f \in \mathcal{F}} \left\{ \hat{R}_n(f) + C(f) \right\} \]

Bound on deviation from true risk

With high probability, \(|R(f) - \hat{R}_n(f)| \leq C(f) \quad \forall f \in \mathcal{F}\)

Concentration bounds (later)

Graph showing prediction error vs. complexity, with underfitting, best model, and overfitting regions.

- High probability upper bound on true risk
- \(C(f)\) - large for complex models
Structural Risk Minimization

Deviation bounds are typically pretty loose, for small sample sizes. In practice,

$$\hat{f}_n = \arg \min_{f \in \mathcal{F}} \left\{ \hat{R}_n(f) + \lambda C(f) \right\}$$

Choose by cross-validation!

Problem: Identify flood plain from noisy satellite images

- Noiseless image
- Noisy image
- True Flood plain (elevation level > x)
Structural Risk Minimization

Deviation bounds are typically pretty loose, for small sample sizes. In practice,

\[
\hat{f}_n = \arg \min_{f \in \mathcal{F}} \left\{ \hat{R}_n(f) + \lambda C(f) \right\}
\]

Choose by cross-validation!

Problem: Identify flood plain from noisy satellite images

- True Flood plain (elevation level > x)
- Zero penalty
- CV penalty
- Theoretical penalty
Occam’s Razor

William of Ockham (1285-1349) *Principle of Parsimony*:

“One should not increase, beyond what is necessary, the number of entities required to explain anything.”

Alternatively, seek the simplest explanation.

Penalize complex models based on

- Prior information (bias)
- Information Criterion (MDL, AIC, BIC)
Importance of Domain knowledge

\[f(x) \]

\[f(x) \]

Distribution of photon arrivals

Oil Spill Contamination

Compton Gamma-Ray Observatory Burst and Transient Source Experiment (BATSE)
Complexity Regularization

Penalize complex models using **prior knowledge**.

\[
\hat{f}_n = \arg \min_{f \in \mathcal{F}} \left\{ \hat{R}_n(f) + C(f) \right\}
\]

Bayesian viewpoint:

- prior probability of \(f \), \(p(f) \equiv e^{-C(f)} \)
- cost is small if \(f \) is highly probable, cost is large if \(f \) is improbable

ERM (empirical risk minimization) over a restricted class \(\mathcal{F} \)

\(\equiv \) uniform prior on \(f \in \mathcal{F} \), zero probability for other predictors

\[
\hat{f}_n^L = \arg \min_{f \in \mathcal{F}_L} \hat{R}_n(f)
\]
Penalize complex models using **prior knowledge**.

\[
\hat{f}_n = \arg\min_{f \in \mathcal{F}} \left\{ \hat{R}_n(f) + C(f) \right\}
\]

Cost of model (log prior)

Examples: MAP estimators

- Regularized Linear Regression - Ridge Regression, Lasso

\[
\hat{\theta}_{\text{MAP}} = \arg\max_{\theta} \log p(D|\theta) + \log p(\theta)
\]

\[
\hat{\beta}_{\text{MAP}} = \arg\min_{\beta} \sum_{i=1}^{n} (Y_i - X_i\beta)^2 + \lambda \|\beta\|
\]

Penalize models based on some norm of regression coefficients

How to choose tuning parameter \(\lambda\)? **Cross-validation**
Information Criteria – AIC, BIC

Penalize complex models based on their information content.

\[\hat{f}_n = \arg \min_{f \in \mathcal{F}} \left\{ \hat{R}_n(f) + C(f) \right\} \]

\(\# \text{ bits needed to describe } f \) (description length)

AIC (Akaike IC)
\[C(f) = \# \text{ parameters} \]

Allows \# parameters to be infinite as \# training data \(n \) become large

BIC (Bayesian IC)
\[C(f) = \# \text{ parameters} \times \log n \]

Penalizes complex models more heavily – limits complexity of models as \# training data \(n \) become large
Penalize complex models based on their information content.

\[
\hat{f}_n = \arg \min_{f \in \mathcal{F}} \left\{ \hat{R}_n(f) + C(f) \right\}
\]

MDL (Minimum Description Length)

Example: Binary Decision trees

\[\mathcal{F}_k^T = \{ \text{tree classifiers with } k \text{ leaves} \} \]

\[
C(f) = 3k - 1 \text{ bits}
\]

k leaves \(\Rightarrow\) 2k - 1 nodes

2k - 1 bits to encode tree structure
+ k bits to encode label of each leaf (0/1)

5 leaves \(\Rightarrow\) 9 bits to encode structure

bits needed to describe \(f \)
(description length)
Summary

True and Empirical Risk

Over-fitting

Approx err vs Estimation err, Bias vs Variance tradeoff

Model Selection, Estimating Generalization Error

- Hold-out, K-fold cross-validation
- Structural Risk Minimization
- Complexity Regularization
- Information Criteria – AIC, BIC, MDL