Linear and Non-Linear Regression

Dr. Jianlin Cheng

Department of Electrical Engineering and Computer Science University of Missouri, Columbia Fall, 2019

Slides Adapted from Book, CMU, Stanford Machine Learning Courses, and my presentations

Discrete to Continuous Labels

Regression Tasks

Weather Prediction

Supervised Learning

Goal: Construct a predictor $f : X \to Y$ to minimize a risk (performance measure) R(f)

DJ (NOU AVERAGE (DOW JONES & DO as of 22-Jan-2010

Classification:

$$R(f) = P(f(X) \neq Y)$$

Probability of Error

Regression:

$$R(f) = \mathbb{E}[(f(X) - Y)^2]$$

Mean Squared Error

Regression

Optimal predictor:

$$f^* = \arg\min_{f} \mathbb{E}[(f(X) - Y)^2]$$

= $\mathbb{E}[Y|X]$ (Conditional Mean)

Intuition: Signal plus (zero-mean) Noise model

$$Y = f^*(X) + \epsilon$$

04/773

Regression

Optimal predictor: $f^* = \arg\min_f \mathbb{E}[(f(X) - Y)^2] = \mathbb{E}[Y|X]$ **Proof Strategy:** $R(f) \ge R(f^*)$ for any prediction rule f

 $R(f) = \mathbb{E}_{XY}[(f(X) - Y)^2] = \mathbb{E}_X[\mathbb{E}_{Y|X}[(f(X) - Y)^2|X]]$

Dropping subscripts $= E \left[E \left[(f(X) - E[Y|X] + E[Y|X] - Y)^2 |X] \right] \right]$ for notational convenience $E[-E[(f(X)-E[Y|X])^2|X]]$ = +2E[(f(X) - E[Y|X])(E[Y|X] - Y)|X] $+E[(E[Y|X] - Y)^{2}|X]]$ $E[E[(f(X) - E[Y|X])^2|X]]$ = $+2(f(X) - E[Y|X]) \times 0$ $+E[(E[Y|X] - Y)^2|X]]$ $= \underbrace{E\left[(f(X) - E[Y|X])^2\right]}_{\geq \mathbf{0}} + R(f^*).$

Regression

Optimal predictor:

$$f^* = rg \min_{f} \mathbb{E}[(f(X) - Y)^2]$$

= $\mathbb{E}[Y|X]$ (Conditional Mean)

Intuition: Signal plus (zero-mean) Noise model

$$Y = f^*(X) + \epsilon$$

Depends on **unknown** distribution P_{XY}

Regression algorithms

Linear Regression Lasso, Ridge regression (Regularized Linear Regression) Nonlinear Regression Kernel Regression Regression Trees, Splines, Wavelet estimators, ...

Empirical Risk Minimization (ERM)

 $f^* = \arg\min_{f} \mathbb{E}[(f(X) - Y)^2]$ Optimal predictor:)2

Empirical Risk Minimizer:

$$\widehat{f}_n = \arg\min_{f \in \mathcal{F}} \left(\frac{1}{n} \sum_{i=1}^n (f(X_i) - Y_i) \right)$$

Class of predictors

Empirical mean

$$\frac{1}{n} \sum_{i=1}^{n} \left[\mathsf{loss}(Y_i, f(X_i)) \right] \xrightarrow{\mathsf{Law of Large}}_{\mathsf{Numbers}} \mathbb{E}_{XY} \left[\mathsf{loss}(Y, f(X)) \right]$$

ERM – you saw it before!

Learning Distributions

Max likelihood = Min -ve log likelihood empirical risk

$$\max_{\theta} P(D|\theta) = \min_{\theta} \frac{1}{n} \sum_{i=1}^{n} -\log P(X_i|\theta)$$

Negative log
Likelihood loss
$$\log(X_i, \theta)$$

What is the class ${\mathcal F}$?

Class of parametric distributions Bernoulli (θ) Gaussian (μ, σ²)

Linear Regression

$$\widehat{f}_n^L = \arg\min_{f \in \mathcal{F}_L} \frac{1}{n} \sum_{i=1}^n (f(X_i) - Y_i)^2$$
 Least Squares Estimator

Multi-variate case:

$$f(X) = f(X^{(1)}, \dots, X^{(p)}) = \beta_1 X^{(1)} + \beta_2 X^{(2)} + \dots + \beta_p X^{(p)}$$

= $X\beta$ where $X = [X^{(1)} \dots X^{(p)}], \quad \beta = [\beta_1 \dots \beta_p]^T$

Least Squares Estimator

$$\hat{f}_n^L = \arg\min_{f \in \mathcal{F}_L} \frac{1}{n} \sum_{i=1}^n (f(X_i) - Y_i)^2$$

$$\hat{\beta} = \arg\min_{\beta} \frac{1}{n} \sum_{i=1}^n (X_i\beta - Y_i)^2 \qquad \hat{f}_n^L(X) = X\hat{\beta}$$

$$= \arg\min_{\beta} \frac{1}{n} (\mathbf{A}\beta - \mathbf{Y})^T (\mathbf{A}\beta - \mathbf{Y})$$

$$\mathbf{A} = \begin{bmatrix} X_1 \\ \vdots \\ X_n \end{bmatrix} = \begin{bmatrix} X_1^{(1)} & \dots & X_1^{(p)} \\ \vdots & \ddots & \vdots \\ X_n^{(1)} & \dots & X_n^{(p)} \end{bmatrix} \quad \mathbf{Y} = \begin{bmatrix} \mathbf{Y}_1 \\ \vdots \\ \mathbf{Y}_n \end{bmatrix}$$

Least Squares Estimator

$$\widehat{eta} \; = rg \min_eta rac{1}{n} (\mathbf{A}eta - \mathbf{Y})^T (\mathbf{A}eta - \mathbf{Y}) = rg \min_eta J(eta)$$

$$J(\beta) = (\mathbf{A}\beta - \mathbf{Y})^T (\mathbf{A}\beta - \mathbf{Y})$$
$$= A^T A \beta \beta^T - 2\beta^T A^T Y + Y^T Y$$

$$\frac{\partial J(\beta)}{\partial \beta}\Big|_{\widehat{\beta}} = 0 \quad = 2A^T A \beta - 2A^T Y = 0$$

Normal Equations

$$(\mathbf{A}^T \mathbf{A})\widehat{\boldsymbol{\beta}} = \mathbf{A}^T \mathbf{Y}$$

If $(\mathbf{A}^T \mathbf{A})$ is invertible,

$$\widehat{\beta} = (\mathbf{A}^T \mathbf{A})^{-1} \mathbf{A}^T \mathbf{Y} \qquad \qquad \widehat{f}_n^L(X) = X \widehat{\beta}$$

When is $(\mathbf{A}^T \mathbf{A})$ invertible ? Recall: Full rank matrices are invertible. What is rank of $(\mathbf{A}^T \mathbf{A})$?

What if
$$(\mathbf{A}^T \mathbf{A})$$
 is not invertible ? Regularization (later)

Revisiting Gradient Descent

Even when $(\mathbf{A}^T \mathbf{A})$ is invertible, might be computationally expensive if **A** is huge.

$$\widehat{eta} = \arg\min_{eta} rac{1}{n} (\mathbf{A}eta - \mathbf{Y})^T (\mathbf{A}eta - \mathbf{Y}) = \arg\min_{eta} J(eta)$$

Stop: when some criterion met e.g. fixed # iterations, or $\frac{\partial J(\beta)}{\partial \beta}\Big|_{\partial t} < \varepsilon$.

Effect of step-size α

Large α => Fast convergence but larger residual error Also possible oscillations

Small α => Slow convergence but small residual error

Least Squares and MLE

Intuition: Signal plus (zero-mean) Noise model

$$= \arg\min_{\beta} \sum_{i=1}^{n} (X_i\beta - Y_i)^2 = \widehat{\beta}$$

Least Square Estimate is same as Maximum Likelihood Estimate under a Gaussian model !

An early demonstration of the strength of **Gauss**'s method came when it was used to predict the future location of the newly discovered asteroid **<u>Ceres</u>**. On January 1, 1801, the Italian astronomer Giuseppe Piazzi discovered Ceres and was able to track its path for 40 days before it was lost in the glare of the sun. Based on this data, astronomers desired to determine the location of Ceres after it emerged from behind the sun without solving the complicated Kepler's nonlinear equations of planetary motion. The only predictions that successfully allowed Hungarian astronomer Franz Xaver von Zach to relocate Ceres were those performed by the 24-year-old Gauss using leastsquares analysis.

Source: Wikipedia

Regularized Least Squares and MAP

What if $(\mathbf{A}^T\mathbf{A})$ is not invertible ?

Prior belief that β is Gaussian with zero-mean biases solution to "small" β

Regularized Least Squares and MAP

What if $(\mathbf{A}^T \mathbf{A})$ is not invertible ?

$$\hat{\beta}_{\text{MAP}} = \arg \max_{\beta} \log p(\{(X_i, Y_i)\}_{i=1}^n | \beta, \sigma^2) + \log p(\beta) \\ \log \text{ likelihood } \log \text{ prior}$$

$$\text{II) Laplace Prior}$$

$$\beta_i \stackrel{iid}{\sim} \text{Laplace}(0, t) \qquad p(\beta_i) \propto e^{-|\beta_i|/t}$$

$$\hat{\beta}_{\text{MAP}} = \arg \min_{\beta} \sum_{i=1}^n (Y_i - X_i\beta)^2 + \lambda \|\beta\|_1 \qquad \text{Lasso}$$

$$\cosh (\sigma^2, t)$$

Prior belief that β is Laplace with zero-mean biases solution to "small" β

Ridge Regression vs Lasso

Lasso (l1 penalty) results in sparse solutions – vector with more zero coordinates Good for high-dimensional problems – don't have to store all coordinates!

Beyond Linear Regression

Polynomial regression

بنبخ بمرجعتهم

Regression with nonlinear features/basis functions

Kernel regression - Local/Weighted regression

Regression trees - Spatially adaptive regressic

Polynomial Regression

Univariate (1-d)
$$f(X) = \beta_0 + \beta_1 X + \beta_2 X^2 + \dots + \beta_m X^m = \mathbf{X}\beta$$

case:
where $\mathbf{X} = \begin{bmatrix} 1 \ X \ X^2 \dots X^m \end{bmatrix}$, $\beta = \begin{bmatrix} \beta_1 \dots \beta_m \end{bmatrix}^T$

 $\widehat{\beta} = (\mathbf{A}^T \mathbf{A})^{-1} \mathbf{A}^T \mathbf{Y} \qquad \mathbf{A} = \begin{bmatrix} \mathbf{1} & X_1 & X_1^2 & \dots & X_1^m \\ \vdots & & \ddots & \vdots \\ \mathbf{1} & X_n & X_n^2 & \dots & X_n^m \end{bmatrix}$

A Regression Example

Average height and weight of American women aged 30 - 39

Height/ m 1.47 1.5 1.52 1.55 1.57 1.60 1.63 1.65 1.68 1.7 1.73 1.75 1.78 1.8 1.83 Weight/kg 52.21 53.12 54.48 55.84 57.2 58.57 59.93 61.29 63.11 64.47 66.28 68.1 69.92 72.19 74.46

Weight is not linear with height, so add a quadratic term into regression

y	=	ļ	3 ₀ -	$-\beta_1$	$x + \beta_2$	$x^2 + \epsilon$	$\widehat{f}(X) = X\widehat{\beta}$
A	=	$ \begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\$	1.47 1.50 1.52 1.55 1.57 1.60 1.63 1.65 1.68 1.70 1.73 1.75 1.78 1.81 1.83	$\begin{array}{c} 2.16\\ 2.25\\ 2.31\\ 2.40\\ 2.46\\ 2.56\\ 2.66\\ 2.72\\ 2.82\\ 2.89\\ 2.99\\ 3.06\\ 3.17\\ 3.24\\ 3.35\end{array}$	Υ =	52.21 53.12 54.48 55.84 57.2 58.57 59.93 61.29 63.11 64.47 66.28 68.1 69.92 72.19 74.46	$\hat{\beta} = (\mathbf{A}^T \mathbf{A})^{-1} \mathbf{A}^T \mathbf{Y}$ $\hat{\beta}_0 = ?$ $\hat{\beta}_1 = ?$ $\hat{\beta}_2 = ?$
		-		-		/4.40	Source: Wikipedia

Assignment 3 – Programming 1

- Write programs in Matlab, R, C/C++, Java, Perl, or Python to implement the analytical (e.g. matrix-based) or iterative (e.g. gradient descent) linear regression algorithm and test it on the problem in the previous slide. Don't directly call linear regression functions in any software
- Turn in the programs and execution results

Assignment 3 – Programming 2 Due Sept. 28, 2015

Iris

Wikipedia

- Write a program to implement the iterative (e.g. gradient ascent / descent) logistic regression algorithm for binary classification and apply it to the Iris classification data set
- Iris data set:

http://archive.ics.uci.edu/ml/datasets/Iris

- Only select data points of two highlighted classes (Iris Setosa, Iris Versicolour, Iris Virginica)
- Submit programs and execution results

Nonlinear Regression

Fourier Basis

Wavelet Basis

Good representation for oscillatory functions

Good representation for functions localized at multiple scales

$$\psi(t) = 2\operatorname{sinc}(2t) - \operatorname{sinc}(t) = \frac{\sin(2\pi t) - \sin(\pi t)}{\pi t}$$

$$\frac{1}{\sqrt{2\pi a^2}} \cdot \operatorname{sinc}\left(\frac{\omega}{2\pi a}\right)$$

Local Regression

Local Regression

 $x \longrightarrow$

What you should know

Linear Regression

- Least Squares Estimator
- Normal Equations
- Gradient Descent

Regularized Linear Regression (connection to MAP)

Ridge Regression, Lasso

Polynomial Regression, Basis (Fourier, Wavelet) Estimators

Next time

- Kernel Regression (Localized)
- Regression Trees