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Discrete to Continuous Labels

Classification
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Regression Tasks

Weather Prediction
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Supervised Learning

Goal: Construct a predictor f: X — Y to minimize
a risk (performance measure) R(f)

Classification:

R(f) = P(f(X) #Y)

Probability of Error
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Regression:

R(f) = E[(f(X) = Y)?]

Mean Squared Error



Regression

Optimal predictor: f* = arg mfin E[(f(X) —Y)?]

= E[Y'| X] (Conditional Mean)

Intuition: Signal plus (zero-mean) Noise model )%

Y = fH{(X) +e
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Regression

Optimal predictor: f* = arg mfin E[(f(X) - Y)?] = ElY|X]
Proof Strategy: R(f) > R(f*) for any prediction rule f
R(f) = Exy[(f(X) = Y)?] = Ex[Eyx[(f(X) = Y)?|X]]

Dropping SUbSCI’iPtS — E :E [(f(JY) - E[}"JY] 4+ E[y"x] o Y)2|_X:]

for notational convenience

E[ E[(f(X) - E[Y|X])*|X] |
- +2E[(f(X) — EIY |X])(E[Y|X] - Y)[X]
+E[(E[Y|X] - Y)*|X]]
E[ E[(f(X) - E[Y|X])?*X]
= +2(f(X) - E[Y|X]) x 0
+E[(E[Y]X] - YV)*X]]
= E[(f(X) - E[Y|X])*] + R(f").
| >0 |




Regression

Optimal predictor: f* = arg mfin E[(f(X) — Y)?]

= E[Y|X] (Conditional Mean)

Intuition: Signal plus (zero-mean) Noise model Y

Y = f(X) 4 ¢

Depends on unknown distribution Pyy




Regression algorithms

Training data l:> Learning algorithm :> Prediction rule
{(X5, V) ey fr

Linear Regression

Lasso, Ridge regression (Regularized Linear Regression)
Nonlinear Regression

Kernel Regression

Regression Trees, Splines, Wavelet estimators, ...



Empirical Risk Minimization (ERM)

Optimal predictor: f* = arg mfin E[(f(X) —Y)?]

Empirical Risk Minimizer: fn = arg }T\I@ (f(Xi) — Yz')2
- 0

Class of predictors Empirical mean

%Z loss(Y;, f(X;))] —2noi2€e, RByy [loss(Y, £(X))]
i=1

Numbers




ERM - you saw it before!

* Learning Distributions
Max likelihood = Min -ve log likelihood empirical risk

T

Z —log P(X;|6) Negative log
=1\ Y ! Likelihood loss
loss(X;, 0)

max P(D|0) = min
0 9

S =

What is the class F ?

Class of parametric distributions
Bernoulli (0)
Gaussian (U, G?)



Linear Regression

. 1 n
fn — arg Z (f(XZ) — YTL)2 Least Squares Estimator
i=1

F7, - Class of Linear functions

0

Uni-variate case:

f(X) = 1 4+ B X i - intercept
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Multi-variate case:

1
FX) =fx@ . x®) = ﬁly/{) +8X@ 4. 4 8,x0)

= X[ where X=[X(1),_,X(P)]’ ﬁz[ﬁlgp]l



Least Squares Estimator

fk=arg min = Z (f(X) = Y;)?
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Least Squares Estimator

~~

B =argmin (AG - Y)T(AS - Y)= argmin J(5)

J(B) = (AB-Y)(AB-Y)
= ATABBT —2p7ATY + Y'Y

aJ ()

=0 — r - r —
98 |3 2A°Ap —2A'Y =0



Normal Equations

(ATA)3 =ATY

pxp pxl px1

If (ATA) is invertible,

3= (ATA)TATY flx)=xp

Whenis (AT A) invertible ?
Recall: Full rank matrices are invertible. What is rank of(ATA) ?

What if (ATA) is not invertible ?
Regularization (later)



Revisiting Gradient Descent

Even when (ATA) is invertible, might be computationally expensive if A is huge.

B = arg m,@in %(Aﬁ — Y)T(AB -Y) = arg mbln J(3)

Gradient Descent since J(B) is convex e |
Initialize: ,60 i " 303
Update: gtt+1l — gt _ adJ(B) /B /j T |

= ' —a AT(AB'-Y) y
0if gt=33 -
9J(83)

Stop: when some criterion met e.g. fixed # iterations, or <E.

a .{3 .""’



Effect of step-size a

J(B) J(B)

Large A => Fast convergence but larger residual error
Also possible oscillations

Small a => Slow convergence but small residual error



Least Squares and MLE

Intuition: Signal plus (zero-mean) Noise model

Y = ff(X)4+e=XB"+¢ e ~ N(0,0°T)

Y ~ N(XB*, 021) 1 texp)s

PYIX) = ——e 207
BmLe = arg max log p({(X;, Y;) H=11B,0°)
/ \ J
I

log likelihood

n
=argmin 3~ (X;8 - Y;)* =3

Yoa=1

Least Square Estimate is same as Maximum Likelihood Estimate under a
Gaussian model !



An early demonstration of the strength of Gauss's
method came when it was used to predict the
future location of the newly discovered asteroid
Ceres. On January 1, 1801, the Italian astronomer
Giuseppe Piazzi discovered Ceres and was able to
track its path for 40 days before it was lost in the
glare of the sun. Based on this data, astronomers
desired to determine the location of Ceres after
it emerged from behind the sun without solving
the complicated Kepler's nonlinear equations of
planetary motion. The only predictions that
successfully allowed Hungarian astronomer Franz
Xaver von Zach to relocate Ceres were those
performed by the 24-year-old Gauss using least-
squares analysis.

Source: Wikipedia



Regularized Least Squares and MAP

What if (AT A) is not invertible ?

Bmap = arg max log p({(X;, ¥i) }i=1l6. o?)+log p(3)
CA ) J
Y Y
log likelihood log prior

I) Gaussian Prior

B ~ N (0, 72I) p(B) o e~ P B/27*

n
Bumap = arg mﬁin > (Vi - Xi8)% + M|l Ridge Regression
1=1
constant(c?, 72)

Prior belief that B is Gaussian with zero-mean biases solution to “small” B




Regularized Least Squares and MAP

What if (ATA) is not invertible ?

Bumap = arg maxlog p({(X;, Y;) }i=115, o2)+log p(3)
| | ] | J

Y Y
log likelihood log prior
||I
X
Il) Laplace Prior / \
,!.-‘\E\
3; “¢ Laplace(0,t) p(B;) o e~ 1Aill! /A
;..'/ \ -
R n 5 o
Bmap = arg mBin Y (Y — XiB)” + A8l Lasso

=1
constant(o?,t)

Prior belief that B is Laplace with zero-mean biases solution to “small”




Ridge Regression vs Lasso

min(AS - Y)T(AB - Y) + Apen(B) = min J(B) + Apen(p)

Ridge Regression: Lasso: | ‘HOT!
pen(3) = |18|3 pen(B) =|Bll1 =

Bs with constant J(B)
(level sets of J(B))

Bs with B2
constant

12 norm \/- )
N N\

Lasso (1 penalty) results in sparse solutions — vector with more zero coordinates
Good for high-dimensional problems —don’t have to store all coordinates!

Bs with
constant
1 norm




Beyond Linear Regression

Polynomial regression

Regression with nonlinear features/basis functions

o °..
©
Kernel regression - Local/Weighted regression ..
(1)
o ° 0 ...
A
Regression trees — Spatially adaptive regressic ‘, A




Polynomial Regression

Univariate (1-d)  f(X) = g + f1X + B2X° + -+ + B X™ = X3
case:
where X = [1 X X2...X™],B8=[B1...8m]"

p=@fay ATy 11X Xg ... X7
F(X) = X3 boXn X XT
| Po(X)
F(X) = S 83X = S0 Bj6;(X) $1(X)
o
Weight of Nonlinear /

each feature features \-/ 02(X)
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A Regression Example

Average height and weight of American women aged 30 - 39

Height/ m 147 15
Weight/kg 52.21 53.12 5448 55.84 57.2 58.57 59.93 61.29 63.11 64.47 66.26 63.1 69.92 72.19 74 .46

Weight is not linear with height, so add a quadratic term into regression
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Assignment 3 — Programming 1

* Write programs in Matlab, R, C/C++, Java, Perl,
or Python to implement the analytical (e.g.
matrix-based) or iterative (e.g. gradient
descent) linear regression algorithm and test it
on the problem in the previous slide. Don’t
directly call linear regression functions in any
software

* Turn in the programs and execution results



Assignment 3 — Programming 2
Due Sept. 28, 2015

* Write a program to implement the iterative
(e.g. gradient ascent / descent) logistic
regression algorithm for binary classification
and apply it to the Iris classification data set

* Iris data set:
http://archive.ics.uci.edu/ml/datasets/Iris

= * Only select data points of two highlighted
classes (lIris Setosa, Iris Versicolour, Iris
Virginica)

— e Submit programs and execution results
Wikipedia


http://archive.ics.uci.edu/ml/datasets/Iris

Nonlinear Regression

F(X) = g B (X)
o

Basis coefficients Nonlinear features/basis functions
Fourier Basis Wavelet Basis
¥ _
$o(X) S bo(X) \//\\/\
PO SNV
$2(X) i/\v/\\//\\/ $2(X) VAN

Good representation for oscillatory functions  Good representation for functions
localized at multiple scales

1 - sine (L) Y (t) = 2sinc(2t) — sinc(t) = sin(2nt) — sin(mt)

2mwa? 2ma wt



Local Regression

F(X) = £ Bj6;(X)
.

Basis coefficients Nonlinear features/basis functions

¢0(X) $1(X) $2(X)

Globally supported
basis functions
(polynomial, fourier)
will not yield a good
representation




Local Regression

F(X) = X710 B¢ (X)
—

Basis coefficients Nonlinear features/basis functions

¢0(X) $1(X) $2(X)

Globally supported

260(X) + 0.05¢1(X) 4 0.5¢5(X) basis functions

(polynomial, fourier)

will not yield a good
A_ representation

X —>



What you should know

Linear Regression

Least Squares Estimator

Normal Equations
Gradient Descent

Regularized Linear Regression (connection to MAP)
Ridge Regression, Lasso

Polynomial Regression, Basis (Fourier, Wavelet) Estimators

Next time
- Kernel Regression (Localized)

- Regression Trees



