

Logistic Regression & Discriminative Classifier

Dr. Jianlin Cheng

**Department of Electrical Engineering and Computer
Science**

**University of Missouri, Columbia
Fall, 2019**

Slides Adapted from Book and CMU, Stanford Machine Learning Courses

Naïve Bayes Recap...

- Optimal Classifier: $f^*(x) = \arg \max_y P(y|x)$
- NB Assumption: $P(X_1 \dots X_d|Y) = \prod_{i=1}^d P(X_i|Y)$
- NB Classifier:
$$f_{NB}(x) = \arg \max_y \prod_{i=1}^d P(x_i|y)P(y)$$
- Assume parametric form for $P(X_i|Y)$ and $P(Y)$
 - Estimate parameters using MLE/MAP and plug in

Generative vs. Discriminative Classifiers

Generative classifiers (e.g. Naïve Bayes)

- Assume some functional form for $P(X, Y)$ (or $P(X | Y)$ and $P(Y)$)
- Estimate parameters of $P(X | Y)$, $P(Y)$ directly from training data
- Use Bayes rule to calculate $P(Y | X)$

Why not learn $P(Y | X)$ directly? Or better yet, why not learn the decision boundary directly?

Discriminative classifiers (e.g. Logistic Regression)

- Assume some functional form for $P(Y | X)$ or for the decision boundary
- Estimate parameters of $P(Y | X)$ directly from training data

Logistic Regression

Example:
Drug dose response experiments

Assumes the following functional form for $P(Y|X)$:

$$P(Y = 0|X, w) = \frac{1}{1 + \exp(w_0 + \sum_i w_i X_i)}$$

$$P(Y = 1|X, w) = \frac{\exp(w_0 + \sum_i w_i X_i)}{1 + \exp(w_0 + \sum_i w_i X_i)}$$

Logistic function applied to a linear
function of the data

Logistic
function
(or Sigmoid): $\frac{1}{1 + \exp(-z)}$

Features can be discrete or continuous!

Logistic Regression is a Linear Classifier!

Assumes the following functional form for $P(Y|X)$:

$$P(Y = 0|\mathbf{X}, \mathbf{w}) = \frac{1}{1 + \exp(w_0 + \sum_i w_i X_i)}$$

$$P(Y = 1|\mathbf{X}, \mathbf{w}) = \frac{\exp(w_0 + \sum_i w_i X_i)}{1 + \exp(w_0 + \sum_i w_i X_i)}$$

$$w_0 + \sum_i w_i X_i = 0$$

Decision boundary:

$$P(Y = 1|X) \stackrel{1}{\gtrless} P(Y = 0|X) \stackrel{0}{\gtrless}$$

$$w_0 + \sum_i w_i X_i \stackrel{1}{\gtrless} 0 \stackrel{0}{\gtrless}$$

(Linear Decision Boundary)

Machine Learning Problems to Practice

- <http://archive.ics.uci.edu/ml/index.php>
- An example - Iris data:
<http://archive.ics.uci.edu/ml/machine-learning-databases/iris/>

Logistic Regression is a Linear Classifier!

Assumes the following functional form for $P(Y|X)$:

$$P(Y = 0|X) = \frac{1}{1 + \exp(w_0 + \sum_i w_i X_i)}$$

$$\Rightarrow P(Y = 1|X) = \frac{\exp(w_0 + \sum_i w_i X_i)}{1 + \exp(w_0 + \sum_i w_i X_i)}$$

$$\Rightarrow \frac{P(Y = 1|X)}{P(Y = 0|X)} = \exp(w_0 + \sum_i w_i X_i) \stackrel{1}{\gtrless} \stackrel{0}{\lessdot} 1$$

$$\Rightarrow w_0 + \sum_i w_i X_i \stackrel{1}{\gtrless} \stackrel{0}{\lessdot} 0$$

Logistic Regression for more than 2 classes

- Logistic regression in more general case, where $Y \in \{y_1, \dots, y_K\}$

for $k < K$

$$P(Y = y_k | X) = \frac{\exp(w_{k0} + \sum_{i=1}^d w_{ki} X_i)}{1 + \sum_{j=1}^{K-1} \exp(w_{j0} + \sum_{i=1}^d w_{ji} X_i)}$$

for $k = K$ (normalization, so no weights for this class)

$$P(Y = y_K | X) = \frac{1}{1 + \sum_{j=1}^{K-1} \exp(w_{j0} + \sum_{i=1}^d w_{ji} X_i)}$$

Is the decision boundary still linear?

Training Logistic Regression

We'll focus on binary classification:

$$P(Y = 0 | \mathbf{X}, \mathbf{w}) = \frac{1}{1 + \exp(w_0 + \sum_i w_i X_i)}$$

$$P(Y = 1 | \mathbf{X}, \mathbf{w}) = \frac{\exp(w_0 + \sum_i w_i X_i)}{1 + \exp(w_0 + \sum_i w_i X_i)}$$

How to learn the parameters w_0, w_1, \dots, w_d ?

Training Data $\{(X^{(j)}, Y^{(j)})\}_{j=1}^n$ $X^{(j)} = (X_1^{(j)}, \dots, X_d^{(j)})$

Maximum Likelihood Estimates

$$\hat{\mathbf{w}}_{MLE} = \arg \max_{\mathbf{w}} \prod_{j=1}^n P(X^{(j)}, Y^{(j)} | \mathbf{w})$$

But there is a problem ...

Don't have a model for $P(\mathbf{X})$ or $P(\mathbf{X} | \mathbf{Y})$ - only for $P(\mathbf{Y} | \mathbf{X})$

Training Logistic Regression

How to learn the parameters w_0, w_1, \dots, w_d ?

Training Data $\{(X^{(j)}, Y^{(j)})\}_{j=1}^n$ $X^{(j)} = (X_1^{(j)}, \dots, X_d^{(j)})$

Maximum (Conditional) Likelihood Estimates

$$\hat{\mathbf{w}}_{MCLE} = \arg \max_{\mathbf{w}} \prod_{j=1}^n P(Y^{(j)} | X^{(j)}, \mathbf{w})$$

Discriminative philosophy – Don't waste effort learning $P(X)$,
focus on $P(Y|X)$ – that's all that matters for classification!

Expressing Conditional log Likelihood

$$P(Y = 0 | \mathbf{X}, \mathbf{w}) = \frac{1}{1 + \exp(w_0 + \sum_i w_i X_i)}$$

$$P(Y = 1 | \mathbf{X}, \mathbf{w}) = \frac{\exp(w_0 + \sum_i w_i X_i)}{1 + \exp(w_0 + \sum_i w_i X_i)}$$

$$l(\mathbf{w}) \equiv \ln \prod_j P(y^j | \mathbf{x}^j, \mathbf{w})$$

$$= \sum_j \left[y^j (w_0 + \sum_i^d w_i x_i^j) - \ln(1 + \exp(w_0 + \sum_i^d w_i x_i^j)) \right]$$

MLE Estimate

$$\begin{aligned}
 p(D|w) &= \prod_{j=1}^n p(y_j^{\bar{0}} | x_j^{\bar{0}}, w) = \prod_{j=1}^n p(y_j^{\bar{1}} = 1 | x_j^{\bar{0}}, w)^{y_j^{\bar{0}}} p(y_j^{\bar{1}} = 0 | x_j^{\bar{0}}, w)^{1-y_j^{\bar{0}}} \\
 &= \prod_{j=1}^n \left(\frac{\exp(w_0 + \sum_i w_i x_i^{\bar{j}})}{1 + \exp(w_0 + \sum_i w_i x_i^{\bar{j}})} \right)^{y_j^{\bar{0}}} \left(\frac{1}{1 + \exp(w_0 + \sum_i w_i x_i^{\bar{j}})} \right)^{1-y_j^{\bar{0}}} \\
 \ell(w) = \ln p(D|w) &= \sum_{j=1}^n \left[y_j^{\bar{0}} \left((w_0 + \sum_i w_i x_i^{\bar{j}}) - \ln(1 + \exp(w_0 + \sum_i w_i x_i^{\bar{j}})) \right) - \right. \\
 &\quad \left. (1-y_j^{\bar{0}}) \left(-\ln(1 + \exp(w_0 + \sum_i w_i x_i^{\bar{j}})) \right) \right] \\
 &= \sum_{j=1}^n \left[y_j^{\bar{0}} (w_0 + \sum_{i=1}^d w_i x_i^{\bar{j}}) - \ln(1 + \exp(w_0 + \sum_{i=1}^d w_i x_i^{\bar{j}})) \right] \\
 \frac{\partial \ell(w)}{\partial w_i} &= \sum_{j=1}^n \left[x_i^{\bar{j}} y_j^{\bar{0}} - \frac{\exp(w_0 + \sum_{i=1}^d w_i x_i^{\bar{j}}) \cdot x_i^{\bar{j}}}{1 + \exp(w_0 + \sum_{i=1}^d w_i x_i^{\bar{j}})} \right] \\
 &= \sum_{j=1}^n x_i^{\bar{j}} \left(y_j^{\bar{0}} - \frac{\exp(w_0 + \sum_{i=1}^d w_i x_i^{\bar{j}})}{1 + \exp(w_0 + \sum_{i=1}^d w_i x_i^{\bar{j}})} \right) \\
 &= \sum_{j=1}^n x_i^{\bar{j}} \left(y_j^{\bar{0}} - p(y_j^{\bar{0}} = 1 | x_j^{\bar{0}}, w) \right)
 \end{aligned}$$

Maximizing Conditional log Likelihood

$$\begin{aligned}\max_{\mathbf{w}} l(\mathbf{w}) &\equiv \ln \prod_j P(y^j | \mathbf{x}^j, \mathbf{w}) \\ &= \sum_j y^j (w_0 + \sum_i w_i x_i^j) - \ln(1 + \exp(w_0 + \sum_i w_i x_i^j))\end{aligned}$$

Good news: $l(\mathbf{w})$ is concave function of $\mathbf{w} \rightarrow$ no locally optimal solutions

Bad news: no closed-form solution to maximize $l(\mathbf{w})$

Good news: concave functions easy to optimize (unique maximum)

Optimizing concave/convex function

- Conditional likelihood for Logistic Regression is concave
- Maximum of a concave function = minimum of a convex function

Gradient Ascent (concave)/ Gradient Descent (convex)

Gradient:

$$\nabla_{\mathbf{w}} l(\mathbf{w}) = \left[\frac{\partial l(\mathbf{w})}{\partial w_0}, \dots, \frac{\partial l(\mathbf{w})}{\partial w_n} \right]'$$

Update rule:

Learning rate, $\eta > 0$

$$\Delta \mathbf{w} = \eta \nabla_{\mathbf{w}} l(\mathbf{w})$$

$$w_i^{(t+1)} \leftarrow w_i^{(t)} + \eta \frac{\partial l(\mathbf{w})}{\partial w_i} \Big|_t$$

Gradient Ascent/Descent for Concave and Convex function

Calculate Partial Derivative – A Beautiful Result

$$\frac{\partial l(w)}{\partial w_i} = \sum_j y^j x_i^j - \frac{\exp(w_o + \sum_1^d w_i x_i^j) x_i^j}{1 + \exp(w_o + \sum_1^d w_i x_i^j)} = \sum_j x_i^j (y^j - \frac{\exp(w_o + \sum_1^d w_i x_i^j)}{1 + \exp(w_o + \sum_1^d w_i x_i^j)})$$

$$\frac{\partial l(w)}{\partial w_i} = \sum_j x_i^j (y^j - P(y^j = 1 | x^j, w))$$

Gradient Ascent for Logistic Regression

Gradient ascent algorithm: iterate until change $< \varepsilon$

$$w_0^{(t+1)} \leftarrow w_0^{(t)} + \eta \sum_j [y^j - \hat{P}(Y^j = 1 \mid \mathbf{x}^j, \mathbf{w}^{(t)})]$$

For $i=1, \dots, d$,

$$w_i^{(t+1)} \leftarrow w_i^{(t)} + \eta \sum_j x_i^j [y^j - \hat{P}(Y^j = 1 \mid \mathbf{x}^j, \mathbf{w}^{(t)})]$$

repeat

Predict what current weight thinks label Y should be

- Gradient ascent is simplest of optimization approaches
 - e.g., Newton method, Conjugate gradient ascent, IRLS (see Bishop 4.3.3)

Effect of step-size η

Large η => Fast convergence but larger residual error
Also possible oscillations

Small η => Slow convergence but small residual error

That's all M(C)LE. How about MAP?

$$p(\mathbf{w} \mid Y, \mathbf{X}) \propto P(Y \mid \mathbf{X}, \mathbf{w})p(\mathbf{w})$$

- One common approach is to define priors on \mathbf{w}
 - Normal distribution, zero mean, identity covariance
 - “Pushes” parameters towards zero
- Corresponds to ***Regularization***
 - Helps avoid very large weights and overfitting
 - More on this later in the semester
- M(C)AP estimate

$$\mathbf{w}^* = \arg \max_{\mathbf{w}} \ln \left[p(\mathbf{w}) \prod_{j=1}^n P(y^j \mid \mathbf{x}^j, \mathbf{w}) \right]$$

Large weights → Overfitting

$$\frac{1}{1 + e^{-x}}$$

$$\frac{1}{1 + e^{-2x}}$$

$$\frac{1}{1 + e^{-100x}}$$

- Large weights lead to overfitting:

A 3x3 matrix of binary values (0 or 1) with red weights overlaid. The matrix is:

1	1	1
1	1	0
1	0	0

A blue line with a red arrow points from the bottom-left corner (1,0) to the top-right corner (1,1), representing the flow of data through the network.

- Penalizing high weights can prevent overfitting...
 - again, more on this later in the semester

M(C)AP – Regularization

- Regularization

$$p(\mathbf{w}) = \prod_i \frac{1}{\kappa\sqrt{2\pi}} e^{\frac{-w_i^2}{2\kappa^2}}$$

$$\arg \max_{\mathbf{w}} \ln \left[p(\mathbf{w}) \prod_{j=1}^n P(y^j | \mathbf{x}^j, \mathbf{w}) \right] \quad \text{Zero-mean Gaussian prior}$$

$$\mathbf{w}^* = \arg \max_{\mathbf{w}} \sum_{j=1}^n \ln P(y^j | \mathbf{x}^j, \mathbf{w}) - \sum_{i=1}^d \frac{w_i^2}{2\kappa^2}$$

Penalizes large weights

Calculate Partial Derivative – A Beautiful Result

$$l(w) = \sum_{j=1}^n \ln P(y^j \mid \mathbf{x}^j, \mathbf{w}) - \sum_{i=1}^d \frac{w_i^2}{2\kappa^2}$$

$$\frac{\partial l(w)}{\partial w_i} = \sum_j x_i^j (y^j - P(y^j = 1 \mid x^j, w)) - \frac{w_i}{k^2}$$

Gradient Ascent for Logistic Regression

Gradient ascent algorithm: iterate until change $< \varepsilon$

$$w_0^{(t+1)} \leftarrow w_0^{(t)} + \eta \sum_j [y^j - \hat{P}(Y^j = 1 \mid \mathbf{x}^j, \mathbf{w}^{(t)})]$$

For $i=1, \dots, d$,

$$w_i^{(t+1)} \leftarrow w_i^{(t)} + \eta \sum_j x_i^j [y^j - \hat{P}(Y^j = 1 \mid \mathbf{x}^j, \mathbf{w}^{(t)})]$$

repeat

Predict what current weight thinks label Y should be

- Gradient ascent is simplest of optimization approaches
 - e.g., Newton method, Conjugate gradient ascent, IRLS (see Bishop 4.3.3)