Dr. Jianlin Cheng

Department of Electrical Engineering and Computer
Science

University of Missouri, Columbia
Fall, 2019

Slides Adapted from Book and CMU, Stanford Machine Learning Courses

Naive Bayes Recap...

Optimal Classifier: f"(z) = arg max P(y|z)
d
NB Assumption: P(X1..X4Y) = [[P(X;]Y)
1=1

NB Classifier: 1

fnp(xz) = arg m,,?XH P(zi|ly) P(y)
Y oi=1

Assume parametric form for P(X.|Y) and P(Y)
— Estimate parameters using MLE/MAP and plug in

Generative vs. Discriminative
Classifiers

Generative classifiers (e.g. Naive Bayes)
* Assume some functional form for P(X,Y) (or P(X]Y) and P(Y))

* Estimate parameters of P(X|Y), P(Y) directly from training data
* Use Bayes rule to calculate P(Y|X)

Why not learn P(Y | X) directly? Or better yet, why not learn the
decision boundary directly?

Discriminative classifiers (e.g. Logistic Regression)

* Assume some functional form for P(Y| X) or for the decision boundary
* Estimate parameters of P(Y|X) directly from training data

Logistic Regression

Example:
Drug dose response experiments

Assumes the following functional form for P(Y | X):

1

P(Y =0|X,w) =

1 4+ exp(wg + 3; w; X;)

{:;rp('wg + 2wy Xi)

P(Y =1X,w) =

1+ [‘.J‘p(u?o -+ E‘ tt-‘f.\ri)

Logistic function applied to a linear
function of the data

Logistic
function 1
(or Sigmoid): 1+ exp(—2z)

Features can be discrete or continuous!

logit (z)

08

08

27

16

)4

0z

“B)

0

-5

Logistic Regression is a Linear
Classifier!

Assumes the following functional form for P(Y | X):

1
1 + exp(wg + 32; w; X;)

P(Y = 11X, w) = __<@P(wo + 3 wiX;)
1 + exp(wg + >; w; X;)

P(Y = 0|X.w) =

Decision boundary:

b
P(Y =1|X) =z P(Y =0|X)
0

1
wo + Z w; X; 5 0
i

(Linear Decision Boundary)

Machi

Machin
e http://arc

ne Learning Problems to
Practice

UCI c5ae>

e Learning Repository

nive.ics.uci.edu/ml/index.php

* An examp
http://arc

e - Iris data:
nive.ics.uci.edu/ml/machine-

learning-c

atabases/iris/

http://archive.ics.uci.edu/ml/index.php
http://archive.ics.uci.edu/ml/machine-learning-databases/iris/

Logistic Regression is a Linear
Classifier!

Assumes the following functional form for P(Y | X):

1
PY =UX) =
(q) 1+ exp(wo +)_; wiX;)
exp('wo + Z 'U-'i,/Y'é)
P(Y =@X) = "
= P 4.x) 1 +exp(wo +), wi X;)
P(Y =3X) | b
Py =) - Rt 2w Q
D -
= |wp + Z w;X; 2 0
. 0

Logistic Regression for more than 2
classes

* Logistic regression in more general case, where
Y 6 {y]_l'"lyK}

for k<K

exp(w M wg X
P(Y =y |X) = P(wyo + Lz—l wje; X;)

1+ ZI‘ =1 exp(wjo + Z(llzl ’l_sz'Xi)

for k=K (normalization, so no weights for this class)
1

1+ Z;\z eXD(wgo + Zz 1 u’_]IXZ)

P(Y = yk|X) =

Is the decision boundary still linear?

Training Logistic Regression

P(Y = 0X,w) = !

We’ll focus on binary classification: 1+ eap(wo + 3 wiXi)

P(Y = 1/X.w) = exp(wo + X; wiX;)

1+ exp(wg + X; w; X;)

How to learn the parameters w,, w,, ... w,?
Training Data {(x@. vy, x0) = xP ... x)

Maximum Likelihood Estimates
T

wyLp = argmax || P(xUW,yU) | w)
j=1

But there is a problem ..
Don't have a model for P(X) or P(X|Y) - only for P(Y|X)

Training Logistic Regression

How to learn the parameters w,, w,, ... w,?
Training Data {(X(), yU)}r_, x0) = (xP . x0))

Maximum (Conditional) Likelihood Estimates

n . .
wyope = argmax] Py | xU) w)
=1

Discriminative philosophy — Don’t waste effort learning P(X),
focus on P(Y|X) — that’s all that matters for classification!

Expressing Conditional log Likelihood

1
P(Y =0|X,w) =
1 4 exp(wo 4+ >2; w; X;)
PeY = 1|X, w) = —<2P(wo + i wiXi)

1+ e;z:p(‘wo + 2 '“"i.Xi)

(w) = InJ] P |x?, w)
J
. d ,- d ,.
— Z yj(’wo+zwi${) — In(1+emp(wo+zwi$f))

J

MLE Estimate

Maximizing Conditional log Likelihood

max I(w) InHP(yj|xj,w)

J

= >/ (wo+ Y wiz)) — In(1 + exp(wo +) wiz)))
J z ""

Good news: /(w) is concave function of w — no locally optimal
solutions

Bad news: no closed-form solution to maximize /(w)

Good news: concave functions easy to optimize (unique
maximum)

Optimizing concave/convex function

* Conditional likelihood for Logistic Regression is concave

* Maximum of a concave function = minimum of a convex function

Gradient Ascent (concave)/ Gradient Descent (convex)

25 Gradient:

ol(w) B 8l(w)],

~~\15 Wy N ‘ “““" | Wl() [o
3 RS dwg dwn
, \\\\\‘“\3 XX
~ 10 LRI ““
| | \\\\\\\\“ X i
AVLNEN Update rule: Learning rate, n>0

Aw = nVwl(w)

2 ol
WD ® 4y 8(X)
it

Gradient Ascent/Descent for Concave
and Convex function

Convex | Clonc ave

Calculate Partial Derivative — A Beautiful Result

al(w) - jexp(w, + X{wix))x] i exp(w, + X wix))
in — = X;) -

adw; ; 1+ exp(w, + X w;x]) ; 1+ exp(w, + X wix;)

al(w)
aWi B

zxij(yj —P(yj = 1|xf,w))

J

Gradient Ascent for Logistic
Regression

Gradient ascent algorithm: iterate until change< ¢

w(()t+1) . w(()t) 4+ nZ[yj _P(Y' =1 | xj,w(t))]
j

Fori=1,...,d,

’wi(t_'_l) — wi(t)-i-nZ:cg[yj—P(Yj =1| xj,w(t))]
j \ Y J

Predict what current weight
thinks label Y should be

repeat

* Gradient ascent is simplest of optimization approaches
— e.g.,, Newton method, Conjugate gradient ascent, IRLS (see Bishop 4.3.3)

Effect of step-size n
—l(w) —l(w)

Large n => Fast convergence but larger residual error
Also possible oscillations

Smalln => Slow convergence but small residual error

That’s all M(C)LE. How about MAP?

p(w|Y,X) o P(Y|X,w)p(w)

* One common approach is to define priors on w
— Normal distribution, zero mean, identity covariance

— “Pushes” parameters towards zero

* Corresponds to Regularization
— Helps avoid very large weights and overfitting

— More on this later in the semester

* M(C)AP estimate

n
x o) | xc
w" = argmaxin p(w) | I1 P(y | x7,w)
J:

Large weights — Overfitting

—

L

1 1 1

14+e 7 14+ e—2T 14+ e—100z

Large weights lead to overfitting:

11 26

00
1OO

Penalizing high weights can prevent overfitting...

— again, more on this later in the semester

M(C)AP — Regularization

* Regularization w2
pw) =[] e €2
SRV 2T
Tl‘ B .
arg mvf?x'” !p(W) H P(y’ |XJ,W)] Zero-mean Gaussian prior
J=1

d 2

n . . w:
* __ J)
w* = arg max Zl InP(y’ | x),w) - Zl 5,2
J= =

\)
|

| Penalizes large weights

Calculate Partial Derivative — A Beautiful Result

d 2

J J —
J: 1 —

: . . . W;
D H) - PO =1lxw)) -2,

J

al(w)
aWi B

Gradient Ascent for Logistic
Regression

Gradient ascent algorithm: iterate until change< ¢

w(()t+1) . w(()t) 4+ nZ[yj _P(Y' =1 | xj,w(t))]
j

Fori=1,...,d,

’wi(t_'_l) — wi(t)-i-nZ:cg[yj—P(Yj =1| xj,w(t))]
j \ Y J

n-

k 2

repeat |
thinks label Y should be

Predict what current weight

* Gradient ascent is simplest of optimization approaches

— e.g.,, Newton method, Conjugate gradient ascent, IRLS (see Bishop 4.3.3)

