Phylogeny Tree Algorithms

Jianlin Cheng, PhD

School of Electrical Engineering and Computer Science University of Central Florida

Free for academic use. Copyright @ Jianlin Cheng & original sources for some materials

Evolution

Evolution of new organisms is driven by

- Diversity
 - Different individuals carry different variants of the same basic blue print
- Mutations
 - The DNA sequence can be changed due to single base changes, deletion/insertion of DNA segments, etc.
- Selection bias

S. Moran and I. Wexler, 2005

Motivation

- To understand lineage of various species (evolutionary history)
- To understand how various functions evolve
- To inform multiple alignments
- To map virus strains (vaccine construction)
- To identify what is most conserved / important in some class of sequences

Phylogeny and Epidemiology

- Pathogen phylogeny used to assist epidemiological studies
- Example: HIV
 - rapid evolution of virus
 - use phylogeny to verify source of infection of particular individual
- Co-evolution of pathogens and hosts
- See Crandall, Evolution of HIV

Frank Olken, 2002

Historical Note

- Until mid 1950's phylogenies were constructed by experts based on their opinion (subjective criteria)
- Since then, focus on **objective** criteria for constructing phylogenetic trees
 - Thousands of articles in the last decades
- Important for many aspects of biology
 - Classification
 - Understanding biological mechanisms

S. Moran and I. Wexler

Morphological vs. Molecular

- Classical phylogenetic analysis: **morphological** features: number of legs, lengths of legs, etc.
- Modern biological methods allow to use **molecular** features
 - Gene sequences
 - Protein sequences
- Analysis based on homologous sequences (e.g., globins) in different species

Phylogeny Tree Basics

- Leaves represent things (genes, individuals, strains, species) being compared. Term taxon (taxa plural) is used to refer to this.
- Internal nodes are hypothetical ancestral units
- In a rooted tree, path from root represents an evolutionary path (root represents the common ancestor)
- An unrooted tree specifies relationships among things, but no evolutionary path.

Tree of Life

Source: Alberts et al

Primate Evolution

S. Moran and I. Wexler

T. Warnow, 2004

Example

Which Sequences ?

- DNA
 - Very sensitive, non-uniform mutation rates
- cDNA/RNA
 - Useful for more remote homologies
- Protein Sequences
 - Useful for most remote homologies, deep phylogenies, more uniform mutation rates, more character states

Frank Olken, 2002

Ribosomal RNA 16S Sequences

- These sequences exist in all organisms
- They are highly conserved
- Hence suitably for broad, very deep phylogeny studies
- Compiled for tens of thousands of organisms, mostly microbial
- Unsuited to fine grained phylogeny

Computational Process

- Get DNA/RNA/Protein Sequences
- Construct multiple sequence alignment
- Compute pairwise distances – (for distance methods)
- Build tree: topology + branch lengths
- Estimate reliability
- Visualize

Frank Olken, 2002

Phylogeny Tree Space

- The space of phylogeny tree is exponential.
- For n sequences, the number of unrooted tree is (2n-5)!!
- For n sequences, the number of rooted tree is (2n-3)!!

Rooted Tree

Unrooted Tree

Definition of a tree: Edge num: E Internal node num: I Leaf node num: L

Rule 1: E = I + L - 1 (why?)

Rooted Phylogeny Tree

Un-Rooted Tree

Total number of unrooted tree

Given n species (n >= 3), there are (2i-5)!!
 Unrooted bifurcating trees.

#leaf node	#edge #	#tree
3	3	1
4	5	1*3
5	7	1*3*5
•••		
n	2n-3	1*3*5**2n-5

Total number of rooted tree for n leaf nodes: Total number of unrooted tree * total number of edge = (2n-5)!! * (2n-3) = (2n-3)!!

Number of Rooted and Unrooted Trees

	Unrooted	rooted
3	1	3
4	3	15
5	15	105
6	105	945
7	945	10395
8	10395	135135
9	135135	2027025
10	2027025	34459425

Phylogeny Tree Algorithms

- Distance-Based (UPGMA, Neighbor Join)
- Maximum Parsimony (character-based)
- Maximum Likelihood (character-based)

Distance vs. Character State Methods

- Distance Methods
 - UPGMA, Neighbor Joining, Min. Evol.,
 - Requires distance measures between sequences
 - Suitable for continuous characters
- Character State Methods
 - Max. parsimony, Max. Likelihood, ...
 - Requires discrete characters

Frank Olken, 2002

How to choose methods

- Very similar sequences: Maximum Parsimony (time intensive)
- Medium similar sequences: distance based method (fast, O(n²))
- Very dissimilar sequences: Maximum Likelihood method (very time intensive)

Maximum Parsimony Method

- Predict the evolutionary tree that minimizes the number of steps required to generate the observed variation in the sequences.
- Find a tree that explains data with a minimal number of changes.
- Appropriate for very similar sequences and a small number of sequences
- Time Consuming (try to examine all possible trees)
- PHYLIP and PAUP offer maximum parsimony method

Select Informative Sites

Таха	Selected Se	quence Po	sitions (site:	s) and chara	acter			
	1	2	3	4	5	6	7	8
1	А	A	G	A	G	Т	G	С
2	A	G	С	С	G	Т	G	С
3	A	G	А	Т	A	Т	С	С
4	А	G	A	G	А	Т	С	С

Sites 1,6,8: not informative Site 2: not informative (doesn't favor any tree) Site 3: not informative (doesn't favor any tree) Site 4: not informative (doesn't favor any tree) **Sites 5, 7: informative**

Rule of thumb: to be informative, a character must appear in at least two taxa and there are at least two characters.

Example

Example

	Tava	Colootod Com	uanaa Daaiti	(-it)	and share	atax			
	таха	Selected Seq	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	ons (sites) 3	and chara	cter 5	6	7	
	1	Å	Ā	G	Ā	Ğ	т	Ġ	č
	2	A	G	Ċ	C	Ğ	Т	G	Ċ
	3	A	G	А	Т	А	Т	С	С
	4	A	G	A	G	A	Т	С	C
							Adapted	l from Li a	nd Graur 1991
T	ree 1			Tre	ee 2			Tree (3
Taxa 1 G	Ç G —●-	Taxa 3 C	Taxa G	1 C—	Ta —C	xa 2 ⁄ G	Taxa 1 G	Ç−−−−	Taxa 2 G
G Taxa 2		C Taxa 4	C Taxa	3	T	C axa 4	C Taxa 4		C Taxa 3
L	.ength	n = 1		Leng	gth = 2		Ι	Length	=2

Comments

- For a small number of sequences, exhaustive search is ok. (n=10, about 2 million trees)
- For many sequences, exhaustive search is very time consuming (NP-Complete). Branch-Bound method or even heuristic methods must be used. (PAUP provides both options)
- Maximum parsimony tree provides an explicit evolutionary model
- The rates of changes along all branches of the tree are assumed to be equal
- PHYLIP: DNAPENNY (branch-bound to analyze up to 11-12 sequences), DNACOMP performs phylogenetic analysis using the compatibility criterion (find a tree that supports the largest number of sites). PROTPARS (for protein parsimony tree)

Distance-Based Method

- Goal is to generate a tree in which similar sequences with short distance are closer and the sum of branch lengths of two nodes is equal to their distance.
- ClustalW (neighbor-join method)
- PAUP also has distance method
- PHYLIP: DNADIST, PROTDIST (PAM) to generate distance matrix

UPGMA

- UPGMA: unweighted pair group method with arithmetic mean.
- Assume a molecular clock (constant evolution rate)
- Produce a rooted tree
- Ultrametric condition: for any three taxa (a,b,c), $d_{ac} \le max(d_{ab}, d_{bc})$.

UPGMA condition

dAB <= max(dAC,dBC) dAC <= max(dAB,dBC) dBC <= max(dAB, dAC)

In another words: two greatest distance must be equal. Or: constant evolutionary rate for all branches.

UPGMA Algorithm

Initialization: Define T to be the set of leaf nodes, one for each sequence. Height of each node is 0. Let L = T

Repeat

- Select closest two nodes (A,B) and create parent node K for them. Join A, B and K respectively. Set the height of node K to $d_{AB}/2$. Set branch length between K and A = height K height A, set branch length between K and B = height K height B.
- Remove A, B from L and add K into L. Re-compute the distance between K and other nodes in L. Distance between K and other nodes is average distance of leaf sequences below K and the other node.

Until there is only one node

Example of UPGMA (perfect)

	А	В	C	D	E
А	-	20	26	26	26
В		-	26	26	26
С			-	16	16
D				-	10
E					-

		♦		
	A	В	С	DE
А	-	20	26	26
В		-	26	26
С			-	16
DE				-

Step 1: Select D and E

	A	В	C	DE
А	-	20	26	26
В		-	26	26
С			-	16
DE				-
		1		
		•		
	А	В	DEC	
А	-	20	26	
В		-	26	
DEC			-	

Step 2: Select (DE) and C

 $dist(DEC,A) = (d_{DA} + d_{EA} + d_{CA})/3 = 26$ $dist(DEC,B) = (d_{DB} + d_{EB} + d_{CB})/3 = 26$

dist(DEC,AB)= $(d_{DA}+d_{DB}+d_{EA}+d_{EB}+d_{CA}+d_{CB})/6$ = 26

	AB	DEC
AB	-	26
DEC		-

Step 4: select (A,B), (D,E,C)

Example of UPGMA (imperfect)

	А	В	С	D	Е
А	-	22	39	39	41
В		-	41	41	43
С			-	18	20
D				-	10
E					-

		♦		
	А	В	С	DE
А	-	22	39	40
В		-	41	42
С			-	19
DE				-

Step 1: Select D and E

Step 2: Select (DE) and C

	А	В	DEC
А	-	22	39.7
В		-	41.7
DEC			-

dist(DEC,A) = $(d_{DA}+d_{EA}+d_{CA})/3 = 39.7$ dist(DEC,B) = $(d_{DB}+d_{EB}+d_{CB})/3 = 41.7$

 \equiv

Step 4: select (A,B), (D,E,C)

Neighbor-Join Method

- Do not assume molecular clock
- Assume additivity of distance matrix (ideal)
- Work for non-additivity of distance matrix (non-ideal situation)
- Most reliable when the branch lengths of trees are allowed to vary
- Goal is to find a tree that minimize the square errors of pairwise distances.

Additive Condition

Given a L*L distance matrix M, d(i,i) = 0, d(i,j) > 0 for $i \neq j$ d(i,j) = d(j,i)For all i,j,k it holds that $d(i,k) \leq d(i,j) + d(j,k)$

Additive Condition (cont)

We say that the distance matrix M with L objects is **additive** if there is a tree T, *L* of its nodes correspond to the *L* objects, with <u>positive</u> weights on the edges, such that for all *i*, *j*, $d(i,j) = d_T(i,j)$, the length of the path from *i* to *j* in T.

Three objects sets always additive:

For L=3: There is always a tree with one internal node.

•<u>Theorem</u>: A distance matrix M of *L* objects is additive iff *any* subset of four objects can be labeled *i*,*j*,*k*,*l* so that:

- • $d(i,k) + d(j,l) = d(i,l) + d(k,j) \ge d(i,j) + d(k,l)$
- •We call $\{\{i,j\},\{k,l\}\}$ the "split" of $\{i,j,k,l\}$.

Neighbor Join Algorithm

• Initialization:

Define T to be the set of leaf nodes, one for each sequence. And let L = T

• Iteration:

Pick a pair i, j for which D_{ij} is minimal.

 $D_{ij} = d_{ij} - (r_i + r_j), r_i = \sum_{ik} \frac{d_{ik}}{(|L|-2)}, r_i$: average distance from i to all other sequences (k) except j.

Remove i, j from L.

Define a new node k, for other node m in L, $d_{km}=1/2*(d_{im}+d_{jm}-d_{ij}) = (d_{im}+d_{jm})/2 - d_{ij}/2$ Add k to T with edge of length $d_{ik} = \frac{1}{2}(d_{ij}+r_i-r_j)$, $d_{jk}=d_{ij}-d_{jk}$ Join k to i and j respectively, remove i,j from L and add k into L

• Termination

When L consists of only two nodes (i,j). Add one edge between i and j with length d_{ij} .

Example of Neighbor Join

	А	В	С	D
А	-	3	7	8
В		-	6	7
С			-	3
D				-

Satisfy additive condition

$$\begin{split} D_{AB} &= 3 - ((7+8)/2 + (6+7)/2) = -11 \\ D_{AD} &= 8 - ((3+7)/2 + (3+7)/2) = -2 \\ D_{AC} &= 7 - ((3+8)/2 + (6+3)/2) = -3 \\ D_{BC} &= 6 - ((3+7)/2 + (7+3)/2) = -4 \\ D_{BD} &= 7 - ((3+6)/2 + (8+3)/2) = -3 \\ D_{CD} &= 3 - ((7+6)/2 + (8+7)/2) = -11 \end{split}$$

Step 1: Select A and B

	E	С	D
Е		5	6
С			3
D			

$$D_{CD} = d_{CD} - (r_{C} + r_{D}) = 3 - (5 + 6) = -8$$

$$D_{CE} = d_{CE} - (r_{C} + r_{E}) = 5 - (3 + 6) = -4$$

$$D_{DE} = d_{DE} - (r_{D} + r_{E}) = 6 - (3 + 5) = -2$$

$$\begin{array}{c} 1 \\ F \\ 2 \\ D \\ \end{array}$$

$$d_{FE} = (d_{CE} + d_{DE} - d_{CD})/2 = (5 + 6 - 3)/2 = 4$$

$$d_{FC} = (d_{CD} + r_{C} - r_{D})/2 = (3 + 5 - 6)/2 = 1$$

$$d_{FD} = d_{CD} - d_{FC} = 2$$

Now, verify if the sum of branch lengths matches with sequence distances.

Additive means distance between species = distance summed along internal branches

S. Moran and I. Wexler

Comments

- Given a distance matrix constituting an additive metric, the topology of the corresponding additive tree is unique.
- Can run NJ algorithm on non-additive matrix. In that case, tree may not be unique.

How to compute distance from alignment

- Count mismatch
- Count both mismatch and gaps
- Use substitution matrix to generate similarity scores, then convert it to distance

Normalize score into the range [0,1]: S = (S_{real} – S_{rand}) / (S_{ident} – S_{rand}). Then 1 – normalized score is distance. S_{real} is the alignment score of sequence A and B. S_{rand} is the alignment score of two random sequences generated from A and B. S_{ident} is average alignment score of aligning A with A, B with B.

Maximum Likelihood Method

- Use probability calculations to find a tree that best accounts for variation in a set of sequences.
- Analysis is performed on each column of a multiple sequence alignment.
- All possible trees are considered. Only can be used for a small number of sequences (at most 10 ?)
- PAUP version 4 and up has maximum likelihood function
- PHYLIP (DNAML and DNAMLK (molecular clock))

Maximum Likelihood Estimaton - Assumptions

- Characters (nucleotide positions) evolve independently
- Mutation Rate variation:
 - Molecular clock ==> uniform rates across positions and branches
 - We can allow rate to vary by position (usually assume Gamma distribution)
 - Requires that estimate more parameters

Example of ML

Sequence A: ACGCGTTGGG Sequence B: ACGCGTTGGG Sequence C: ACGCAATGAA Sequence D: ACACAGGAA

Look at one column (5 possible columns), one tree (15 Possible trees), one assignment of nucleotides (64 possible combinations)

Find a best tree that with maximum probability.

Advantages and Disadvantages of ML Method

- Explicit Statistical Model
- Likelihood
- Efficient use of data
- Very expensive to compute (use heuristics)

Popular MLE Codes

- dnaML Joe Felsenstein (U. Washington)
- fastdnaML Gary Olsen (UIUC)
- PAUP Dave Swofford (Florida State U.)
- PAML

Frank Olken, 2002

Reliability of Tree Construction

• Boostraping

- Given an multiple sequence alignment, randomly sample n-columns with replacement and construct a tree
- Construct a lot of trees as above
- Check the relation between two sequences. If their relationship (split, branch) is stable (appearing in the most trees), then the tree more likely close to the true tree.

Web Resources

- Felsenstein's Phylogenetic Program Directory
 - http://evolution.genetics.washington.edu/phylip.html
- UT Austin Phylogenetics Lab
 - http://kristin.csres.utexas.edu/
- Woese Lab
 - http://www.life.uiuc.edu/micro/woese.html
- Tree-of-life web site
 - http://tolweb.org/tree/phylogeny.html

Frank Olken, 2002

Ten Topics

- 1. Introduction to Molecular Biology and Bioinformatics
- 2. Pairwise Sequence Alignment Using Dynamic Programming
- 3. Practical Sequence/Profile Alignment Using Fast Heuristic Methods (BLAST and PSI-BLAST)
- 4. Multiple Sequence Alignment
- 5. Gene Identification
- 6. Phylogenetic Analysis
- 7. Protein Structure Analysis and Prediction
- 8. RNA Secondary Structure Prediction
- 9. Clustering and Classification of Gene Expression Data
- 10. Search and Mining of Biological Databases, Databanks, and Literature