# Phylogeny Tree Algorithms 

Jianlin Cheng, PhD

School of Electrical Engineering and Computer Science University of Central Florida


2006

Free for academic use. Copyright @ Jianlin Cheng \& original sources for some materials

## Evolution

Evolution of new organisms is driven by

- Diversity
- Different individuals carry different variants of the same basic blue print
- Mutations
- The DNA sequence can be changed due to single base changes, deletion/insertion of DNA segments, etc.
- Selection bias

S. Moran and I. Wexler, 2005


## Motivation

- To understand lineage of various species (evolutionary history)
- To understand how various functions evolve
- To inform multiple alignments
- To map virus strains (vaccine construction)
- To identify what is most conserved / important in some class of sequences


## Phylogeny and Epidemiology

- Pathogen phylogeny used to assist epidemiological studies
- Example: HIV
- rapid evolution of virus
- use phylogeny to verify source of infection of particular individual
- Co-evolution of pathogens and hosts
- See Crandall, Evolution of HIV


## Historical Note

- Until mid 1950's phylogenies were constructed by experts based on their opinion (subjective criteria)
- Since then, focus on objective criteria for constructing phylogenetic trees
- Thousands of articles in the last decades
- Important for many aspects of biology
- Classification
- Understanding biological mechanisms
S. Moran and I. Wexler


## Morphological vs. Molecular

- Classical phylogenetic analysis: morphological features: number of legs, lengths of legs, etc.
- Modern biological methods allow to use molecular features
- Gene sequences
- Protein sequences
- Analysis based on homologous sequences (e.g., globins) in different species


## Phylogeny Tree Basics

- Leaves represent things (genes, individuals, strains, species) being compared. Term taxon (taxa plural) is used to refer to this.
- Internal nodes are hypothetical ancestral units
- In a rooted tree, path from root represents an evolutionary path (root represents the common ancestor)
- An unrooted tree specifies relationships among things, but no evolutionary path.


## Tree of Life



## Primate Evolution


S. Moran and I. Wexler

## Phylogeny


T. Warnow, 2004

## Example

- Seq. $\mathrm{A}=\mathrm{A} A \mathrm{CCGGTT}$
- Seq. $B=A A C C G G T G$
- Seq. C $=\mathrm{A}$ C C C G G T C
- Seq. $\mathrm{D}=\mathrm{A}$ C C C G G T A


Rooted Tree

## Which Sequences ?

- DNA
- Very sensitive, non-uniform mutation rates
- cDNA/RNA
- Useful for more remote homologies
- Protein Sequences
- Useful for most remote homologies, deep phylogenies, more uniform mutation rates, more character states


## Ribosomal RNA 16S Sequences

- These sequences exist in all organisms
- They are highly conserved
- Hence suitably for broad, very deep phylogeny studies
- Compiled for tens of thousands of organisms, mostly microbial
- Unsuited to fine grained phylogeny


## Computational Process

- Get DNA/RNA/Protein Sequences
- Construct multiple sequence alignment
- Compute pairwise distances
- (for distance methods)
- Build tree: topology + branch lengths
- Estimate reliability
- Visualize


## Phylogeny Tree Space

- The space of phylogeny tree is exponential.
- For $n$ sequences, the number of unrooted tree is ( $2 \mathrm{n}-5$ )!!
- For $n$ sequences, the number of rooted tree is $(2 n-3)!!$


Rooted Tree


# Definition of a tree: <br> Edge num: E Internal node num: I <br> Leaf node num: L 

$$
\text { Rule 1: } \quad \mathrm{E}=\mathrm{I}+\mathrm{L}-1 \quad \text { (why?) }
$$

## Rooted Phylogeny Tree



## Un-Rooted Tree



## Total number of unrooted tree

- Given $n$ species $(n>=3)$, there are ( $2 i-5$ )!! Unrooted bifurcating trees.

| \#leaf node | \#edge \#tree |  |
| :--- | :---: | :--- |
| 3 | 3 | 1 |
| 4 | 5 | $1 * 3$ |
| 5 | 7 | $1 * 3 * 5$ |
| $\ldots$ |  |  |
| $n$ | $2 n-3$ | $1 * 3 * 5 * \ldots * 2 n-5$ |



## Total number of rooted tree



Total number of rooted tree for $n$ leaf nodes:
Total number of unrooted tree * total number of edge

$$
=(2 n-5)!!*(2 n-3)=(2 n-3)!!
$$

## Number of Rooted and Unrooted Trees

|  | Unrooted | rooted |
| :--- | :--- | :--- |
| 3 | 1 | 3 |
| 4 | 3 | 15 |
| 5 | 15 | 105 |
| 6 | 105 | 945 |
| 7 | 945 | 10395 |
| 8 | 10395 | 135135 |
| 9 | 135135 | 2027025 |
| 10 | 2027025 | 34459425 |

## Phylogeny Tree Algorithms

- Distance-Based (UPGMA, Neighbor Join)
- Maximum Parsimony (character-based)
- Maximum Likelihood (character-based)


## Distance vs. Character State Methods

- Distance Methods
- UPGMA, Neighbor Joining, Min. Evol., ....
- Requires distance measures between sequences
- Suitable for continuous characters
- Character State Methods
- Max. parsimony, Max. Likelihood, ...
- Requires discrete characters


## How to choose methods

- Very similar sequences: Maximum Parsimony (time intensive)
- Medium similar sequences: distance based method (fast, $\mathrm{O}\left(\mathrm{n}^{2}\right)$ )
- Very dissimilar sequences: Maximum Likelihood method (very time intensive)


## Maximum Parsimony Method

- Predict the evolutionary tree that minimizes the number of steps required to generate the observed variation in the sequences.
- Find a tree that explains data with a minimal number of changes.
- Appropriate for very similar sequences and a small number of sequences
- Time Consuming (try to examine all possible trees)
- PHYLIP and PAUP offer maximum parsimony method


## Select Informative Sites

| Taxa | Selected Sequence Positions (sites) and character |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
| 1 | A | A | G | A | G | T | G | C |
| 2 | A | G | C | C | G | T | G | C |
| 3 | A | G | A | T | A | T | C | 0 |
| 4 | A | G | A | G | A | T | 0 | C |

Sites 1,6,8: not informative
Site 2: not informative (doesn't favor any tree)
Site 3: not informative (doesn't favor any tree)
Site 4: not informative (doesn't favor any tree)
Sites 5, 7: informative
Rule of thumb: to be informative, a character must appear in at least two taxa and there are at least two characters.

## Example



## Tree 1



Length $=1$
Length $=2$

Tree 3


Length $=2$

## Example



## Tree 1



Length $=1$
Tree 2
Tree 3


Length $=2$

Taxa 4
Taxa 3

## Comments

- For a small number of sequences, exhaustive search is ok. ( $\mathrm{n}=10$, about 2 million trees)
- For many sequences, exhaustive search is very time consuming (NP-Complete). Branch-Bound method or even heuristic methods must be used. (PAUP provides both options)
- Maximum parsimony tree provides an explicit evolutionary model
- The rates of changes along all branches of the tree are assumed to be equal
- PHYLIP: DNAPENNY (branch-bound to analyze up to 11-12 sequences), DNACOMP performs phylogenetic analysis using the compatibility criterion (find a tree that supports the largest number of sites). PROTPARS (for protein parsimony tree)


## Distance-Based Method

- Goal is to generate a tree in which similar sequences with short distance are closer and the sum of branch lengths of two nodes is equal to their distance.
- ClustalW (neighbor-join method)
- PAUP also has distance method
- PHYLIP: DNADIST, PROTDIST (PAM) to generate distance matrix


## UPGMA

- UPGMA: unweighted pair group method with arithmetic mean.
- Assume a molecular clock (constant evolution rate)
- Produce a rooted tree
- Ultrametric condition: for any three taxa $(\mathrm{a}, \mathrm{b}, \mathrm{c}), \mathrm{d}_{\mathrm{ac}}<=\max \left(\mathrm{d}_{\mathrm{ab}}, \mathrm{d}_{\mathrm{bc}}\right)$.


## UPGMA condition



In another words: two greatest distance must be equal. Or: constant evolutionary rate for all branches.

## UPGMA Algorithm

Initialization: Define $T$ to be the set of leaf nodes, one for each sequence. Height of each node is 0 . Let $\mathrm{L}=\mathrm{T}$

## Repeat

- Select closest two nodes (A,B) and create parent node K for them. Join A, B and K respectively. Set the height of node K to $\mathrm{d}_{\mathrm{AB}} / 2$. Set branch length between K and $\mathrm{A}=$ height K - height A , set branch length between K and $\mathrm{B}=$ height K - height B .
- Remove A, B from L and add K into L. Re-compute the distance between K and other nodes in L. Distance between K and other nodes is average distance of leaf sequences below K and the other node.
Until there is only one node


## Example of UPGMA (perfect)

|  | A | B | C | D | E |
| :--- | :--- | :--- | :--- | :--- | :--- |
| A | - | 20 | 26 | 26 | 26 |
| B |  | - | 26 | 26 | 26 |
| C |  |  | - | 16 | 16 |
| D |  |  |  | - | 10 |
| E |  |  |  |  | - |

Step 1: Select D and E


|  | A | B | C | DE |
| :--- | :--- | :--- | :--- | :--- |
| A | - | 20 | 26 | 26 |
| B |  | - | 26 | 26 |
| C |  |  | - | 16 |
| DE |  |  |  | - |

Step 2: Select (DE) and C

|  | A | B | DEC |
| :--- | :--- | :--- | :--- |
| A | - | 20 | 26 |
| B |  | - | 26 |
| DEC |  |  | - |


$\operatorname{dist}($ DEC, $A)=\left(d_{D A}+d_{E A}+d_{C A}\right) / 3=26$
$\operatorname{dist}(\mathrm{DEC}, \mathrm{B})=\left(\mathrm{d}_{\mathrm{DB}}+\mathrm{d}_{\mathrm{EB}}+\mathrm{d}_{\mathrm{CB}}\right) / 3=26$

|  | A | B | DEC |
| :--- | :--- | :--- | :--- |
| A | - | 20 | 26 |
| B |  | - | 26 |
| DEC |  |  | - |
|  |  |  |  |

Step 3: select A, B

$\operatorname{dist}(\mathrm{DEC}, \mathrm{AB})=\left(\mathrm{d}_{\mathrm{DA}}+\mathrm{d}_{\mathrm{DB}}+\mathrm{d}_{\mathrm{EA}}+\mathrm{d}_{\mathrm{EB}}+\mathrm{d}_{\mathrm{CA}}+\mathrm{d}_{\mathrm{CB}}\right) / 6$
$=26$

|  | AB | DEC |
| :--- | :--- | :--- |
| AB | - | 26 |
| DEC |  | - |

Step 4: select (A,B), (D,E,C)


## Example of UPGMA (imperfect)

|  | A | B | C | D | E |
| :--- | :--- | :--- | :--- | :--- | :--- |
| A | - | 22 | 39 | 39 | 41 |
| B |  | - | 41 | 41 | 43 |
| C |  |  | - | 18 | 20 |
| D |  |  |  | - | 10 |
| E |  |  |  |  | - | |  |  |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- |
|  | A | B | C | DE |  |
| A | - | 22 | 39 | 40 |  |
| B |  | - | 41 | 42 |  |
| C |  |  | - | 19 |  |
| DE |  |  |  | - |  |

Step 1: Select D and E


|  | A | B | C | DE |
| :--- | :--- | :--- | :--- | :--- |
| A | - | 22 | 39 | 40 |
| B |  | - | 41 | 42 |
| C |  |  | - | 19 |
| DE |  |  |  | - |
|  |  |  |  |  |
|  |  |  |  |  |
| A | - | 22 | 39.7 |  |
| B |  | - | 41.7 |  |
| DEC |  |  | - |  |

Step 2: Select (DE) and C

$\operatorname{dist}(\mathrm{DEC}, \mathrm{A})=\left(\mathrm{d}_{\mathrm{DA}}+\mathrm{d}_{\mathrm{EA}}+\mathrm{d}_{\mathrm{CA}}\right) / 3=39.7$
$\operatorname{dist}(\mathrm{DEC}, \mathrm{B})=\left(\mathrm{d}_{\mathrm{DB}}+\mathrm{d}_{\mathrm{EB}}+\mathrm{d}_{\mathrm{CB}}\right) / 3=41.7$


|  | AB | DEC |
| :--- | :--- | :--- |
| AB | - | 40.7 |
| DEC |  | - |

$20.35-9.5=10.85$
$20.35-11=9.35$
Step 4: select (A,B), (D,E,C)


## Neighbor-Join Method

- Do not assume molecular clock
- Assume additivity of distance matrix (ideal)
- Work for non-additivity of distance matrix (non-ideal situation)
- Most reliable when the branch lengths of trees are allowed to vary
- Goal is to find a tree that minimize the square errors of pairwise distances.


## Additive Condition

Given a $\mathrm{L} * \mathrm{~L}$ distance matrix M ,
$\mathrm{d}(\mathrm{i}, \mathrm{i})=0$,
$d(i, j)>0$ for $i \neq j$
$\mathrm{d}(\mathrm{i}, \mathrm{j})=\mathrm{d}(\mathrm{j}, \mathrm{i})$
For all $\mathrm{i}, \mathrm{j}, \mathrm{k}$ it holds that $\mathrm{d}(\mathrm{i}, \mathrm{k})<=\mathrm{d}(\mathrm{i}, \mathrm{j})+\mathrm{d}(\mathrm{j}, \mathrm{k})$


## Additive Condition (cont)

We say that the distance matrix M with L objects is additive if there is a tree $\mathrm{T}, L$ of its nodes correspond to the $L$ objects, with positive weights on the edges, such that for all $i, j, d(i, j)=d_{T}(i, j)$, the length of the path from $i$ to $j$ in T .

## Three objects sets always additive:

For $\mathrm{L}=3$ : There is always a tree with one internal node.


$$
\begin{aligned}
d(i, j) & =a+b \\
d(i, k) & =a+c \\
d(j, k) & =b+c
\end{aligned}
$$

Thus

$$
c=d(k, m)=\frac{1}{2}[d(i, k)+d(j, k)-d(i, j)] \geq 0
$$

## Additive Tree

## 1



For four point condition: $\mathrm{d}(\mathrm{i}, \mathrm{k})+\mathrm{d}(\mathrm{j}, \mathrm{l})=\mathrm{d}(\mathrm{i}, \mathrm{l})+\mathrm{d}(\mathrm{k}, \mathrm{j})>=\mathrm{d}(\mathrm{i}, \mathrm{j})+\mathrm{d}(\mathrm{k}, \mathrm{l})$
-Theorem: A distance matrix M of $L$ objects is additive iff any subset of four objects can be labeled $i, j, k, l$ so that:
$\cdot d(i, k)+d(j, l)=d(i, l)+d(k, j) \geq d(i, j)+d(k, l)$
-We call $\{\{i, j\},\{k, l\}\}$ the "split" of $\{i, j, k, l\}$.

## Neighbor Join Algorithm

- Initialization:

Define T to be the set of leaf nodes, one for each sequence. And let $\mathrm{L}=\mathrm{T}$

- Iteration:

Pick a pair $\mathrm{i}, \mathrm{j}$ for which $\mathrm{D}_{\mathrm{ij}}$ is minimal.
$\mathrm{D}_{\mathrm{ij}}=\mathrm{d}_{\mathrm{ij}}-\left(\mathrm{r}_{\mathrm{i}}+\mathrm{r}_{\mathrm{j}}\right), \mathrm{r}_{\mathrm{i}}=\sum d_{i \mathrm{k}} /(|\mathrm{L}|-2), \mathrm{r}_{\mathrm{i}}$ : average distance from i to all other sequences (k) except j .
Remove $\mathrm{i}, \mathrm{j}$ from L .
Define a new node k , for other node m in $\mathrm{L}, \mathrm{d}_{\mathrm{km}}=1 / 2 *\left(\mathrm{~d}_{\mathrm{im}}+\mathrm{d}_{\mathrm{jm}}-\mathrm{d}_{\mathrm{ij}}\right)=$ $\left(\mathrm{d}_{\mathrm{im}}+\mathrm{d}_{\mathrm{jm}}\right) / 2-\mathrm{d}_{\mathrm{ij}} / 2$
Add k to T with edge of length $\mathrm{d}_{\mathrm{ik}}=1 / 2\left(\mathrm{~d}_{\mathrm{ij}}+\mathrm{r}_{\mathrm{i}}-\mathrm{r}_{\mathrm{j}}\right), \mathrm{d}_{\mathrm{jk}}=\mathrm{d}_{\mathrm{ij}}-\mathrm{d}_{\mathrm{jk}}$
Join $k$ to $i$ and $j$ respectively, remove $i, j$ from $L$ and add $k$ into $L$

- Termination

When $L$ consists of only two nodes ( $\mathrm{i}, \mathrm{j}$ ). Add one edge between i and j with length $\mathrm{d}_{\mathrm{ij}}$.

## Example of Neighbor Join

|  | A | B | C | D |
| :--- | :--- | :--- | :--- | :--- |
| A | - | 3 | 7 | 8 |
| B |  | - | 6 | 7 |
| C |  |  | - | 3 |
| D |  |  |  | - |

Satisfy additive condition

$$
\begin{aligned}
& \mathrm{D}_{\mathrm{AB}}=3-((7+8) / 2+(6+7) / 2)=-11 \\
& \mathrm{D}_{\mathrm{AD}}=8-((3+7) / 2+(3+7) / 2)=-2 \\
& \mathrm{D}_{\mathrm{AC}}=7-((3+8) / 2+(6+3) / 2)=-3 \\
& \mathrm{D}_{\mathrm{BC}}=6-((3+7) / 2+(7+3) / 2)=-4 \\
& \mathrm{D}_{\mathrm{BD}}=7-((3+6) / 2+(8+3) / 2)=-3 \\
& \mathrm{D}_{\mathrm{CD}}=3-((7+6) / 2+(8+7) / 2)=-11
\end{aligned}
$$

Step 1: Select A and B


$$
\mathrm{d}_{\mathrm{EC}}=\left(\mathrm{d}_{\mathrm{AC}}+\mathrm{d}_{\mathrm{BC}}-\mathrm{d}_{\mathrm{AB}}\right) / 2=(7+6-3) / 2=5
$$

$$
\mathrm{d}_{\mathrm{ED}}=\left(\mathrm{d}_{\mathrm{AD}}+\mathrm{d}_{\mathrm{BD}}-\mathrm{d}_{\mathrm{AB}}\right) / 2=(8+7-3) / 2=6
$$

$$
\mathrm{d}_{\mathrm{AE}}=\left(\mathrm{d}_{\mathrm{AB}}+\mathrm{r}_{\mathrm{A}}-\mathrm{r}_{\mathrm{B}}\right) / 2=(3+1) / 2=2
$$

$$
\mathrm{d}_{\mathrm{BE}}=\mathrm{d}_{\mathrm{AB}}-\mathrm{d}_{\mathrm{AE}}=3-2=1
$$

|  | E | C | D |
| :--- | :--- | :--- | :--- |
| E |  | 5 | 6 |
| C |  |  | 3 |
| D |  |  |  |

$$
\begin{aligned}
& \mathrm{D}_{\mathrm{CD}}=\mathrm{d}_{\mathrm{CD}}-\left(\mathrm{r}_{\mathrm{C}}+\mathrm{r}_{\mathrm{D}}\right)=3-(5+6)=-8 \\
& \mathrm{D}_{\mathrm{CE}}=\mathrm{d}_{\mathrm{CE}}-\left(\mathrm{r}_{\mathrm{C}}+\mathrm{r}_{\mathrm{E}}\right)=5-(3+6)=-4 \\
& \mathrm{D}_{\mathrm{DE}}=\mathrm{d}_{\mathrm{DE}}^{-}\left(\mathrm{r}_{\mathrm{D}}+\mathrm{r}_{\mathrm{E}}\right)=6-(3+5)=-2
\end{aligned}
$$



$$
\begin{aligned}
& \mathrm{d}_{\mathrm{FE}}=\left(\mathrm{d}_{\mathrm{CE}}+\mathrm{d}_{\mathrm{DE}}-\mathrm{d}_{\mathrm{CD}}\right) / 2=(5+6-3) / 2=4 \\
& \mathrm{~d}_{\mathrm{FC}}=\left(\mathrm{d}_{\mathrm{CD}}+\mathrm{r}_{\mathrm{C}}-\mathrm{r}_{\mathrm{D}}\right) / 2=(3+5-6) / 2=1 \\
& \mathrm{~d}_{\mathrm{FD}}=\mathrm{d}_{\mathrm{CD}}-\mathrm{d}_{\mathrm{FC}}=2
\end{aligned}
$$

Join E and F with length 4


Now, verify if the sum of branch lengths matches with sequence distances.

Additive means distance between species $=$ distance summed along internal branches

S. Moran and I. Wexler

## Comments

- Given a distance matrix constituting an additive metric, the topology of the corresponding additive tree is unique.
- Can run NJ algorithm on non-additive matrix. In that case, tree may not be unique.


## How to compute distance from alignment

- Count mismatch
- Count both mismatch and gaps
- Use substitution matrix to generate similarity scores, then convert it to distance Normalize score into the range [0,1]: $\mathrm{S}=\left(\mathrm{S}_{\text {real }}-\right.$ $\left.S_{\text {rand }}\right) /\left(S_{\text {ident }}-S_{\text {rand }}\right)$. Then 1 - normalized score is distance. $\mathrm{S}_{\text {real }}$ is the alignment score of sequence A and B. $S_{\text {rand }}$ is the alignment score of two random sequences generated from A and B. $S_{\text {ident }}$ is average alignment score of aligning A with A, B with B.


## Maximum Likelihood Method

- Use probability calculations to find a tree that best accounts for variation in a set of sequences.
- Analysis is performed on each column of a multiple sequence alignment.
- All possible trees are considered. Only can be used for a small number of sequences (at most 10 ?)
- PAUP version 4 and up has maximum likelihood function
- PHYLIP (DNAML and DNAMLK (molecular clock))


## Maximum Likelihood Estimaton - Assumptions

- Characters (nucleotide positions) evolve independently
- Mutation Rate variation:
- Molecular clock $==>$ uniform rates across positions and branches
- We can allow rate to vary by position (usually assume Gamma distribution)
- Requires that estimate more parameters


## Example of ML

Sequence A: ACGCGTTGGG
Sequence B: ACGCGTTGGG
Sequence C: ACGCAATGAA
Sequence D: ACACAGGGAA
Look at one column (5 possible columns), one tree ( 15
Possible trees), one assignment of nucleotides (64 possible combinations)


Find a best tree that with maximum probability.

## Advantages and Disadvantages of ML Method

- Explicit Statistical Model
- Likelihood
- Efficient use of data
- Very expensive to compute (use heuristics)


## Popular MLE Codes

- dnaML - Joe Felsenstein (U. Washington)
- fastdnaML - Gary Olsen (UIUC)
- PAUP - Dave Swofford (Florida State U.)
- PAML


## Reliability of Tree Construction

- Boostraping
- Given an multiple sequence alignment, randomly sample n-columns with replacement and construct a tree
- Construct a lot of trees as above
- Check the relation between two sequences. If their relationship (split, branch) is stable (appearing in the most trees), then the tree more likely close to the true tree.


## Web Resources

- Felsenstein's Phylogenetic Program Directory
- http://evolution.genetics.washington.edu/phylip.html
- UT Austin Phylogenetics Lab
- http://kristin.csres.utexas.edu/
- Woese Lab
- http://www.life.uiuc.edu/micro/woese.html
- Tree-of-life web site
- http://tolweb.org/tree/phylogeny.html


## Ten Topics

- 1. Introduction to Molecular Biology and Bioinformatics
- 2. Pairwise Sequence Alignment Using Dynamic Programming
- 3. Practical Sequence/Profile Alignment Using Fast Heuristic Methods (BLAST and PSI-BLAST)
- 4. Multiple Sequence Alignment
- 5. Gene Identification
- 6. Phylogenetic Analysis
- 7. Protein Structure Analysis and Prediction
- 8. RNA Secondary Structure Prediction
- 9. Clustering and Classification of Gene Expression Data
- 10. Search and Mining of Biological Databases, Databanks, and Literature

