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Prokaryote gene structure

Promoter : RNA polymerase binding consisting

of a number of subunits

 minus 10 site:
— Pribnow box (TATAAT)
— Sigma-specific

* minus 35 site;
— Sigma-specific

Transcription start site

Coding region (ORF): aa seguence in protein
— Trandational start site (AUG)

— Trandational stop site (UAA, UAG,UGA)

Transcription stop site

Ambuj Singh, 2005



Prokaryote Gene
Structure

Promoter CDS Terminator

UTR UTR
- Genomic DNA
l transcription

I MRNA

/ l trangation

protein

UTR: atranscribed but non-coding region. Ambu Singh, 2005



Prokaryote promoter
example

* Pribnow box located at —10 (6-7bp)
* Promoter sequence located at -35 (6p)

-35 region

—-10 region

v RNA start site

TTGACA

Ny TATAAT

N

5-9
mRNA \ N\ /NS

Ambuj Singh, 2005



Consensus sequences

Promoters seguences can vary
tremendoudly.

RNA polymerase recognizes hundreds of
different promoters

(b) Strong E. coli promolers
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TCTCAACGTAACACTT TACAGCGGOG  CGTCATTTGATATGATGCGCCCCEGCTTCCOGATAAGGG
GATCAAAAAAATACTTGTGCAAAAAA » TTGGGATCCCTATAATGCGCCTCCEATTGAGACGACAACG
ATGCATTTTTCCBCTTAGTCTTCCTGA » GCCGACTCCCTATAATGCGCCTCCRTCGACACGGCGGAT
CCTGAAATTCAGGGTTIGACTCTGAAA» » GAGGAAAGCGTAATATAC* GCCACETCGCGACAGTGAGD
CTGCAATTTTTCTATTGCGGCCTGCG « GAGAACTCCCTATAATGCOGCCTCCATCGACACGGCOGGEAT
TTTTAAATTTCCTCTTGTCAGGCCGG» » AATAACTCCCTATAATGOCGCCACCACTGACACGGAACAA
GCAAAAATAAATGCTTIGACTCTGTAG » CGGGAAGGCGTATTATGC - ACACCECGCGL OGO TGAGAA
TAACACCGTGCGTGTTGACTATTTTA-CCTCTGGCGGTGATAATGG-+TTGCATGTACTAAGGAGGT
TATCTCTGGCGGTGTTGACAT AAATA« CCACTGEGCGEGTGATACTGA s GCACATCAGCAGGACGCAC
GTGAAACAAAACGGTTGACAACATGA* AGTAAACACGGTACGATGT* ACCACATGAAACGACAGTGA
TATCAAAAAGAGTATTIGACTTAAAGT ~CTAACCTATAGGATACTTA-CAGCCATCGAGAGGGACACG
ACGAAAAACAGGTATTGACAACATGAAGT AACATGCAGTAAGATAC- AAATCEGCTAGGTAACACTAG
GATACAAATCTCCGTTGTACTTTGTT»+» TCGCGCTTGATATAATCG-CTOGGGEGTCAAAGATGAGTG
as 10 r] = g

Ambuj Singh, 2005



Eukaryote gene

Structure
5 - Promoter Exonl Intronl Exon?2 Terminator —3'
UTR splice splice  UTR

1 transcription

Poly A

/ 1 trandation

protein

Ambuj Singh, 2005



Eukaryote gene

structure

TATA box located at —25

— TATA(A/T)A(AIT)

— Recognized by TATA-binding protein
Initiator sequence at +1

— YYCARR; Y isC/T, RisG/A

— +1isusualy the A

Transcription factors bind to promoters
— Position specific scoring matrix (PSSM)

Possible distant regions acting as enhancers or
silencers (even more than 50 kb).

— More complex mechanism than prokaryotes
Ambuj Singh, 2005



Eukaryote gene structure
VS. prokaryote gene structure

NO operons

Capping at 5’ end and polyadenylation a 3" end
— Transport of mMRNA out of nucleus

— Effects stability and efficiency of trandglation

Introns
Alternative splicing
CpG idands around promoter regions

— CpG tends to methylate and mutate
— Conservation implies function

Ambuj Singh, 2005



Transcription
and 5’ capping

— o ——
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& - " RNA polymerase
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primary transcript
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transcript end sequence
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The linear order i1s never violated; it issimply interrupted
Ambuj Singh, 2005



Summary of the three steps
In pre-mRNA processing

Ovalbumin gene

< 7,700 bp g
L 1 2 3 4 5 6 7
D | A Bl| c|[p]] E F G -
Transcription and
5" capping Extra RNA
oo L 12 3 4 5 6 7\
rimary ; |
transcript  ° ! A Bl C| D E F G 3
Cap
Splicing, cleavage,
| and polyadenylation
Seven introns D Extra RNA
M L12345 6 )
n?ft{llg‘z — AAA(A),
|<7 1,872 5
nucleotides

e Thefinal MRNA may represent less than 5% of the transcribed DNA
sequence Ambuj Singh, 2005



Activators
These proteins bind to genes

at sites known as enhancers Repressors

and speed the rate These proteins bind

of transcription. to selected sets of genes
N at sites known as silencers
[N and thus slow transcription,

™ . Eﬂhﬂ.ﬂcar

4—-\

A 7a\V/ &

| TATA box -
- ™ h W _J
coactivators P - Core promoter —\:\\
ntegrate signals from activators s
ind perhaps repressors. Basal transcription factors

In response to injunctions

from activators, these

factors position RNA
polymerase at the start

of transcription and

initiate the transcription process

Ambuj Singh, 2005



Gene Prediction Problems

* Prokaryotes: easy. Predict promoter region
or start of coding region is able to determine

agene.
* Eukaryotes: hard. Need to predict promoter,
transcription/trandation start region, splice
sites, coding regions. All these prediction
can be considered in isolation or altogether.



Gene Structure Prediction M ethods

 Homology Based Method
e Ab-Initio Methods
Markov Model
Hidden Markov Model
Neural Network



Homology Based Methods

Glven a genomic sequence, search against cONA
or EST libraries

GenomeScan (genes.mit.edu/genomescan.html)

EST2Genome

(bioweb.pasteur.fr/seganal/interfaces/est2genome.
html)

Consensus-based programs. GeneComber
(www.biolnformatics.ubc.ca/genecomber/index.ph

p)



Markov Model

A Markov chain is a sequence of random variables
X, Xy, Xy, ... With Markov property, namely that,
given the present state, the future and past states
are independent.

P(X 1 =XX =X, X 17X, X 0= X0) =P(X =X X =X
). (first order Markov Model)

The possible values of X; form a countable set S
called the state space of the chain.

A finite state machine is an example of a Markov
chain.

The probability of transition from one state to
another state Is called transition probability.



Markov Models

Markov 0

one die

Markov 0
multiple

dice

Markov 1

O O O

o O O
O—0O—0O




Markov Model for Gene Prediction

 DNA seguences can be considered to be
generated by two Markov Chains

* One chain generates coding regions (gene).
another chain generates non-coding regions.

» Each state in the chain can has four values:
A, C, G,




O-Order Markov Model

Coding Region:

For all coding sequences.

P.(A) = total num of A / total num of nucleotides
P.(C) = total num of C/ total num of nucleotides
P.(G) = total num of G/ total num of nucleotides
P.(T) = total num of T / total num of nucleotides

Non-Coding Region:

@@@@@ ......

For all non-coding sequences:

P.(A) = total num of A /total num of nucleotides
P.(C) = total num of C/ total num of nucleotides
P.(G) = total num of G/ total num of nucleotides
P.(T) = total num of T / total num of nucleotides



Gene Prediction Using O-order Markov Model

ACT

GAGACAATGCC

TA....

Under coding moddi:

P(A[coding) = P(G) * P(A) * P(G) * ...

Under non-coding modd!:
P(A|non-coding) = P(G) * P(A) * P(G) * ...

If P(A|coding) > P(A|non-coding), it isin agene. Otherwise,
It isnot in agene.
Window sizeis usually pretty large, e.g., 101.



1st-Order Markov Model

Coding Region:

For all coding sequences.

To compute P(xly). X, y

P.(C|A) = total num of AC/ total num of A
P.(T|C) = total num of CT / total number C
P.(G|T) = total num of TG/ total number of T
P.(G|G) = total num of GG / total number of G

Non-Codi ng R.i.ﬁr{:lG different conditional probabilities)

For all non-coding sequences:

To compute P(xly). X, .

P.(T|C) = total num of CT / total num of C
P.(T[T) = total num of TT / total numof T

P.(G|T) = total num of GT / total numof T
P.(A|G) = total num of AG / total num of G



Gene Prediction Using 1st-order Markov
Model

ACTGGGACAATGCCTA....

Under coding modd!:
P(seg|coding) = P,(A) * P,(C|A) * P(T|C) * ...

Under coding model:
P(seg|non-coding) = P,(A) * P (C|A) * P(TIC) * ...

If P(seg|coding) > P(seg|non-coding), it is gene. Otherwise,
It IS not agene.



Higher Order Markov Model for
Gene Prediction

ACTGGGACAATGCCTA....

Second order:

P(TIAC), P(G|CT),.... (64 conditional probabilities)
P(z|xy) = #xyz /[ #xy

Third order:
P(TIACG), P(GIJAAA), (256 conditional probabilities)

The best Markov Model for gene prediction uses 5™ order.
(biological meaning?)



GeneMark

http://exon.gatech.edu/GeneM ark/

GeneMark.hmm for Prokaryotes (Version 2.4} =i s

Reference: Lukashin A. and Borodovsky M., GeneMark.hmm: new solutions for gene finding, NAR, 1998, Vol. 25, No. 4, pp. 1107-1115.
[ Download PDF

1) This page has been updated to run version 2.4 of GeneMark.hmm, as well as version 2.5 of GeneMark.

2) Processing speed: 1 million nucleotides in 15 seconds.

3) Prediction results for sequences longer than 5 MB are sent by e-mail.

UPDATE (Movember &, 2005):

Prediction models have been pre-computed for a 265 completely sequenced prokaryotic genomes from the NCBI RefSeq database.

Gene predictions made for these genomes are available in the GeneMark prokarvotic database.

Input Sequence
Title (optional):&

Sequence Text: &

= = L ey L
gogoaggotgoggaaattacgotagtocogtoagtaaaattacagataggogatogtgat _:J
aatcgtggotattactgggatgyoggtoactgyogogaccacgyotgytggaaacaacat
tatgaatggogaggoaatogotggoacooatatgyacogoogocatogoogogooataac
aagoacaatgatoatogtggogatoatogtooggogoctyacaaacatoatogotaa
atgaacgtogocaataaggtatgtogocatattottttaatgaatgagtytgogaacoge
gagtoggaatacgggaatgtogatgotgaaagggacgocattttoatogatoatttogta
gtgaccotgoatggtgooccagoggggtttoaatgattgoacogotggtgtactggtacto
ttogocaggogogataagtggotggacgocaacoactoottogoootgacttoggttte
acggoocattgocattggtgatcagocagtaacgocooaacaactyoactygogotogooo
cagattgogtatggttacggtataagoaaaaacgtaacgttoattatoaggtga

Seqguence File upload:&

I Browse .. |

Species: &
| Escherichia_coli_K12 j

M Use rRBS model, if available

Dutput Options
E-Mail Address (required for graphical output or sequences longer than 5000000 bp)&

" Generate PostScript graphics (email &
I print GeneMark 2.4 predictions in addition to GeneMark.hmm predictionsé

I Translate predicted genes into proteins
[T seanences of nredicted anenes



Output of GeneMark

Gene Predictions in Text Format

Information on input sequence

Sequence title: Tue fug 22 0B:37:30 EDT 2006
Length: 1029 bp
G+C Content: 50.34 %

Parse predicted by GeneMark.hmm 2.4

GeneMark.hmm PROELRYOTIC (Version 2.5a)
Model corganism: Escherichia coli K12
Tue Ang 22 08:37:30 2006

Predicted genes

Gene Strand LeftEnd RightEnd Gene
# Length
1 + <1 378 T8
2 + 388 675 288
3 - T1z2 1029 318

Cla=s

R ¥



Glimmer

* Download page:

 Mainly for bacteriaand archaea

o Useinterpolated Markov Model: train
model from 1% ord to 8" ord and weight
them according to prediction accuracy.



Accuracy of Glimmer

Genes

Annotated

Organism ‘ annotated ‘ genes found ‘ 7 found
H. influenzae | 1738 | 1720 | 99.0
M. genitalium | 483 | 480 | 99 4
M. jannaschi | 1727 | 1721 | 99 7
H. pylosi | 1590 | 1550 | 97.5
E. col | 4269 | 1158 | 974
B. subtilis | 4100 | 4030 | 983
A fulgidis | 2437 | 2404 | 98 6
B. burgdorferi | 833 | 843 | 99 3
T. pallidum | 1039 | 1014 | 976
T. maritima | 1877 | 1854 | 98.8

It is pretty accurate for prokaryotes.



Hidden Markov Model

« HMM iIs Markov process where states are
hidden (unseen), but the variables emitted
from states can be observed.

e Challengeisto determine the hidden
parameters from the observable parameters.



Speech Recognition Example

Words:

Goal: infer wordsfrom sounds

Sounds:




Gambling Example

04
0.6

0.5

Transition
Probability

Observations: 1231242134121344343243443
Emission Probability



Gambling Example

04
0.6

0.5

Obsarvations. 1231242134121344343243443

State: FFFFFFFFFFFFUUUUUUUU



A simple gene prediction example

0.9 0.7

0.1

0.3

Obsarvations:. ATATCGGCCCGACCCGGGGTACTA

State:



Three Problemsin HMM

1. Prediction / Evaluation: Given parameters of the model, compute
the probability of an output sequence(Forward / backward Algorithm)

2. Decoding: Given parameters of the model, find most likely sequence
of hidden states. (Viterbi Algorithm)

3. Learning: Given a set of sequences generated by the model, learn the
most likely model parameters (transition/emission probabilities)
(Baum-Welch Algorithm)

In gene prediction, we first use coding and non-coding sequences
to train aHMM and then use known HMM to make prediction
for a new seguence.



HMM Prediction

0.9

Observations: ATCT

Path 1. N->N->C->N, what is probability?

Path 2. C->C->N->C, what is probability?

Goal: find the max probability that sequence is generated from HMM



HMM Decoding

0.9
0.1

0.3

Observations. ATCT
Best path?
Goal: find the path with maximum probability.



HMM Learning

Observations. ATCT, CCCT,GTAC, TTAC,...

Goal: find the parameter valuesto fit data well.



GENSCAN

(genes.mit.edu/GENSCAN.html)

Simplified State Transition
Diagram of GenScan.







Fast DNA Sequencing Machine: 25 million in four hours

Nature: http://www.nature.com/news/2006/060918/full/443258a.html



Neural Network

Generative versus discriminative

Neural network is ageneral, powerful
classification / pattern recognition tool.

Inputs to NN are features that describe the
subj ect.

Output of NN isaclass label (or category)
assigned to the subject.



Example of NN applications

« Glven aset of words of anews article,
predict its category (sports, politics, science,
technology)

o Glven aset of features describing a

seguence of DNA, predict if it iscoding
region (exon) or not (intron)

e Goal I1sto learn afunction to map input
features to the target (category, real value)



A Genera Neural Network

Input Units Hidden Units

Output Units
W,

e
%
A0

>
s

Each weighted connection means the product of the output of one unit and the weight is
sent to another unit as input. Each hidden unit and output unit have a transfer function to
convert the sum of inputs into an output. Let transfer function of hidden unit bef, (e.g.,
identity function) output unit to bef, ( e.g., sigmoid function, 1/(1+e%)).



Neural Network iIsa Universal
Function Approximator

We can represent neural network as an function:
= f (Z w f (Z X. W

Thisfunction is unlversal WhICh means that any function
y=f(X) can be approximated by this function accurately,
given a set of appropriate weights W.

S0, the key isto adjust weights W to make neural network
to approximate the function of our interest. e.g., given
Input of sequence features, tell if it isageneor not (1: yes,
0: no)?



Adjust Weights by Training

How to adjust weights?

Adjust weights using known examples (training
data) (X{,X5,X3,...X,Y). Thisprocessiscalled
training or learning

Try to adjust weights so that the difference

between the output of the neural network and y
(called target) becomes smaller and smaller.

Goal iIsto minimize Error (difference)



Adjust Weights using Gradient
Descent (back-propagation)

oW o Minima
Data: (X, XoXar.. %) (Y)

Unknown weights w:
Wyq, Wy,

Randomly initialize weights

Repeat
for each example, compute output o
calculate error E = (0-y)?
compute the derivative of E over w: dw= gE-

Whew = Wie, =1 * OW
Until error doesn t decrease or max num of iterations

Note: n Islearning rate or step size.



Prediction and Test Phase

o \Weights are known.

e Glven an input vector X, neural network
will generate an output O.

 For binary classification/prediction, thereis
only one output. If O > 0.5, it Is positive
(gene), elsg, it IS negative (not gene).

« Evaluate neural network on test data



Neural Network Tools

 Neura network has become a standard
classification tool.

* Thekey thing left for user isto extract features (or
Inputs X), assign outputs, and control training.

 Pick astandard tool to tran a neural network
model (weights) and use it in prediction.

e Sometools. Weka (Java), NNClass (C++), and
Neural Networksin MatLab

NNClass: http://www.eecs.ucf.edu/~jcheng/cheng_software.htmi
Weka: http://www.cs.waikato.ac.nz/ml/wekal



Neural Network for Gene Prediction

Given a seqguence ACGGGGAATTCGTAGCT..., predict if itis
an exon (coding region) or not.

Extract features from the sequence and feed them into neural
Network.

Markov Modd Score

Length of region

1or0O

GC composition

Exon or not

TATA box




GrailEXP
Grail Experimental Gene Discovery Suite

GradEXP is a software package that predicts exons, genes, promoters, polyas, CpG islands, EST similarities, and repetitive elements within DIMA sequence. GrailEXP
is used by the Computational Biosciences Section at Cak Ridge Natienal Laboratory to annotate the entire known pottion of the human genome (including both finished
and draft data).

If you are interested in tnicrobial genome analysis and annotation, you should go to the Generation home page.

Perform Analysis
Select organism: | Human (Homo sapiens) %
Select output type: | Human-Readable Text v

[ Perceval Exon Candidates

(Locate Grail exons using an improved version of fhe Graill. 3 newral net)

O Galahad E3T/mRITA/CDIA Alignments
(Search from the selected BST/mRNA databases and build exons based on similarifies with the sequences in fhese databases)

Grai
MNCBI Refseq mRhAs
MCl Mammalian Gene Collection (Hurman)
MCl Marmmalian Gene Collection (Mouse)
Baylor Human Transcript Database
TIGR EGAD Transcript Database
Riken Fantom Mouse cONA Database
dbEST Human
dbEST Mouse
dbEST Others
Select database(s) to search: | CBIL/UPenn DOTS (EST Assemblies) b

[ Gawain Gene Models
(Assemble complefe gene struchures from the above selected opfions, i e. Ferceval exon candidates and/or Galahad BST/mRNA ali ments)

Gene modeling organistn options: | Use ESTs/mRNAS from any organism v

[ Cpg Islands
(Find Cp G Ilands wusing Graill 3)

[ Repetitive Elements
(Locafe repefifive elements using a BLAST-based method against the Repeatmasker dafabase)

Web:http://compbio.ornl.gov/grailexp/
Gail combine both neural network and homology search



Other Tools

e Grall: (Neural
Network and EST database search)

« HMMgene:
(use HHM)
e (GeneParser:

(dynamic programming and neural network)



Ten Topics

1. Introduction to Molecular Biology and Bioinformatics
2. Pairwise Sequence Alignment Using Dynamic Programming

3. Practical Sequence/Profile Alignment Using Fast Heuristic Methods
(BLAST and PSI-BLAST)

4. Multiple Sequence Alignment

5. Gene ldentification

6. Phylogenetic Analysis

7. Protein Structure Analysis and Prediction

8. RNA Secondary Structure Prediction

9. Clustering and Classification of Gene Expression Data

10. Search and Mining of Biological Databases, Databanks, and
Literature



