
Jianlin Cheng, PhD

School of Electrical Engineering and Computer Science
University of Central Florida

Pairwise Sequence Alignment (I)

Free for academic use. Copyright @ Jianlin Cheng & original sources for some materials

2006

Sequence Data

• DNA Sequence (gene)
gaagagagcttcaggtttggggaagagaca
acaactcccgctcagaagcaggggccgata

• RNA Sequence
caaaucacuacacacaggguagaagguggaacgcacaggagcaugu
caacggggugc

• Protein Sequence
RELQVWGRDNNSLSEAGANRQGDVSFNLPQIT
LWQRPLVTIKIGGQLKEALLDTGADDTVLEDID
LPGKWKP

Fundamental Problems

• Why do we compare sequences?

• What’s similarity between two sequences?

• What methods should be used to compare
sequences?

• How similar are two sequences are?

• Is similarity significant?

Importance of Similarity Comparison

• Identify evolutionary relationship between
genes and proteins

• Similar genes/proteins have similar functions

• Similar proteins have similar structures

• Classification and Clustering

Similarity comparison of biological sequences is the most fundamental tool of
Bioinformatics. It is used in almost all Bioinformatics areas and is still an active
research area after more than 50-year research.

Dot Matrix Approach

Similarity: same sub-strings / repeats shared by two sequences

Filter out short segments

Threshold = 4

Another: window
Smoothing approach

repeat

Reverse
repeat

Applications

• Find repeats in two sequences

• Find reverse repeats in two sequences

• Find repeats/reverse repeats in the same
sequences

• Find complementary repeats / reverse repeats
in the same sequences in RNA (base pairs)

Reverse Complementary Repeats

Complementary Base Pairs

Filter

Complexity, Tools, and Limitation

• Time complexity for two sequences with length m and n
(fill out matrix: m*n, thresholding by diagonal: at most m*n)

• Dotmatcher:
http://bioweb.pasteur.fr/seqanal/interfaces/dotmatcher.html

• Limitation: no gaps allowed, not mismatch, not optimal.

aaggtccttagga
aaggccttagga

Example:

aaggtccttagga
aagg ccttagga

Global Pairwise Sequence Alignment
(Needleman and Wunsch, 1970)

ITAKPAKTPTSPKEQAIGLSVTFLSFLLPAGWVLYHL

ITAKPQWLKTSE------------SVTFLSFLLPQTQGLYHL

Alignment (similarity) score

Optimization Problem:
Align two sequences into the same length by adding gaps if necessary and
maximizing alignment scores.

Three Main Issues

1.Definition of alignment score
2.Algorithms of finding the optimal alignment
3.Evaluation of significance of alignment score

A simple scoring scheme

• Score of character pair:
S(match)=1, S(not_match)
= -1, S(gap-char) = -1

• Score of an alignment =

• Discuss more advanced
scoring scheme later.

∑
n

iS
1

ITAKPAKTPTSPKEQAIGLSVTFLSFLLPAGWVLYHL

ITAKPQWLKTSE-------SVTFLSFLLPQTQGLYHL

5 + 10 + 4 – 7 – 7 -4 = 1

Optimization

• How can we find the best alignment to
maximize alignment score?

• Time complexity of brute force enumeration.
How many possible alignments exist for two
sequences with length m and n?

Shortest Alignments

Sequence 1: AGATCAGAAATGG

Sequence 2: ATAGAATCC

Shortest Alignment

Sequence 1: AGATCAGAAATGG
Sequence 2: ATAGAATCC

AGATCAGAAATGG
ATAGAATCC----

Length = max (m,n)

Longest Alignment

AGATCAGAAATGG---------
-------------ATAGAATCC

Length = m + n

Total Number of Possible Alignments

Hard combinatorial problem
Use another way to represent all possible alignments

Consider there are m+n positions. Each character in each sequence
takes one position (the characters in the same sequence must be in
the sequence order.

CGCGTTAAAAAGGAACTTAAGA

AGATCAGAAATGG
--AT-AG-AATCC

Convert one alignment of two sequences into one linear string (1-1 correspondence)

Total number of alignments

Select m positions out of m+n possible positions:

!!

)!(

nm

nm

m

nm +=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ +

Exponential!

If m = 300, n = 300, total = 10^37

Divide and Conquer

i
Seq P: AGATCAGAAATGG
Seq Q: ATAGAATCC

j

Three possibilities assuming we know the optimal alignment of smaller prefixes:

Goal: align prefix P[1..i] and prefix Q[1..j]

i
AGATCAG
--AT-AG

j

Use alignment of P[1..i-1] and
Q[1..j-1], pair P[i] and Q[j]

Use alignment of P[1..i]
And Q[1..j-1], pair Q[j] with
gap

i
AGATCAG-
--AT-A-G

j

Use alignment of P[1..i-1]
and Q[1..j], pair P[i] with
gap.

i
AGATCA-G
--AT-AG-

j

Case 1 Case 2 Case 3

Needleman and Wunsch Algorithm

• Given sequences P and Q, we use a matrix M to record the
optimal alignment scores of all prefixes of P and Q. M[i,j] is
the best alignment score for the prefixes P[1..i] and Q[1..j].

• M[i,j] =
max [

M[i-1,j-1] + S(P[i],Q[j]),
M[i,j-1] + S(-, Q[j])
M[i-1,j] + S(P[i], -)

]
Comments:

We know M[0,0], M[i,0], and M[0,j], where i<=m, j <=n,
m and n are sequence lengths.

Start from lower index and run to the end of sequences
Global optimum = combination of local optimum

Dynamic Programming

Dynamic Programming Algorithm

•Initialization
•Matrix fill (scoring)
•Trace back (alignment)

Three-Step Algorithm:

-12

-11

-10

-9

-8

-7

-6

-5

-4

-3

-2

-1

-7-6-5-4-3-2-10

A T A G A A T
1. Initialization of Matrix M

A

_

_

G

A

T

C

A

G

A

A

A

T

G

M is a (m+1) * (n+1) matrix. M[i,j] is to record the best alignment score of P[1..i] and Q[1..j]

i

j

-10-12

-9-11

-8-10

-7-9

-6-8

-5-7

-4-6

-3-5

-2-4

-1-3

0-2

1-1

-7-6-5-4-3-2-10

A T A G A A T
2. Fill Matrix

A

_

_

G

A

T

C

A

G

A

A

A

T

G

M[i,j] =
max [

M[i-1,j-1] + S(P[i],Q[j]),
M[i,j-1] + S(-, Q[j])
M[i-1,j] + S(P[i], -)

]

-8-10-12

-7-9-11

-6-8-10

-5-7-9

-4-6-8

-3-5-7

-2-4-6

-1-3-5

0-2-4

-1-1-3

00-2

01-1

-7-6-5-4-3-2-10

A T A G A A T
2. Fill Matrix

A

_

_

G

A

T

C

A

G

A

A

A

T

G

M[i,j] =
max [

M[i-1,j-1] + S(P[i],Q[j]),
M[i,j-1] + S(-, Q[j])
M[i-1,j] + S(P[i], -)

]

20-2-4-6-8-10-12

31-1-3-5-7-9-11

220-2-4-6-8-10

231-1-3-5-7-9

0120-2-4-6-8

-1-101-1-3-5-7

-100-10-2-4-6

0-1-1-1-1-1-3-5

100000-2-4

-101-11-1-1-3

-3-2-10-100-2

-5-4-3-2-101-1

-7-6-5-4-3-2-10

A T A G A A T
2. Fill Matrix

A

_

_

G

A

T

C

A

G

A

A

A

T

G

M[i,j] =
max [

M[i-1,j-1] + S(P[i],Q[j]),
M[i,j-1] + S(-, Q[j])
M[i-1,j] + S(P[i], -)

]

20-2-4-6-8-10-12

31-1-3-5-7-9-11

220-2-4-6-8-10

231-1-3-5-7-9

0120-2-4-6-8

-1-101-1-3-5-7

-100-10-2-4-6

0-1-1-1-1-1-3-5

100000-2-4

-101-11-1-1-3

-3-2-10-100-2

-5-4-3-2-101-1

-7-6-5-4-3-2-10

A T A G A A T

3. Trace Back

A

_

_

G

A

T

C

A

G

A

A

A

T

G

AGATCAGAAATG

--AT-AG-AAT-

Insights

• Each path from top left to right bottom
corresponds to an alignment. (how many
paths? Which path is the shortest alignment?
Longest alignment?

• More than one optimal alignment
• Global alignment
• Biological meaning of a gap: deletion or

insertion (another view of DP: minimize
editing distance)

More Insights

• Time complexity and space complexity

is O(m*n). Why?

• Can we run DP from right to left? What
optimal alignment score do we get?

