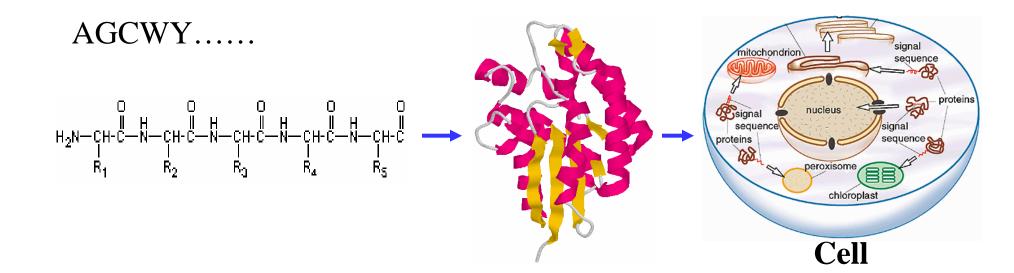
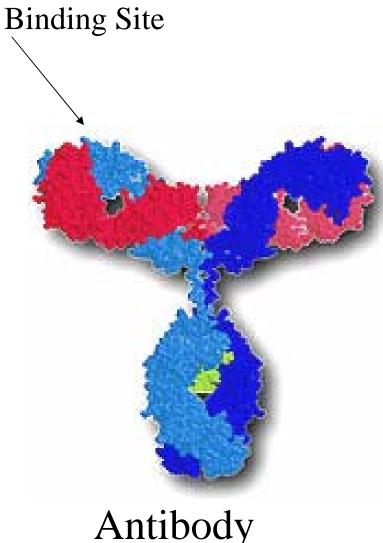
Analysis and Prediction of Protein Structure (I)

Jianlin Cheng, PhD

School of Electrical Engineering and Computer Science University of Central Florida


Free for academic use. Copyright @ Jianlin Cheng & original sources for some materials


Outline

I. Sequence, Structure, Function Relation

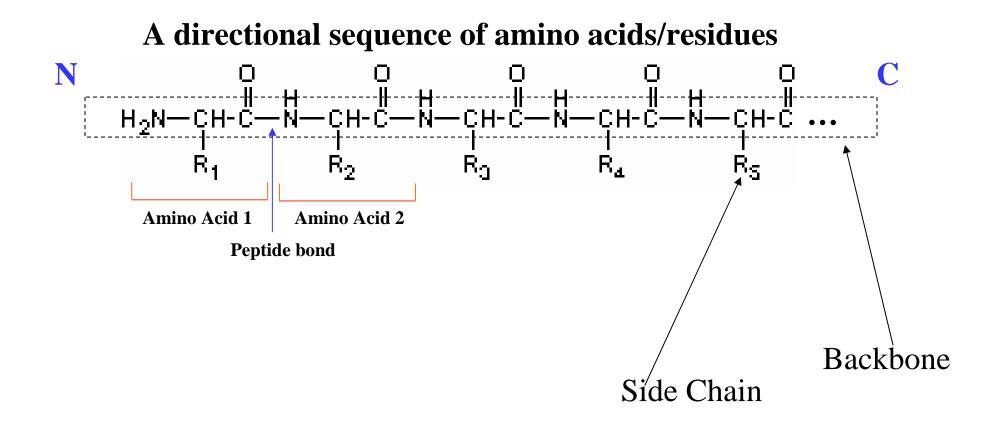
- II. Determination, Storage, Visualization, Analysis, and Comparison
- III. Structure Classification
- IV. 1D Prediction
- V. 2D Prediction
- VI. 3D Prediction
- VII. Useful Tools

Sequence, Structure and Function

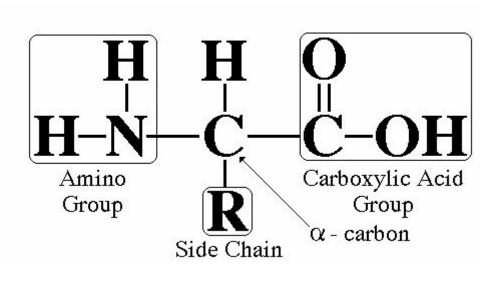
Protection Function in Immune System

High specificity (amino acid sequence segment at binding site) Strong affinity

Question: there are so many different viruses not known before hand, how an animal cell figure out an Antibody to bind to them, but not bind to its own protein? In stock or make on the fly?

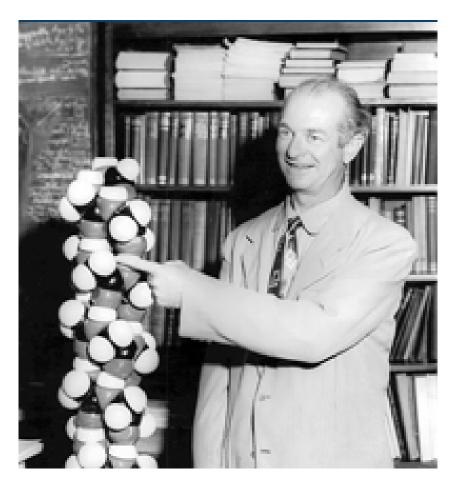

Protein Sequence – Primary Structure

- The first protein was sequenced by Frederick Sanger in 1953.
- Twice Nobel Laureate (1958, 1980) (other: Curie, Pauling, Bardeen).
- Determined the amino acid sequence of insulin and proved proteins have specific primary structure.

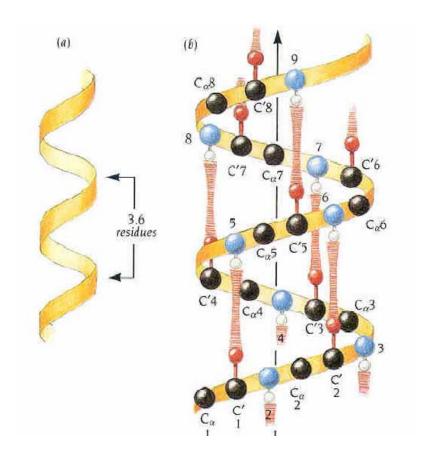


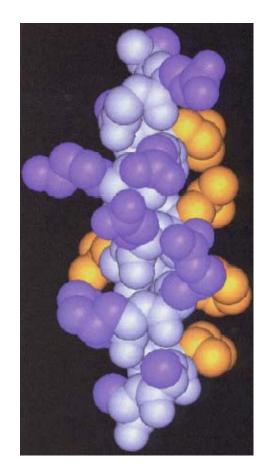
Protein Sequence

Amino Acid Structure

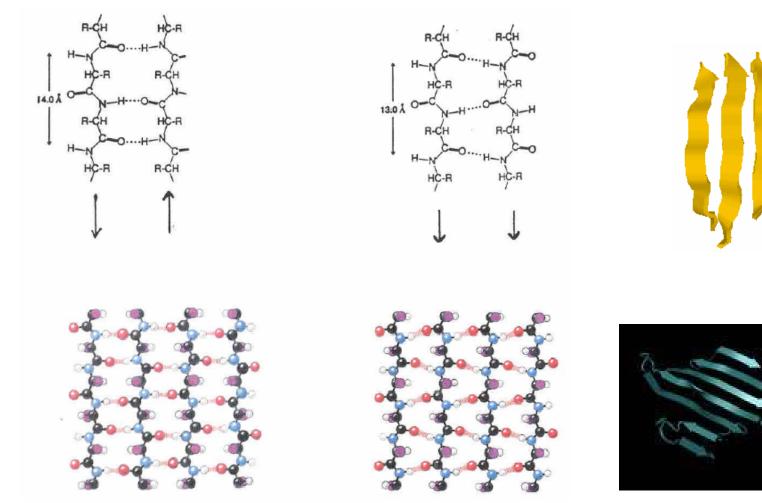

Amino Acids

Amino acid	Abbrev.	Side chain	Hydro- phobic	Polar	Charged	Small	Tiny	Aromatic or Aliphatic	van der Waals volume	Codon	Occurrence in proteins (%)
Alanine	Ala, A	-CH3	x	-	-	X	Х	-	67	GCU, GCC, GCA, GCG	7.8
Cysteine	Cys, C	-CH ₂ SH	х	-	-	X	-		86	UGU, UGC	1.9
Aspartate	Asp, D	-CH2COOH	-	Х	negative	X	-	-	91	GAU, GAC	5.3
Glutamate	Glu, E	-CH2CH2COOH	-	X	negative	-	-	-	109	GAA, GAG	6.3
Phenylalanine	Phe, F	-CH2C6H5	х	-	-	-	-	Aromatic	135	UUU, UUC	3.9
Glycine	Gly, G	-H	х	-	-	x	к		48	GGU, GGC, GGA, GGG	7.2
Histidine	His, H	-CH ₂ -C ₃ H ₃ N ₂	-	X	positive	-	-	Aromatic	118	CAU, CAC	2.3
Isoleucine	lle, I	-CH(CH3)CH2CH3	х	-	-	-	-	Aliphatic	124	AUU, AUC, AUA	5.3
Lysine	Lys, K	-(CH ₂) ₄ NH ₂	-	X	positive	-	-	-	135	AAA, AAG	5.9
Leucine	Leu, L	-сн ₂ сн(сн ₃) ₂	x	-	-	-	-	Aliphatic	124	UUA, UUG, CUU, CUC, CUA, CUG	9.1
Methionine	Met, M	-CH2CH2SCH3	×	-	-	-	-	-	124	AUG	2.3
Asparagine	Asn, N	-CH2CONH2	-	к	-	x	-	-	96	AAU, AAC	4.3
Proline	Pro, P	-CH2CH2CH2-	x	-	-	X	-	-	90	CCU, CCC, CCA, CCG	5.2
Glutamine	GIn, Q	-CH2CH2CONH2	-	X	-	-	-	-	114	CAA, CAG	4.2
Arginine	Arg, R	-(CH ₂) ₃ NH-C(NH) NH ₂	-	х	positive	-	-		148	CGU, CGC, CGA, CGG, AGA, AGG	5.1
Serine	Ser, S	-CH ₂ OH	-	х	-	x	х		73	UCU, UCC, UCA, UCG, AGU,AGC	6.B
Threonine	Thr, T	-CH(OH)CH3	х	к	-	x	-	-	93	ACU, ACC, ACA, ACG	5.9
Valine	Val, V	-CH(CH ₃) ₂	x	-	-	X	-	Aliphatic	105	GUU, GUC, GUA, GUG	6.6
Tryptophan	Trp. W	-CH2C8H6N	x	-	-	-	-	Aromatic	163	UGG	1.4
Fyrosine	Tyr, Y	-CH2-C8H4OH	Х	Х	-		-	Aromatic	141	UAU, UAC	3.2

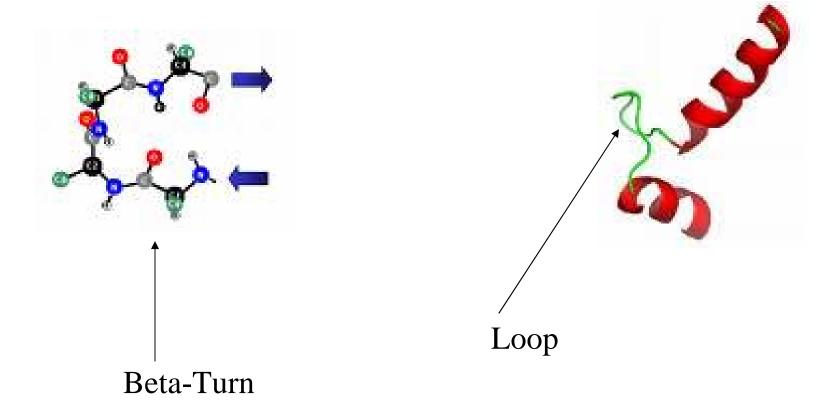

Hydrophilic


Protein Secondary Structure

- Determined by hydrogen bond patterns
- 3-Class categories: alpha-helix, betasheet, loop (or coil)
- First deduced by Linus Pauling et al.


Alpha-Helix

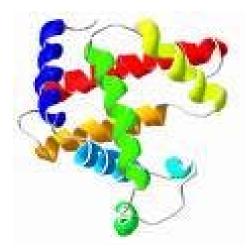
Jurnak, 2003

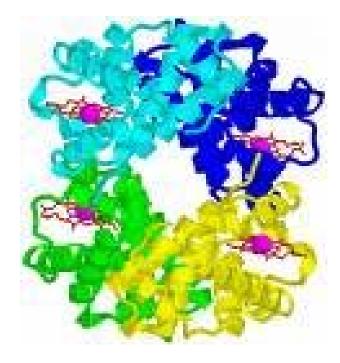

Beta-Sheet

Anti-Parallel

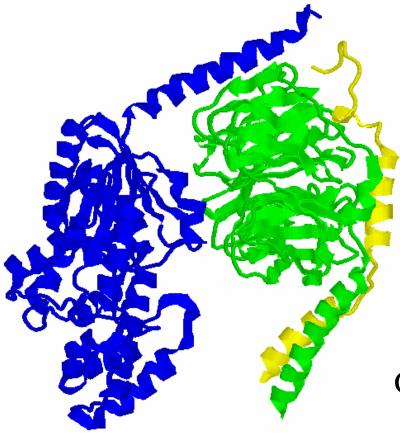
Parallel

Non-Repetitive Secondary Structure




Tertiary Structure

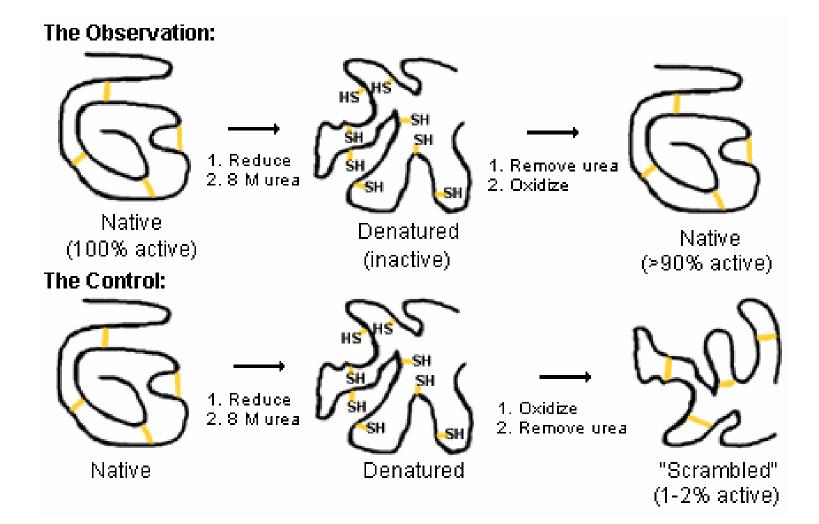
- John Kendrew et al., Myoglobin
- Max Perutz et al., Haemoglobin
- 1962 Nobel Prize in Chemistry



myoglobin

haemoglobin

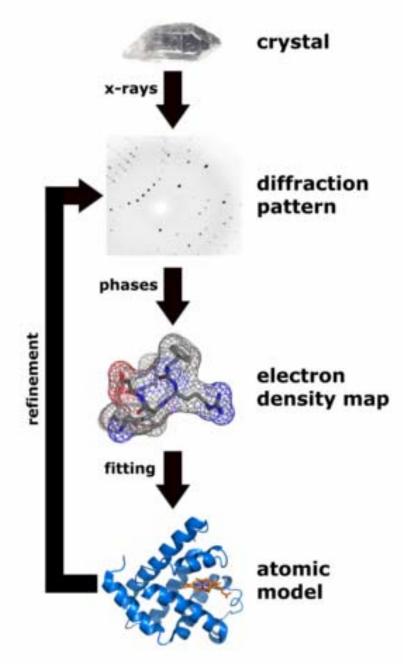
Quaternary Structure: Complex



G-Protein Complex

Anfinsen's Folding Experiment

- Structure is uniquely determined by protein sequence
- Protein function is determined by protein structure

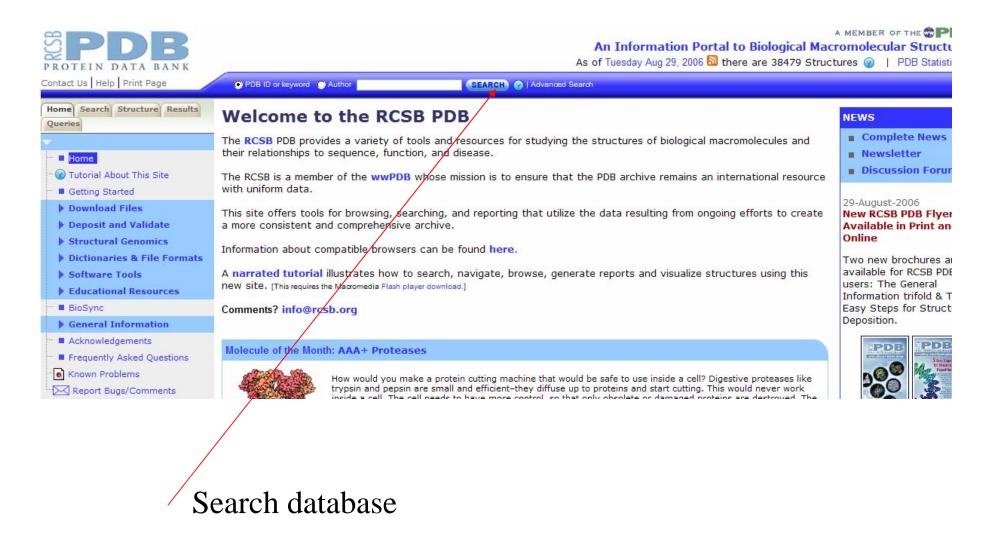


Outline

- I. Sequence, Structure, Function Relation
- II. Determination, Storage, Visualization, Analysis, and Comparison
- III. Structure Classification
- IV. 1D Prediction
- V. 2D Prediction
- VI. 3D Prediction
- VII. Useful Tools

Protein Structure Determination

- X-ray crystallography
- Nuclear Magnetic Resonance (NMR) Spectroscopy
- X-ray: any size, accurate (1-3 Angstrom (10⁻¹⁰ m)), sometime hard to grow crystal
- NMR: small to medium size, moderate accuracy, structure in solution

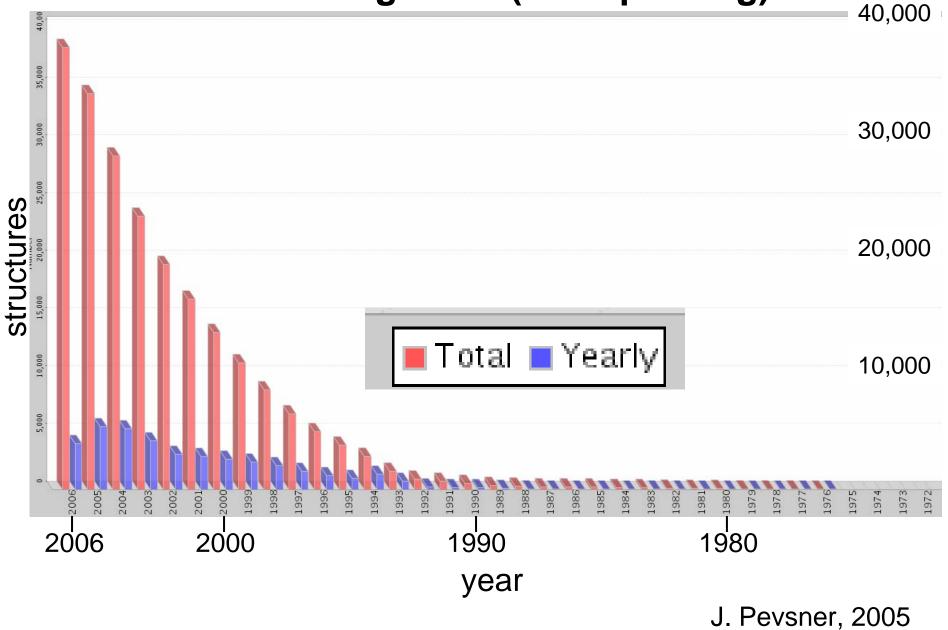


Wikipedia, the free encyclopedia

Pacific Northwest National Laboratory's high magnetic field (800 MHz, 18.8 T) NMR spectrometer being loaded with a sample.
Wikipedia, the free encyclopedia

Storage in Protein Data Bank

BRCSB PDB : Structure Explorer - Mozilla								
File Edit View Go Bookmarks Tools	Help							
🗘 • 🖒 • 🤔 🛞 🏠 🗠 h	ttp://www.rcsb.org/pdb/na	vbarsearch.do?newSea	arch=yes&isAuthorSearch	=no&radioset=All&inpu	tQuickSearch=	1vjg&image.x=0∈	iage.y=0ℑ=Seai	rch 💽 🙆 Go 💽
Google - pdb	💌 🕂 Ġ Search 🕶 🗧	💋 PageRank 🞸 Che	ck 🝷 🌂 AutoLink 📲 /	utoFill 🔁 Options	🤌 👸 pdb			
PROTEIN DATA BANK								A MEMBER OF THE PDB gical Macromolecular Structures 9323 Structures (2) PDB Statistics (2)
Contact Us Help Print Page	PDB ID or keyword	O Author	SEA	RCH 🕜 Advanced S	Search			
Home Search Structure Queries	Structure Summary	Biology & Chemistr	y Materials & Method	s Sequence Detai	s Geometr	Y		
▼							1VJG 🗎	Images and Visualization
■ 1VJG								Biological Molecule
Download Files	Title	Crystal structure	of putative lipase fr	om the G-D-S-L f	amily from I	lostoc sp. at 2.	01 A resolution	Diological Molecule
FASTA Sequence	Authors	Joint Center fo	r Structural Geno	mics (JCSG)				- 20
Display Files								
Display Molecule	Primary	Joint Center for	Structural Genomic sp. at 2.01 A resolution	To be published	structure of	putative lipase fro	m the G-D-S-L	Carl Strengel
··· Structural Reports	Citation	Tarmiy Form Nostoc	sp. at 2.01 A tesolution	to be published				
Structure Analysis	History	Deposition 2004	-02-19 Release 200	04-03-16				
™ ▶ Help	Experimental Method	Type X-RAY DIF	FRACTION Data 🗎					
	Parameters	Resolution[Å]	R-Value 0.175 (obs.)	R-Free 0.218		Space Group P 3 ₂ 2 1		
	Unit Cell	Length [Å] Angles [°]	a 56.19 alpha 90.00		56.19 90.00	c gamma	129.32 120.00	Display Options
	Molecular Description Asymmetric Unit	Polymer: 1 Molec	ule: putative lipase fi	om the G-D-S-L	family Cha	ins: A		KiNG Jmol WebMol Protein Workshop QuickPDB
	Functional Class	Structural Geno	mics Unknown Fun	ction				All Images
-	So	urce Polymer: 1	Scientific Name: No	stoc sp. pcc 712	D 😁 Com	mon Name: Bac	teria Expression	system: Nostoc sp. pcc 7120
Done			L.e.	f		1		
	x - Outlook Express	👔 CAP5937	ildes 13	<u></u>] sl	des1	🧶 🕲 R	CSB PDB : Structure	10:42 A
🕑 💽 🏠 💆 Entre	ez cross-database s	🦸 untitled - Paint						Monday 🔊 Monday

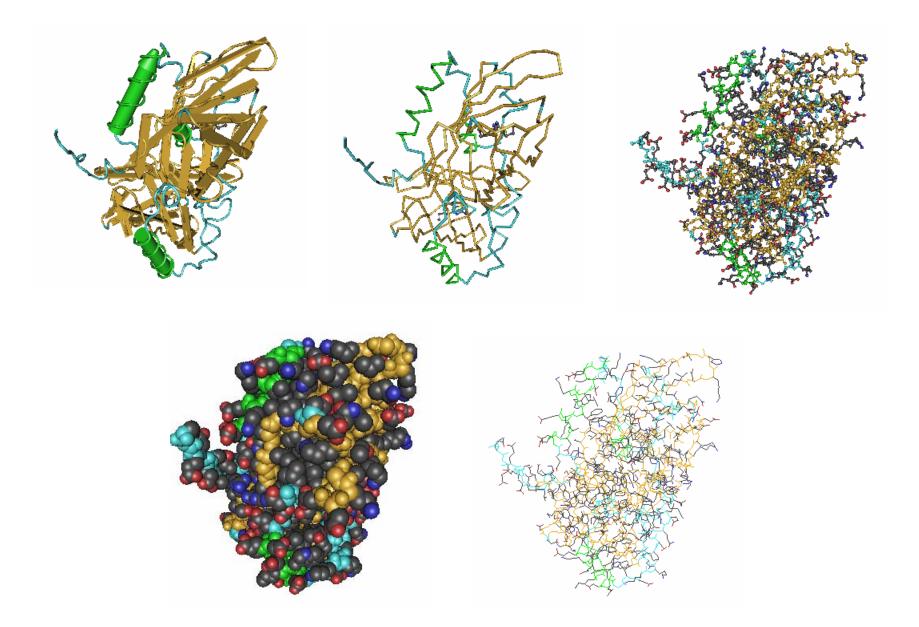

Search protein 1VJG

PDB Format (2C8Q, insulin)

```
HEADER HORMONE
                                               06-DEC-05 2C80
TITLE INSULINE (1SEC) AND UV LASER EXCITED FLUORESCENCE
COMPND MOL ID: 1;
COMPND 2 MOLECULE: INSULIN A CHAIN;
COMPND 3 CHAIN: A;
COMPND 4 MOL ID: 2;
COMPND 5 MOLECULE: INSULIN B CHAIN;
COMPND 6 CHAIN: B
SOURCE MOL ID: 1;
SOURCE 2 ORGANISM SCIENTIFIC: HOMO SAPIENS;
SOURCE 3 ORGANISM COMMON: HUMAN;
SOURCE 4 ORGAN: PANCREAS;
SOURCE 5 MOL ID: 2;
SOURCE 6 ORGANISM SCIENTIFIC: HOMO SAPIENS;
SOURCE 7 ORGANISM COMMON: HUMAN;
SOURCE 8 ORGAN: PANCREAS
KEYWDS LASER, UV, CARBOHYDRATE METABOLISM, HORMONE, DIABETES
KEYWDS 2 MELLITUS, GLUCOSE METABOLISM
EXPDTA X-RAY DIFFRACTION
AUTHOR X.VERNEDE, B.LAVAULT, J.OHANA, D.NURIZZO, J.JOLY, L.JACQUAMET,
AUTHOR 2 F.FELISAZ, F.CIPRIANI, D.BOURGEOIS
REVDAT 1 08-MAR-06 2C80 0
JRNL AUTH X.VERNEDE, B.LAVAULT, J.OHANA, D.NURIZZO, J.JOLY,
JRNL
        AUTH 2 L.JACQUAMET, F.FELISAZ, F.CIPRIANI, D.BOURGEOIS
JRNL TITL UV LASER-EXCITED FLUORESCENCE AS A TOOL FOR THE
         TITL 2 VISUALIZATION OF PROTEIN CRYSTALS MOUNTED IN
JRNL
JRNL TITL 3 LOOPS.
JRNL REF ACTA CRYSTALLOGR., SECT.D V. 62 253 2006
JRNL REFN ASTM ABCRE6 DK ISSN 0907-4449
REMARK 2
REMARK 2 RESOLUTION. 1.95 ANGSTROMS.
REMARK 3
REMARK 3 REFINEMENT.
REMARK 3 PROGRAM : REFMAC 5.2.0005
REMARK 3 AUTHORS : MURSHUDOV, VAGIN, DODSON
REMARK 3
REMARK 3 REFINEMENT TARGET : MAXIMUM LIKELIHOOD
```

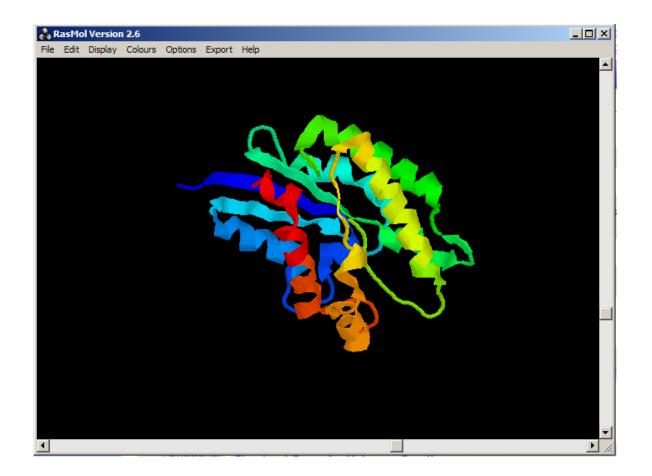
					_				
SEQRES							ILE CYS SER	LEU	
SEQRES					I TYR CYS				
SEQRES							HIS LEU VAL		
SEQRES	2 B 2			LEU VAI	. CYS GLY	GLU ARG	GLY PHE PHE	TYR	
SEQRES	3 B 2	9 THR	PRO LYS						
FORMUL	3 HOH	*31 (F	12 01)						
HELIX	1 1 G	LY A	1 CYS	A 7	1				7
HELIX	2 2 S	ER A	12 ASN	A 18	1				7
HELIX	3 3 G	LY B	8 GLY	B 20	1				13
HELIX	4 4 G	LU B	21 GLY	B 23	5				3
SSBOND	1 CYS A	. 6	CYS A	11			1555	1555	
SSBOND	2 CYS A	. 7	CYS B	7			1555	1555	
SSBOND	3 CYS A	20	CYS B	19			1555	1555	
CRYST1	78.608	78.60	08 78.0	508 90.	00 90.00	90.00	I 21 3	24	
ORIGX1	1.00	0000 0	0.000000	0.0000	000	0.00000)		
ORIGX2	0.00	0000 1	1.000000	0.0000	000	0.00000)		
ORIGX3	0.00	0000 0	0.000000	1.0000	000	0.00000)		
SCALE1	0.01	2721 0	0.000000	0.0000	000	0.00000)		
SCALE2	0.00	0000 0	0.012721	0.0000	000	0.00000)		
SCALE3	0.00	0000 0	0.000000	0.0127	21	0.00000)		
ATOM	1 N	GLY A	1	45.324	26.807	11.863	1.00 24.82		N
ATOM	2 CA	GLY A	1	45.123	27.787	12.967	1.00 24.93		С
ATOM	3 C	GLY A	1	43.756	27.627	13.605	1.00 25.16		С
ATOM	4 O	GLY A	1	43.107	26.591	13.438	1.00 25.00		0
ATOM	5 N	ILE A	2	43.313	28.661	14.323	1.00 25.21		N
ATOM	6 CA	ILE A	2	42.050	28.622	15.065	1.00 25.39		с
ATOM	7 C	ILE A	2	40.818	28.303	14.200	1.00 25.69		С
ATOM	8 O	ILE A	2	39.935	27.565	14.635	1.00 25.56		0
ATOM	9 CB	ILE A	2	41.816	5 29.917	15.917	1.00 25.39		С

PDB content growth (www.pdb.org)

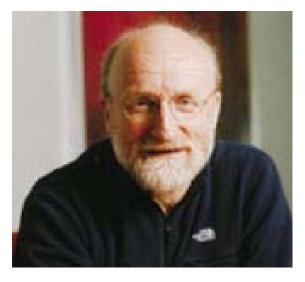


Structure Visualization

• Rasmol


(http://www.umass.edu/microbio/rasmol/getras.ht m)

- MDL Chime (plug-in) (http://www.mdl.com/products/framework/chime/)
- Protein Explorer (http://molvis.sdsc.edu/protexpl/frntdoor.htm)
- Online tools (PDB sites)


J. Pevsner, 2005

Demo Using Rasmol (1VJG)

Structure Analysis

- Assign secondary structure for amino acids from 3D structure
- Generate solvent accessible area for amino acids from 3D structure
- Most widely used tool: DSSP (Dictionary of Protein Secondary Structure: Pattern Recognition of Hydrogen-Bonded and Geometrical Features. **Kabsch and Sander**)

DSSP server: http://bioweb.pasteur.fr/seqanal/interfaces/dssp-simple.html DSSP download: http://swift.cmbi.ru.nl/gv/dssp/

Chris Sander

One of the founders of Bioinformatics and Computational Biology

DSSP Code:

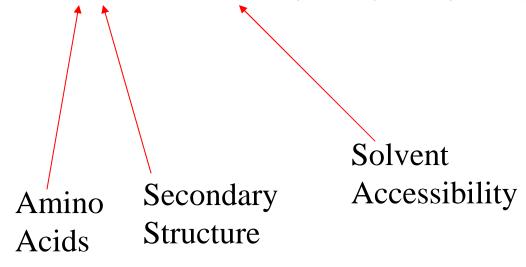
- H = alpha helix
- G = 3-helix (3/10 helix)
- I = 5 helix (pi helix)
- B = residue in isolated beta-bridge
- E = extended strand, participates in beta ladder
- T = hydrogen bonded turn
- S = bend
- Blank = loop

DSSP Web Service

DSSP : Definition of secondary structure of proteins given a set of 3D coordinates (W.Kabsch, C. Sander)

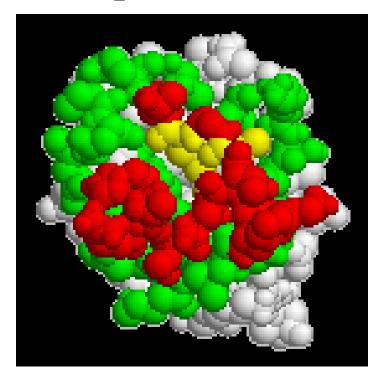
Reset	Run dssp 🧧	jianlin.cheng@gmail.com	your e-mail
PDB File			

1vjg or you can instead enter a PDB id.


http://bioweb.pasteur.fr/seqanal/interfaces/dssp-simple.html

DSSP : Definition of secondary structure of proteins given a set of 3D coordinates (W.Kabsch, C. Sander)

Results:


dssp.out (31.16 Ko) predator 💌 Run the selected program on dssp.out standard error file From now, this files will remain accessible for 10 days at: http://bioweb.pasteur.fr/seqanal/tmp/dssp/A58289116100642/ You can save them individually by the Save file function if needed. Job summary default format 💌 Unix exact command: cat /local/databases/release/Pdb/pdb1vjg.ent | dssp --Help References: Kabsch, W. and Sander, C. (1983) Biopolymers 22, 2577-2637. Pise CGI generator version 5.a (13 Apr 2006 5:10) **Click here**

#	RESIDUE AA	STRUCTURE	BP1	BP2	ACC	N-H>O	O>H-N	N-H>O	O>H-N	TCO	KAPPA ALPHA	PHI	PSI	X-CA	Y-CA	Z-CA
1	5 A S		0	0	179	0, 0.0	2,-0.0	0, 0.0	0, 0.0	0.000	360.0 360.0	360.0	125.7	-8.6	43.0	43.9
2	6 A K	-	0	0	123	1,-0.1	2,-0.4	37,-0.1	37,-0.2	-0.235	360.0-108.7	-87.0	151.4	-7.5	41.4	40.6
3	7 A T	E –a	39	0A	75	35,-0.6	37,-2.5	1,-0.0	2,-0.3	-0.593	34.7-132.0	-72.2	128.3	-4.3	39.5	39.6
4	8 A Q	E +a	40	0A	91	-2,-0.4	69,-0.6	35,-0.2	2,-0.4	-0.639	26.0 179.8	-86.4	132.7	-2.0	41.5	37.4
5	9 A I	E -ab	41	73A	3	35,-1.9	37,-2.9	-2,-0.3	2,-0.5	-0.991	13.3-156.5-	-129.4	131.5	-0.7	39.9	34.2
6	10 A R	E -ab	42	74A	48	67,-2.8	69,-1.7	-2,-0.4	2,-0.4	-0.910	14.8-173.2-	-105.2	126.8	1.6	41.6	31.8
7	11 A I	E -ab	43	75A	0	35,-2.5	37,-2.6	-2,-0.5	2,-0.5	-0.983	11.9-162.4-	-124.9	124.4	1.7	40.3	28.2
8	12 A C	E -ab	44	76A	0	67,-2.3	69,-2.6	-2,-0.4	2,-0.6	-0.931	6.5-159.9-	-100.8	130.8	3.9	41.2	25.3
9	13 A F	E -ab	45	77A	0	35,-2.2	37,-3.0	-2,-0.5	2,-0.5	-0.955	13.2-169.0-	-109.5	117.1	2.7	40.2	21.8
10	14 A V	E +ab	46	78A	0	67,-3.1	69,-2.2	-2,-0.6	2,-0.3	-0.926	34.8 71.1-	-116.5	129.9	5.6	40.1	19.4
11	15 A G	E S-ab	47	79A	0	35,-0.9	37,-1.9	-2,-0.5	69,-0.2	-0.921	70.2 -50.2	169.0-	146.4	5.3	39.9	15.6
12	16 A D	S >> S-	0	0	4	67,-0.8	4,-2.2	-2,-0.3	3,-0.6	-0.023	78.2 -51.3-	-111.5-	151.8	4.2	41.6	12.4
13	17 A S	H 3>>S+	0	0	7	35,-0.3	5,-1.7	1,-0.2	4,-1.5	0.803	130.2 57.8	-67.3	-28.8	1.2	43.5	11.1
14	18 A F	H 345S+	0	0	5	2,-0.2	12,-0.5	1,-0.2	-1,-0.2	0.884	108.5 46.5	-68.2	-33.2	-1.2	40.8	12.2
15	19 A V	H <45S+	0	0	1	-3,-0.6	12,-0.3	64,-0.2	-2,-0.2	0.900	111.1 52.2	-68.9	-41.4	-0.0	41.1	15.7
16	20 A N	H <5S-	0	0	71	-4,-2.2	-2,-0.2	30,-0.1	-1,-0.2	0.774	110.8-127.0	-62.6	-26.6	-0.3	45.0	15.4
17	21 A G	T ><5 -	0	0	5	-4,-1.5	3,-2.2	-5,-0.2	8,-0.4	0.741	36.4-174.6	83.1	25.3	-3.9	44.5	14.2
18	22 A T	T 3 < +	0	0	14	-5,-1.7	-1,-0.2	1,-0.3	-2,-0.0	-0.199	68.4 29.2	-54.0	135.4	-3.4	46.6	11.0
19	23 A G	T 3 S+	0	0	28	1,-0.3	-1,-0.3	159,-0.1	162,-0.2	0.121	86.2 120.8	94.7	-21.4	-6.7	47.0	9.2
20	24 A D	Х –	0	0	9	-3,-2.2	3,-1.2	160,-0.2	-1,-0.3	-0.706	48.9-160.5	-79.7	117.6	-8.9	46.8	12.4
21	25 A P	T 3 S+	0	0	91	0, 0.0	-1,-0.2	0, 0.0	159,-0.0	0.677	91.8 60.1	-70.9	-17.3	-10.9	50.1	12.6
22	26 A E	T 3 S-	0	0	119	-3,-0.0	-2,-0.1	3,-0.0	158,-0.0	0.426	105.0-132.3	-87.9	-3.3	-11.4	49.4	16.3
23	27 A C	S < S+	0	0	112	-3,-1.2	-5,-0.1	-6,-0.2	-6,-0.0	0.730	80.2 98.1	62.8	28.1	-7.6	49.4	16.9

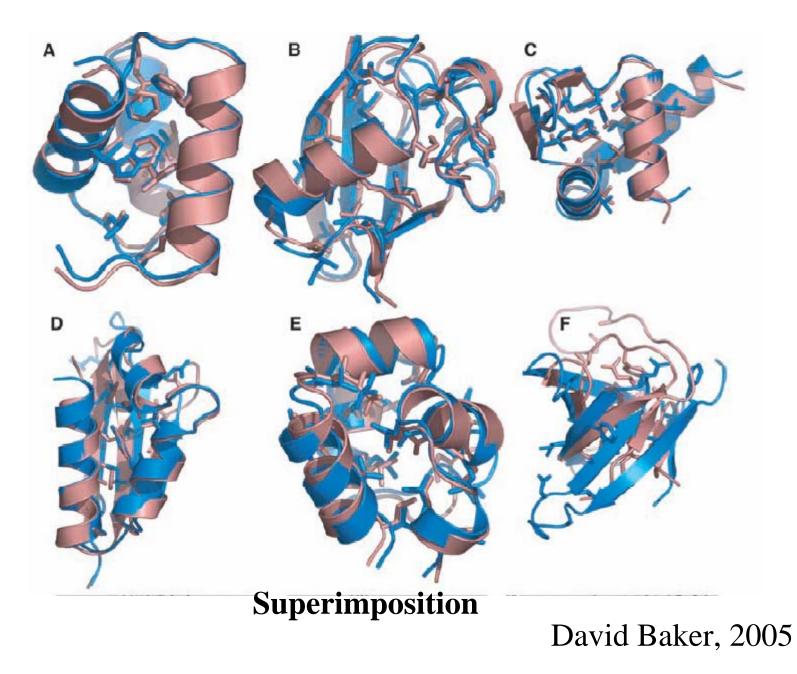
Solvent Accessibility

Size of the area of an amino acid that is exposed to solvent (water).

Maximum solvent accessible area for each amino acid is its whole surface area.

Hydrophobic residues like to be Buried inside (interior). Hydrophilic residues like to be exposed on the surface.

Structure Comparison (Alignment)


- Are the structures of two protein similar?
- Are the two structure models of the same protein similar?
- Different measures (RMSD, GDT-TS (Zemla et al., 1999), MaxSub (Siew et al., 2000), TM score (Zhang and Skolnick, 2005))

Basic Idea

- Try to superimpose two structures to minimize the distances between corresponding atoms (residues)
- Hard geometric optimization problem
- Alignment problem with very complex scoring function (treat each position as one character)

Root Mean Square Deviation

$$RMSD = \sqrt{\frac{\sum_{i=1}^{i=n} ((a_{ix} - b_{ix})^2 + (a_{iy} - b_{iy})^2 + (a_{iz} - b_{iz})^2)}{n}}$$

Useful Structure Alignment Tools

- CE (http://cl.sdsc.edu/)
- DALI (http://www.ebi.ac.uk/ dali/)
- VAST (NCBI)

CE CALCULATE TWO Calculate structural alignment for two polypeptide chains either from the PDB or CHAINS uploaded by the user.

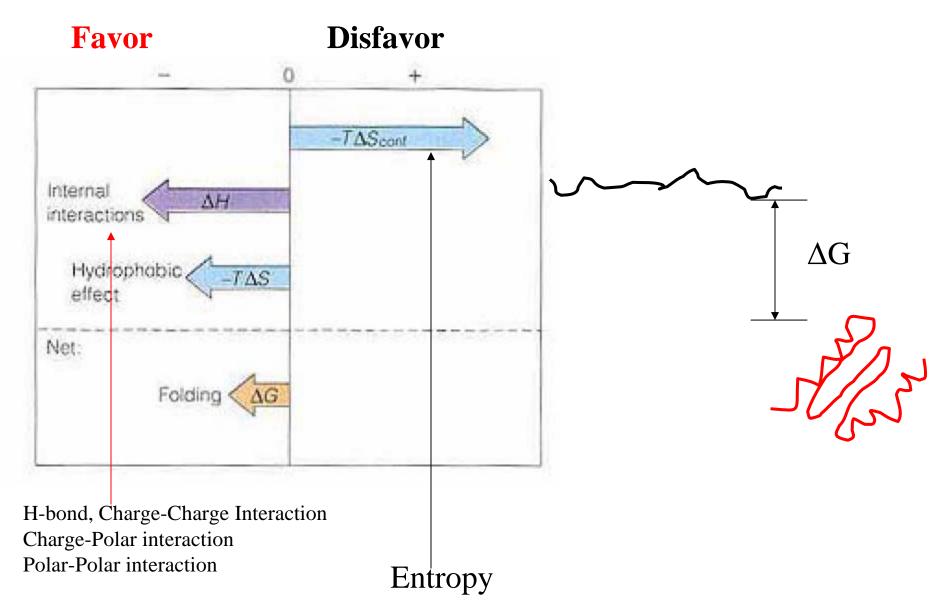
Specify two polypeptide chains and optionally the similarity level and use of sequence information and then press the "Calculate Alignment" button. Selecting the appropriate ? will provide help on that spe

Calculate Alignment Reset Form

Select Similarity Level: Medium ? ?

C PDB: 4HHB:A ? OR • User File: C:\casp7\301\foldpro1.pdb Chain ID: ? Browse.. Chain 1: Use Fragment From: To: (optional) ? Sequence numbering 🔻 OPDB:4HHB:B ? OR Chain 2: User File: C:\casp7\301\ROBETTA_TS1.pdl Browse.. Chain ID: Use Fragment From: (optional) ? Sequence numbering 🔻 To:

USR1:_(size=395) vs USR2:_(size=395) Structure Alignment

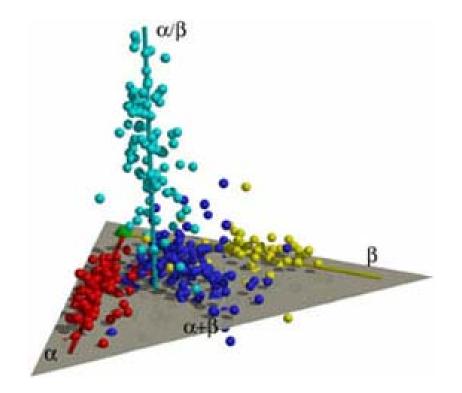

Rmsd = 2.4Å Z-Score = 6.6 Sequence identity = 42.8% Aligned/gap positions = 332/105

Sequence alignment based on structure alignment. Sequence alignment based on structure alignment. Position numbers according to sequence (starting from 1) and according to PDB are given as SSSS/PPPP, SSSS - sequence, PPPP - PDB USR1: -USR2: USR1: PPQIRIPATYLRGGTSKGVFFRLEDLPE-4/5 -SCRVPGEARDRLFMRVIGSPDPYAA USR2: QIRIPATYLRGGTSKGVFFRL--USR1: 57/58 HIDGMGGATSSTSKCVILSKSSQPGHDVDYLYGQVSIDKPFVDWSGNCGNLSTGAGAFAL USR2: 57/58 HIDGMGGATSSTSKCVILSKSSOPGHDVDYLYGOVSIDKPF HAGLVDPARIPEDGICEVRIWQANIGKTIIAHVPVSGGQVQETGDFELDGVTFPAAEIVL USR1: 117/118 USR2: 117/118 HAGLVDPARIPEDGICEVRIWQANIGKTIIAHVPVSGGQVQETGDFELDGVTFPAAEIVL

Outline

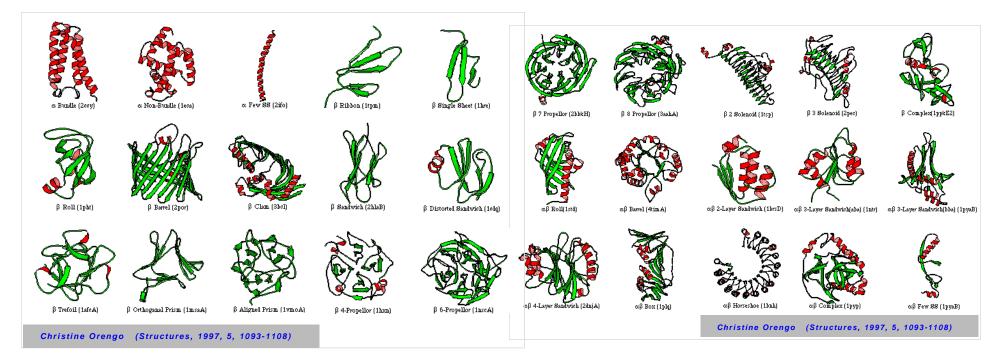
- I. Sequence, Structure, Function Relation
- II. Determination, Storage, Visualization, and Comparison
- **III. Structure Classification**
- IV. 1D Prediction
- V. 2D Prediction
- VI. 3D Prediction
- VII. Useful Tools

Protein Folding

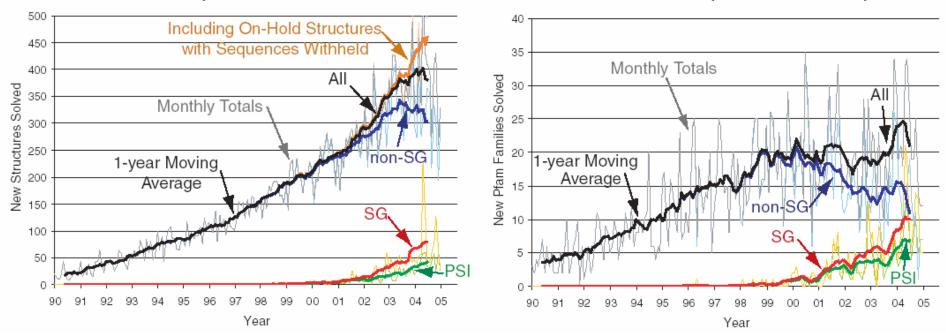

Magnitude of ΔG

- ΔG is small, only about 1-3 H-Bonds.
- A small ΔG is critical for maintenance of the conformation flexibility of proteins in biochemical processes.
- Question: can any amino acid sequences fold into a stable protein structure?

Protein Structure Classification


- About 3 million known protein sequences
- About 30,000 known protein structures in PDB
- Many protein structures are similar due to evolutionary relationship
- Many protein structures are similar due to convergent evolution
- Number of unique structure topologies is estimated to be limited (1000 1500?)
- Number of protein sequences is huge (20^{300})

Protein Structure Universe


Proteins. One thousand families for the molecular biologist. C. Chothia. Nature, 1992.

Colors in the universe of protein structures

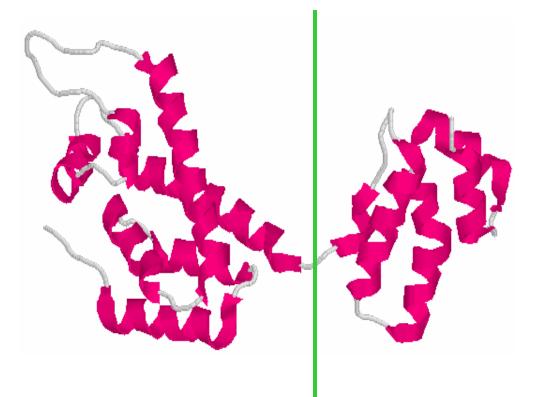
Christine Orengo 1997 Structures 5 1093-1108

Mapping Protein Universe: Structural Genomics

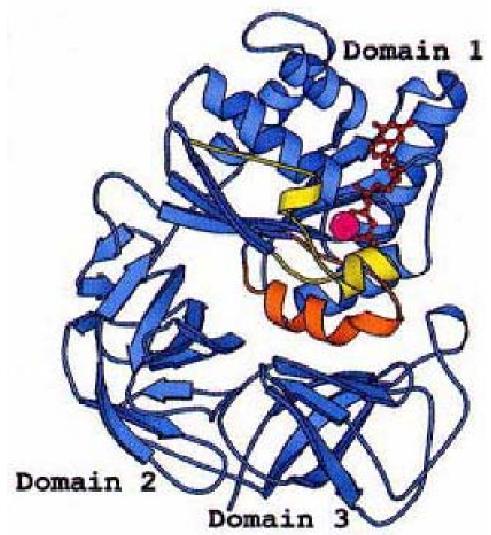
A New structures solved per month

B Pfam families with a first representative solved, per month

Chandonia and Brenner, 2005


Why is the evolution of protein structure so slow?

- Protein sequence evolves faster than protein structure
- Protein structure is more conserved due to function constraints
- Nature reuses existing folds for new functions (pretty much like programming paradigm in computer science)

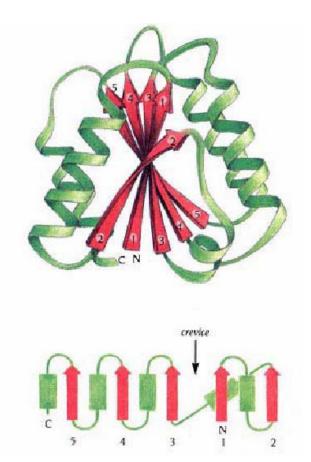

Domain and Fold

- Protein domain is the structural (also functional) unit.
- Protein domain is usually defined as a chunk of protein (usually continuous sub-sequences, but not always) that can fold independently into its tertiary structure without other parts of the protein
- Fold is the topology of a protein or domain: connectivity of secondary structure elements.

Domain Example (HIV-1 Capsid)

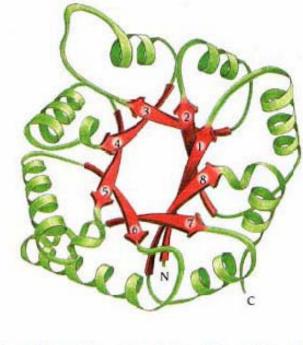
Another Domain Example

http://scop.berkeley.edu/rsgen.cgi?chime=1;pd=1eft;pr=213-312


Domain Parsing Tools

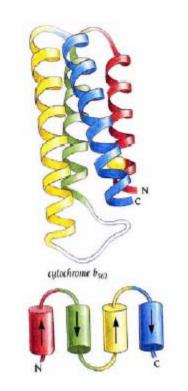
- PDP (protein domain parser) (http://123d.ncifcrf.gov/pdp.html)
- Domain Parser

(http://csbl.bmb.uga.edu/downloads/)

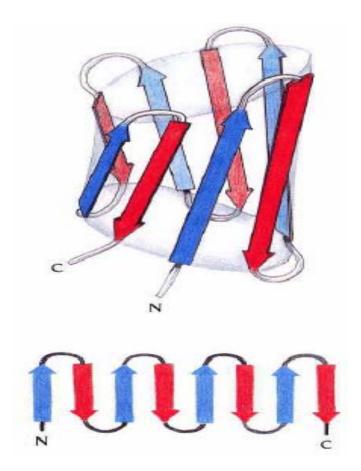

Typical Folds

- Fold: connectivity or arrangement of secondary structure elements.
- NAD-binding Rossman fold
- 3 layers, a/b/a, parallel beta-sheet of 3 strands. Order: 321456

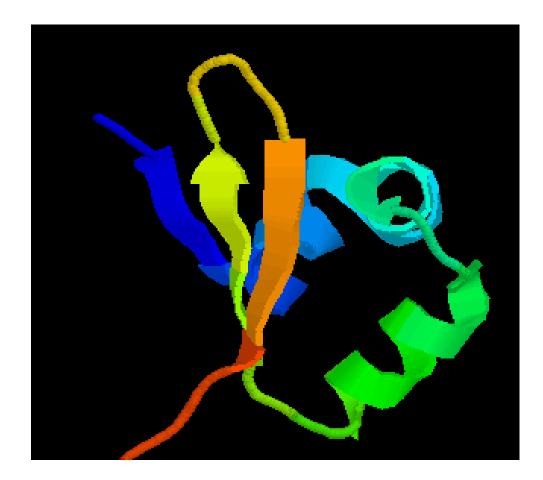
http://scop.berkeley.edu/rsgen.cgi?chime=1;pd=1b16;pc=a


Another Fold Example: TIM betaalpha barrel

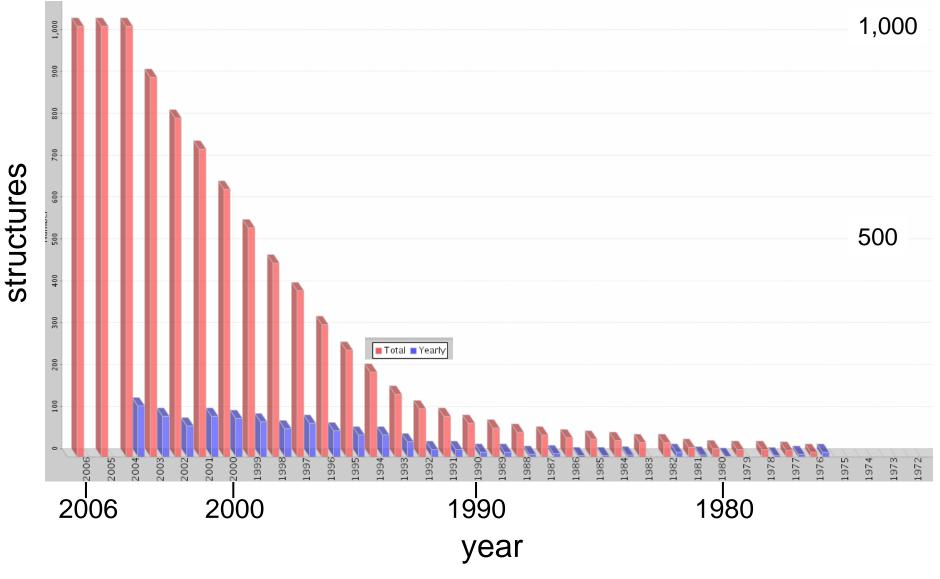
Contains parallel beta-sheet Barrel, closed. 8 strands. Order 1,2,3,4,5,6,7,8.


http://scop.berkeley.edu/rsgen.cgi?chime=1;pd=1hti;pc=a

Fold: Helix Bundle (human growth factor)


http://scop.berkeley.edu/rsgen.cgi?chime=1;pd=1hgu

Fold: beta barrel

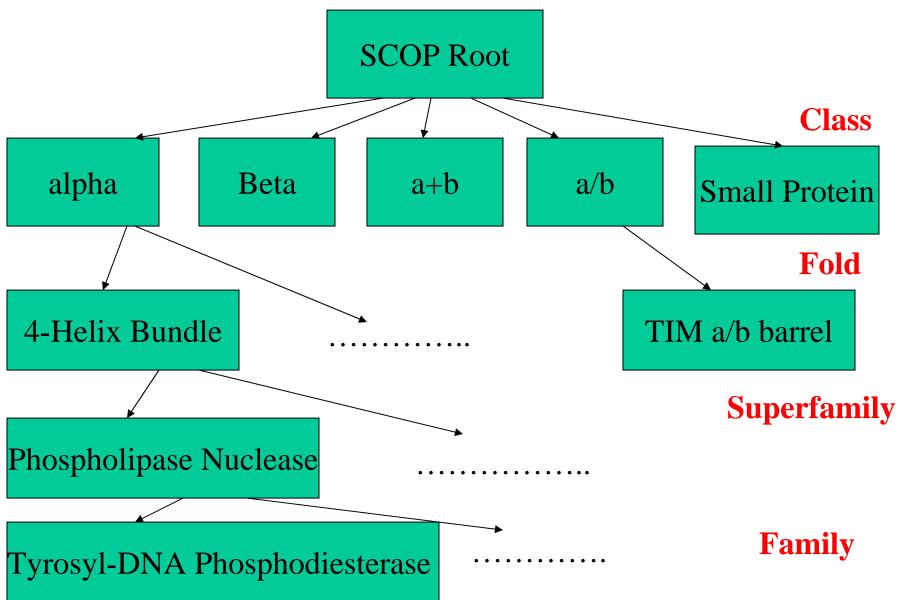

http://scop.berkeley.edu/rsgen.cgi?chime=1;pd=1rbp

Fold Example: Lamda repressor DNA Binding

http://scop.berkeley.edu/rsgen.cgi?chime=1;pd=5cro;pc=0

Number of unique folds (defined by SCOP) in PDB

J. Pevsner, 2005


Structure Classification Database

- SCOP (http://scop.berkeley.edu/)
- CATH

(http://cathwww.biochem.ucl.ac.uk/latest/inde x.html)

• Dali/FSSP (http://ekhidna.biocenter.helsinki.fi/dali/start)

SCOP Classification Levels

Structural Classification of Proteins

Root: scop

Classes:

1. All alpha proteins (138) 🖾 🚨 📽 2. All beta proteins (93) 2 & S Alpha and beta proteins (a/b) (97) 2 8 3 Mainly parallel beta sheets (beta-alpha-beta units) 4. Alpha and beta proteins (a+b) (184) 🖾 🚳 🕤 Mainly antiparallel beta sheets (segregated alpha and beta regions) 5. Multi-domain proteins (alpha and beta) (28) 🖾 🚨 📽 Folds consisting of two or more domains belonging to different classes Membrane and cell surface proteins and peptides (11) 2 8 3 Does not include proteins in the immune system 7. Small proteins (54) 2 8 8 Usually dominated by metal ligand, heme, and/or disulfide bridges 8. Coiled coil proteins (5) 🖾 🕷 📽 Low resolution protein structures (12) 10. Peptides (77) 💁 🕷 📽 Peptides and fragments 11. Designed proteins (24) 28 8 Experimental structures of proteins with essentially non-natural sequences Enter search key: Search Generated from scop database 1.55 with scopm 1.095 on Mon Jul 9 18:35:50 2001 Copyright © 1994-2001 The scop authors / scop@mrc-lmb.cam.ac.uk

J. Pevsner 2005

Scop Classification Statistics

SCOP: Structural Classification of Proteins. **1.69** release 25973 PDB Entries (1 Oct 2004). 70859 Domains. 1 Literature Reference (excluding nucleic acids and theoretical models)

Class	Number of folds	Number of superfamilies	Number of families
All alpha proteins	218	376	608
All beta proteins	144	290	560
Alpha and beta proteins (a/b)	136	222	629
Alpha and beta proteins (a+b)	279	409	717
Multi-domain proteins	46	46	61
Membrane and cell surface proteins	47	88	99
Small proteins	75	108	171
Total	945	1539	2845