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The Central Dogma of Biology

Biological
Function

PROTEIN

Rainer Breitling, 2005




The Dramatic Consequences of
Gene Regulation in Biology

Same genome -
Different tissues
Different physiology
Different proteome
Different expression pattern

Anise swallowtail, Papilio zelicaon

Rainer Breitling, 2005



The Complexity of Eukaryotic Gene Expression Regulation
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Transcriptional Regulatory Pathways
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The regulatory pathways that control
gene expression programs are uncharted

The mapping of transcriptional regulatory
pathways will:

» reveal how cell state, differentiation and
response to stimuli are controlled

* suggest new strategies to combat
disease

David Gifford, 2005



Regulatory Networks — Integrating It All Together

=
Miicr Mz
== | Eop-cr

o]/

Genetic regulatory network controlling the development of the body
plan of the sea urchin embryo Davidson et al., Science, 295(5560):1669-

1678. Rainer Breitling, 2005



Gene Expression Distinguishes...

e Physiological status (nutrition, environment)
e Sex and age

o Varioustissues and cell types

* Responseto stimuli (drugs, signals, toxins)

e Health and disease
— underlying pathogenic diversity
— progression and response to treatment
— patient classes of varying prospects

Note: about 40% human genes are expressed at atime.

Rainer Breitling, 2005



Gene Expression Measurement

MRNA expression represents dynamic aspects of cell
MRNA expression can be measured by DNA Microarrays
MRNA isisolated and |labeled with fluorescent protein

MRNA is hybridized to the target; level of hybridization
corresponds to light emission which is measured with a
|aser

DNA Microarray can measure the expression of thousands
of genes at the same time (high throughput)



Gene Expression Microarrays

The main types of gene expression microarrays.
« Short oligonucleotide arrays (Affymetrix);

« CDNA or spotted arrays (Brown/Botstein).
» Long oligonucleotide arrays (Agilent Inkjet);
* Fiber-optic arrays

Two-color and one-color Microarrays.

« two color: produce two expression images for experimental and
reference environment respectively.

e one color: produce one expression image that reflect the
expression levels.

Y. Guo, V. Curain, H. Morris, 2005



GeneChip® Affymetrix
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Affymetrix Microarrays

Raw image

i~107 oligonucleotides,

half Perfectly Match mRNA (PM),
half have one Mismatch (MM)
Raw gene expression is intensity

difference: PM - MM
Rainer Breitling, 2005
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cDNA Microarray Schema
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Example of Microarray Image (One
Channel / Color)
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Microarray |mages -> Differential
Expression

Upregulated

Reference cDNA

I Experimental cDNA
Downregulated

A. Singh, 2005



CDNA Microarray raw data
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Raw Image of Two Channels/
Colors

F. Hong, 2005



Microarray Experiment

cDNA Arrays Oligonucleotide Arrays
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lmage Processing

Gridding
— ldentifying spot locations

Segmentation
— Identifying foreground and background

Removal of outliers

Absol ute measurements

— cDNA microarray

* Intensity level of red and green channels
— Affymetrix chips

» Average difference of PM and MM spots

A. Singh, 2005



Data Extraction

One Color

e Calculateratio of red to green fluorescence
» Convert to log, and round to integer
Two-Color

e Calculatelog R and log G.



Microarray Data Example

Genes

Time Points
1 2 3
log2.t0 log2.t0.5 log2.t2
1 -0.40 -0.91 -1.60
2 -0.99 -0.07 -0.83
= -0.22 -0.49 -0.28
4 -0.31 -0.01 -0.09
S -0.48 1.31 0.36
6 -0.38 0.35 0.60
7 -0.41 -0.49 -0.54
8 -0.46 -2.72 -3.16
a -0.15 0.06 0.13
10 0.12 -0.67 -0.77
11 -0.03 -1.87 -2.58
12 0.31 0.02 -1.64
13 -0.06 -0.22 0.17
14 -0.03 -0.23 0.02
15 -0.12 0.11 -0.01
16 -0.21 -0.66 -0.30
17 -0.40 1.66 1.13
18 -0.58 0.25 0.72
19 -0.77 -0.05 1.11
20 -0.28 0.43 -0.57

Typically, there are
many genes

(>> 10,000) and
few samples (~ 10)

J. Pevsner, 2005



Characteristics of Microarray Data

e Extremely high dimensionality
— Experiment = (gene,, gene,, ..., gene,)
— Gene = (experiment,, experiment,, ..., experiment,,)
— Nisoften on the order of 10
— M isoften on the order of 101
* Noisy data
— Normalization and thresholding are important
e Missing data

— For some experiments a given gene may have failed to
hybridize

A. Singh, 2005



Data Mining Challenges

e Too few experiments (samples), usually <
100

e Too many rows (genes), usually > 1,000
 Model needs to be explainable to biologists

A. Singh, 2005



Five Man Problems

. Data pre-processing (normalization)

. ldentify differentially expressed genesin
normal and non-normal situations.

. Clustering genes according to expression
data

. Use gene expression data to classify
samples (e.g., diagnosis of cancer)

. Infer biological networks
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Microarray Data Analysis. Preprocessing

Observed differences in gene expression could be
due to transcriptional changes, or they could be
caused by artifacts such as:

o different labeling efficiencies of Cy3, Cy5
 uneven spotting of DNA onto an array surface
e variations in RNA purity or quantity

e variations in washing efficiency

e vVariations in scanning efficiency

J. Pevnser, 2005



Microarray data analysis. preprocessing

The main goal of data preprocessing isto remove
the systematic bias in the data as completely as
possible, while preserving the variation in gene
expression that occurs because of biologically
relevant changes in transcription.

A basic assumption of most normalization procedures
IS that the average gene expression level does not
change in an experiment.

J. Pevnser, 2005



Data normalization

Uncalibrated, red light under detected Calibrated, red and green equally detected

A. Singh, 2005



Data analysis. global normalization

Global normalization procedure

Step 1: subtract background intensity values
(use ablank region of the array)

Step 2: globally normalize so that the average ratio = 1

Some researchers use housekeeping genes for
global normalization

J. Pevnser, 2005



Normalization: global

 Normalization based on a global adjustment
log, RIG — log, R/G - ¢ =log, R/(kG)

« Common choicesfor k or c =log.k are C=
median or mean of log ratios for a particular gene
set (e.g. al genes, or control or housekeeping
genes)

http://ludwig-sun2.unil.ch/~darlene/



Gene expression data example

Dataon mgenesfor n samples

MRNA samples

samplel sample2 sample3 sample4 sample5 ...
0.46 0.30 0.80 1.51 0.90

-0.10 0.49 0.24 0.06 0.46

0.15 0.74 0.04 0.10 0.20

-0.45 -1.03 -0.79 -0.56 -0.32

-0.06 1.06 1.35 1.09 -1.09

Genes

O~ wWNPE

Gene expression level of genei in mMRNA sample|

= (normalized) Log( Red intensity / Green intensity)

http://ludwig-sun2.unil.ch/~darlene/
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Scatter plots

Useful to represent gene expression values (logarithm) from
two microarray experiments (e.g. control, experimental)

Each dot corresponds to a gene expression value (logarithm)
Most dotsfall along aline

Outliers represent up-regulated or down-regulated genes

J. Pevsner, 2005



Expression level (sample 2)
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FE35 Median - BE3S

Scatter plots
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classical scatter plot M-A plot for microarray analysis
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Differentially expressed genes are higher (or lower) in one of the
samples

Use an appropriate cut-off (‘distance’ from diagonal) to select

relevant genes - highly arbitrary! _ .
Rainer Breitling, 2005



t-test = statistical significance of
observed difference

 requiresindependent { :x: 5

experimental
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replication Pz
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Rainer Breitling, 2005



Testing an intrinsic 5%~ X,|
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Rainer Breitling, 2005




T-test Example

A B C D E F G H | J K | L |
1
2
3|
4_Transoript Expression value {control) Mmean{ Cx) Expression value [disease) mean( D) TTEST | Ratio C/iD
En 1 200 240 160 200 260 150 180 197 0.947514 1.02
6 2 51 T2 55 59 5 70 55 67 047259 0.9
7 3 2500 2745 2638 3644 1200 1167 1366 1244 0.001379 2.93
8 | 4 1567 1644 1490 1567 1543 1349 1599 1497 0.615597 1.0%
9 | 5 25 26 24 25 23 25 24 34 0.00409 0.74
10
12 20,000
13 ]

J. Pevsner, 2005



The result of “differential expression” statistical analysis
- along list of genes!

Fold-Change

26.45
25.79

23.08
215
18.82
16.68
18.23
14.85
13.62
11.53
11.82
11.27
10.89
10.73
9.98
9.97
8.36
7.33
6.97
6.69

Gene Symbol

TNFAIP6
THBS1

SERPINE2
PTX3
THBS1
CXCL10
CCL4
SOD2
IL1B
CCL20
CCL3
SOD2
GCH1
IL8
ICAM1
SLC2A6
BCL2A1
TNFAIP2
SERPINB2
MAFB

GeneTitle

tumor necrosis factor, alpha-induced protein 6

thrombospondin 1

serine (or cysteine) proteinase inhibitor, clade E (nexin, plasminogen activator inhibitor type

1), member 2
pentaxin-related gene, rapidly induced by IL-1 beta
thrombospondin 1
chemokine (C-X-C motif) ligand 10
chemokine (C-C motif) ligand 4
superoxide dismutase 2, mitochondrial
interleukin 1, beta
chemokine (C-C motif) ligand 20
chemokine (C-C motif) ligand 3
superoxide dismutase 2, mitochondrial
GTP cyclohydrolase 1 (dopa-responsive dystonia)
interleukin 8
intercellular adhesion molecule 1 (CD54), human rhinovirus receptor
solute carrier family 2 (facilitated glucose transporter), member 6
BCL2-related protein Al
tumor necrosis factor, alpha-induced protein 2
serine (or cysteine) proteinase inhibitor, clade B (ovalbumin), member 2

v-maf muscul oaponeurotic fibrosarcoma oncogene homolog B (avian)

Rainer Breitling, 2005



Biological Interpretation Strategy

e Are certain types of genes more common at the top of
the list and isthat significant?

e Challenges:

— Some types of genes are more common in the genome/on
the array

— Thelist of genes usually stops at an arbitrary cut-off
(“significantly changed genes’)
— Classifying genes according to “genetype’ is atedious task

— Expectations and focused expertise might bias the
Interpretation

 Solution: Automated procedure using available
annotations

Rainer Breitling, 2005
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Clustering goals

* Find natural classes in the data, un-
supervised learning

 |dentify gene classes/ gene correlations/
gene functions

« Support biological analysis/ discovery
(regulatory sites)

e Different Methods
— Hierarchical clustering, SOM, k-means, PCA



Two Components of Clustering
Algorithms

o Similarity / Distance Measures

o Clustering Methods



Similarity / Distance Measures

Pear son correlation
(looks for similarity in
shape of the response
profile, not the absolute
values)

Euclidean distance

takes absol ute expression
level into account

Manhattan (or city-
block) distance

Rainer Breitling, 2005



Fuclidean distance:

The distance between two vectors is the square root of the sum of

the squared differences over all coordinates.

d, (X, X,) = 4f(2-2/4)F + (4-4/4) +(5-5/4)% +(6-6/4)} =343/ 4 ~ 2.598

X,=(2,4,5,6)

X, = (2/4, 414, 5/4, 6/4)
X, = (6/4, 414, 314, 2/4)
X, = (25,35, 4.5, 1)

Jorg Rahnenfiihrer, MP| Informatik

0 2.60 | 2.75 | 2.25
2.60 0 1.23 | 2.14
2.75 | 1.23 0 2.15
225 | 2.14 | 2.15 0

Matrix of pairwise distances

NGFN course, Heidelberg, October 8, 2003




Manhattan distance:
The distance between two vectors 1s the sum of the absolute
(unsquared) differences over all coordinates.

dy(x,, X,) = [2-2/4|+|4-4/4|+|5-5/4| +|6-6/4] =51/4 =12.75

X, =(2,4,5,0) 0 |12.75]13.25] 6.50
X, = (2/4, 4/4, 5/4, 6/4) 12.75( 0 | 2.50 | 8.25
X, = (0/4, 4/4, 3/4, 2/4) 1325|250 | o | 7.75
X, =(2.5,3.5,45,1) 6.50 | 825|775 | 0

Matrix of pairwise distances

Jorg Rahnenfuhrer, MPI Informatik NGFN course, Heidelberg, October 8, 2003



Correlation distance:

Distance between two vectors is 1-p, where p 1s the Pearson
correlation of the two vectors.

S (2-D)E-8)+(d-L)E 1)+ (-2)3-D) +(6-D)5-1)
T T e D (-’ T 2 G-I (- (G- + (61
=(2,4,5,0) 0 0 2 | 1.18
, = (214, 4/4, 5/4, 6/4) 0 0 2 | 118
:( 6/4, 414, 314, 2/4) 2 | 2 | 0 |o082
=(2.5,3.5,4.5,1) 1.18 | 1.18 | 0.82 | 0

Matrix of pairwise distances

Jorg Rahnenflhrer, MPI Informatik

NGFN course, Heidelberg, October 8, 2003



Clustering Methods

* Hierarchical
— Single, Complete and Average Linkage

* Divisive
— K-means
— Self Organizing Maps (SOM)

e Dimension Reduction
— Principal Component Analysis (PCA / SVD)



Hierarchical Clustering

* Thefirst algorithm used in gene expression data
clustering (Eisen et al., 1998)

e Algorithm
— Assign each data point into its own cluster (node)
— Repeat

o Select two closest clusters are joined. Replace them with a new
parent node in the clustering tree.

» Update the distance matrix by computing the distances
between the new node with other nodes.

— Until there is only one node (root) left.



Three Ways to Compute Distance
Between Groups/ Clusters

* Average Linkage: average distance
e Single Linkage: smallest distance
o Complete Linkage: largest distance



Hierarchical Clustering

Combine most similar genes into agglomerative clusters,
build tree of genes

GENE
A
D
F
B
C
I—E
L—@G
H
| | | | | | | | |
-0.75 -0.50 -0.25 0.00 0.25 0.50 0.75 1.00

-1.00

Correlation Scale

Rainer Breitling, 2005



Hierarchical clustering results
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Iyer et al., Science, Jan 1999:

Genes from functinal classes

are clustered together. Cluster

average
patterns
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Jorg Rahnentunrer, MP| Informatik NGFN course, Heidelberg, October 8, 2003



Iver et al.,
Science,
Jan 1999:

Genes from
functinal
classes are
clustered
together
(sometimes!).

Careful
interpretation
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Golub et al.: Leukemia dataset, hitp:/www.genome.wi.mit.edu/MPR

3 cancer classes: Cluster Dendrogram
25 acute myeloid
leukemia (AML), S
—
47 acute lympho- = - |
blastic leukemia . L = EE
(ALL), the latter &= o X I
- T = == #c_l_i‘ =
9 T-cell and 38 = 1Z[]= [ = =
= 3= = _ jf:ﬁ =<'
=+ — —_— — =1 —1
B-cell. = =g == Ly =
- —11 =I=L
= ==
Dendrogram for 38 training
data shows perfect separation. helust ¢+ Saverage

Joérg Rahnenfiihrer, MPI Informatik NGFN course, Heidelberg, October 8, 2003
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K-Means Clustering

 Randomly select k data points as the centrods of k
clusters. Assign pointsto k clusters with the
closest centroids.

* Repeat
- Compute centroid (mean) of each cluster

- Assign each point to its nearest cluster
(use centroid of clustersto compute distance

[ sSsmilarity)
o Until asssignment of data points is not changed



&

Initialization

Round 1: Assign data

Compute centroids

K-Means Clustering Example




K Means Example
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« SOM’s are similar to k-means,
but with additional constraints.
« Mapping from mput space onto
one or two-dimensional array of
Kk total nodes.
e [teration steps (20000-50000):
» Pick data point P at random

* Move all nodes i direction of P,
the closest node most. the further a
node 1s in network topology. the
less

®* Decrease amount ol movement
with iteration steps

Jorg Rahnenfihrer, MPI Informatik

A o ® (]

Node (cluster prototypes)

Data point

Tamayo et al. (1999): First use of SOM’s
for gene clustering from microarrays

NGFN course, Heidelberg, October 8, 2003



Self-organizing maps (SOM)

One chooses a geometry of 'nodes'-for example, a 3x2 grid

J. Pevsner, 2005

Formerly http://www.genome.wi.mit.edu/M PR/SOM .html



Self-organizing maps (SOM)

The nodes are mapped into k-dimensional space,
Initially at random and then successively adjusted.

J. Pevsner, 2005



organizing maps (SOM)

Self

J. Pevsner, 2005

S e e e e T S — —



Unlike k-means clustering, which isunstructured, SOMs allow oneto impose
partial structureon theclusters. The principle of SOMsisasfollows.

One chooses an initial geometry of “nodes’ such asa 3 x 2 rectangular grid
(indicated by solid linesin the figur e connecting the nodes). Hypothetical
trajectories of nodesasthey migrateto fit data during successive iterations
of SOM algorithm are shown. Data points are represented by black dots,

six nodes of SOM by large circles, and trajectories by arrows.

J. Pevsner, 2005




Self-organizing maps (SOM)

To download GeneCluster:

http://www.genome.wi.mit.edu/M PR/softwar e.html

J. Pevsner, 2005



Cluster and TreeView (Visualization)

Tree Yiew
File  Setting Find Help

il

spoll

spol
spoT
Sp0o
spo9
Spo2
spo3l

_n__|=—d=|.‘ |-:|.|_-|-r'|-l-_

| ['Z_r'w

TreeView 1s associated with GeneCluster software.
J. Pevsner, 2005
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One Key Issue of Clustering

ow many clusters are there?

|_

Unfortunately, there is no general rule.
Usually one tries different number of
clusters. Use each number (K) to cluster
data many times. If the clustering results are
rather consistent, K may be a good choice.




Principal components analysis (PCA)

An exploratory technique used to reduce the
dimensionality of the data set to 2D or 3D

For amatrix of mgenes x d samples, create a new
covariance matrix of sized x d

Thus transform some large number of variables into
a smaller number of uncorrelated variables called
principal components (PCs).

Also called SVD (Singular Vaue Decomposition)

J. Pevsner, 2005



ODbjectives of PCA

* Reduce dimensionality

* Determine the linear combination of variables
* Choose the most useful variables (features)
 Visualize multidimensional data

o |dentify groups of objects (e.g. genes/samples)
o |dentify outliers

J. Pevsner, 2005



Basic |dea of PCA

Goal: Map data pointsinto afew dimension while
trying to preserve the variance of data as much as
possible.




Basic |dea of PCA

Goal: Map data pointsinto afew dimension while
trying to preserve the variance of data as much as
possible.




PCA Method

Given adatamatrix X (n x d, n data points, d
dimension).

Normalize X by subtracting mean from each data
point

Construct a covariance matrix C=XTX / n. (d x d)

Calculate the eigenvectors and eigenvalues of the
covariance matrix C. (Cv =V A).

Sort elgenvectors by eigenvalues in decreasing order

Map data point x to the direction v by computing the
dot product.

A well studied problem. Implementation in many
software such as MatL ab.



PCA Example

M. Ahmed, 2004

Mature Reviews | Genelics
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Classification Methods

Decision Tree

e K-nearest neighbor

Neural Nets

» Support Vector Machines (SVM)

Tradeoff:

Decision tree is easy to understand, but usually less
accurate

Neural Nets and SVM have higher accuracy, but hard to
understand the model (black box).



Decision Tree Classification

* Divide and Conquer Technique

N the nodes are In the same class
o What isthe key issue here?



Key Issue of Decision Tree

Which feature is selected at each step?

We want to select most informative feature
at each step

Use Information Gain M easure

Use afeature to divide data and check how
entropy changes. Select the feature reducing
entropy most.



K Nearest Neighbor (KNN)

e Glven adata x, compute its distance (or
similarity) to all data points with known
classes.

o Select k closest neighbors

e Use majority classes of the k neighborsto
predict the label of x.



Neural Network

Input Units Hidden Units Output Units




Support Vector Machine Learning
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Two Classification Problems

e Classify samples using expression levels of a set
of genes as features. (discriminate different
known cell types. e.g. tumor cell vs normal
call).

e Classify genes using expression levels of genes
across multiple samples or experiments. A gene
class may correspond to a functional category or
biological process.



A Sample Classification Example

o Leukemia: Acute Lymphoblastic (ALL) vs
Acute Myeloid (AML), Golub et al, Science,
v.286, 1999

— 72 examples (38 train, 34 test), about 7,000 genes
— Gene expression values are features

ALL |

Visually similar, but genetically very different

S | AML

Y. Guo, V. Curan, H. Morris, 2005



Results on the Test Data

o Select genes (Feature selection)

e Best neural net model used 10 genes per
class

« Evaluation on test data (34 samples) gives 1
or 2 errors (94-97% accuracy) using most
classification methods

Y. Guo, V. Curan, H. Morris, 2005
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Classical study of cancer subtypes
Golub et al. (1999)

identification of diagnostic genes

ALL AN]L |
acute lymphoblastic leukemia acute myeloid leukemia
(Iymphoid precursors) (myeloid precursor)

Rainer Breitling, 2005



Some Common Feature Selection
Methods

e |Information Gan
e Forward Selection
e Backward Selection
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Discovery of Regulatory Mechanism
of Gene Expression

* A longterm goal of Systems Biology Isto
discover the causal processes among genes,
proteins, and other moleculesin cells

* Can this be done (in part) by using data from hlgh
throughput experiments, such as microarrays?

* Clustering can group genes with similar
expression patterns, but does not reveal structural
relations between genes

e Bayesian Network (BN) isaprobabilistic
framework capable of learning complex relations
between genes



Bayesian Networks

A Bayesian Network (BN) isagraphical

representation of a probability distribution
/E B | P(AJE,B) \
1 0

|
Qualitative Part: O 1] 09 01
Directed acyclic Graph (DAG) 1 0] 02 08
* Nodes — random variables 1 1| 09 01
*Edges — direct (causal) O O | 001 0.9
influence /

Quantitative part
| ocal conditiona
probability




Key Features of BN

s

«Conditional Independence
(decomposition, simplification)

P(A, B, C,D,E) =P(E) * P(B) * P(DI|E)
* P(A|E, B) * P(C|A)

If each variable can have two different
values, how many parameters are required
represent P(A, B, C, D, E)?

How many parameters are needed using
Bayesian network at the left?



Advantages of BN

Compact & intuitive representation
Captures causal relationships

Efficient model learning (parameters and
structure)

Deals with noisy data
Integration of prior knowledge
Effective inference algorithms

N. Friedman, 2005



Learning BN from Gene Expression
Data

Measured expression level of ~ Random variables
each gene (discretized) ~ Affecting on another

| — G-

L earn parameters (conditional probabilities) from data
L earn structure (casual relation) from data
Make inference given alearned BN model

N. Friedman, 2005



Challenges of Gene Bayesian Network

Massive number of variables (genes)
Small number of samples (dozens)

Sparse networks (only a small number of
genes directly affect one another)

Two crucial aspects. computational
complexity and statistical significance of
relations in learned models

N. Friedman, 2005



Solutions

« Sparse candidate algorithm (by Nir Friedman):
Choose a small candidate set for direct influence
for each gene. Find optimal BN constrained on
candidates. Iteratively improve candidate set.

» Bootstrap confidence estimate: use re-sampling to
generate perturbations of training data. Use the
number of times arelation (or feature) is repeated
among networks learned from these datasets to
estimate confidence of Bayesian network features.



Network Leamed

Data: 76 samples of 250 cell-cycle related genesin yeast genome
Discretized into 3 expression levels. Run 100 bootstrap using sparse learning algorithm.
Compute the confidence of features (relations). Most high confident relations make bio-senses.
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Major Public Gene Expression
Databases

3D-GeneExpression Database
ArrayExpress

BodyMap

ChipDB

ExpressDB

Gene Expression Omnibus (GEO)
Gene Expression Database (GXD)
Gene Resource Locator

GeneX

Human Gene Expression Index
(HUGE Index)

RIKEN cDNA Expression Array
Database (READ)

RNA Abundance Database (RAD)
Saccharomyces Genome Database
(SGD)

Standford Microarray Database
(SMD)

Tissuelnfo

yeast Microarray Global Viewer
(YMGV)

Y. F. Leung, 2005



ArrayEXpress - queries

7} ArrayExpress - selection window - Microsoft Internet Explorer

J File Edit Miew Go Favortes  Help |
J > . @ | Q @ @9 ¥ B 9 =
Back Fonward Stop Refrezh Haome Search  Favortes  Higtory  Channels | Fullscreen ke il Print E dit
J Lirnks @ Best of the Web @ Channel Guide @ Customize Linkz @ Internet Explorer Mews @ Intermet Start AP RealPlayer
J Address http: A fimpreszion. ebi. ac. uk: 3090 4 apE @prezsdguen. kiml j
-
ArrayExpress - selection window

Expenment critena Array criterta Biozsample criterta

Arcession: | 1T | Species: |H|:|m|:| sapiens

Author: | Design name: |

Laboratory: | Prownder: |

Type: | Surface type: |nun-absurptive

Expernimental factors: | Cluery expetiments

Chality control: | Query array's |

| B

|@ | l_ l_ l_ @ Internet zomne

H. Parkinson, 2002



Major Image Analysis Software

AlIDA array
ArrayPro
ArrayVision
Dapple

F-scan

GenePix Pro 3.0.5
maGene 4.0

conoclust
plab

L ucidea Automated
Spotfinder

Phoretix Array3
P-scan
QuantArray 3.0
ScanAlyze 2
Spot

TIGR Spotfinder
UCSF Spot

Y. F. Leung, 2005



Some Common Image Analysis
Software

ScanAlyze 2 (Mike Eisen, LBNL)
GenePix Pro 3.0.5 (Axon Instruments)
QuantArray 3.0 (Packard Instrument)
ImaGene 4.0 (Biodiscovery)

Y. F. Leung, 2005



Major Data I\/I Ining Software

AIDA Array
AMADA

ANOVA program for microarray

data

ArrayMiner
arraySCOUT

Array Stat

BRB ArrayTools
CHIPSpace

Cleaver

CIT

CLUSFAVOR

Cluster

Cyber T

DNA-arrays analysis tools
dchip

Expression Profiler
Expressionist

Freeview & FreeOView
Gene Cluster

GeneLinker Gold
GeneMaths
GeneSight
GeneSpring

Genesis

Genetraffic

J-EXxpress
MAEXxplorer

Partek

R cluster

Rosetta Resolver

SAM

SpotFire Decision Site
SNOMAD

TIGR ArrayViewer
TIGR Multiple Experiment Viewer
TreeView

Xcluster

Xpression NTI Y. F. Leung, 2005



Comprehensive Software

» Definition: Software incorporate many
different analyses for different stagein a
single package.

e Examples

— Cluster (Mike Eisen, LBNL)
— GeneMaths (Applied Maths)
— GeneSight (Biodiscovery)

— GeneSpring (Silicon Genetics)
Y. F. Leung, 2005



Specific Analysis Software

 Definition: Software performing afew/ one
specific analysis
 Examples

— GeneCluster (Whitehead I nstitute Centre
for genome research)

— INCLUSIve - INtegrated CLustering, Upstream
Sequence retrieval and motif Sampler
(Katholieke Universiteit Leuven)

— SAM — Significance Analysis of Microarrays
(Stanford University)

Y. F. Leung, 2005



GeneCluster

o GeneCluster — performing normalization,

filter and SOM

E& GenelCluster 1.1 =]
File Edi Dataset Algorithms Window Help

epeCliuster 1.0
GeneCluster 1.0

Molecular VYersion 1.0 May 20, 1999

Fattern
Recognition

Whitehead/MIT Center for Genome Besearch

11 Qpen arimport a dataset (File menu).

2y Optionally, spocify normmalization pancls.

3 Optionally, apply filters to dataset Dataset menu).
41 Set the algoriihm pa-ameters (Alaarithmes menu.
51 Examine the tesults.

Y. F. Leung, 2005



Inclusive

INCLUSIve - INtegrated CLustering, Upstream Sequence
retrieval and motif Sampler

SAM —finding statistical significant differentially
expressed gene

.......

= o Y. F Leung, 2005




Free, Useful Software

 Michae Eisen’s Cluster (Windows only)

( )
M. deHoon'sCluster 3.0 (all OS) (

* Treeviewing (links on same site)

— Java Treeview
— Maple Tree (also Michael Eisen’slab)

— FreeView

Robert Murphy, 2005



Genera Statistics software

Excel
MATLAB
Octave
SAS
SPSS
S-PLUS
Statistica
R

Y. F. Leung, 2005



R-packages

A language and environment for statistical
computing and graphics.
Highly compatibleto S S-plus

Open source under GNU General Public
License

Runs on many UNIX/ Linux/ windows
family and MacOS platform

There are growing number of microarray
analysis software (packages) written in R

Y. F. Leung, 2005



R-packages

e Dedicated for » General packages
microarray analysis _ celust
— aty — cluster
— Bioconductor — melust
— SMA extension _ multiv
— Cyber T
— GeneSOM - mva
_ Permax — ...€etc!
— OOMAL (S-Plus)
— SMA

— YASMA Y. F. Leung, 2005



Ten Topics

1. Introduction to Molecular Biology and Bioinformatics
2. Pairwise Sequence Alignment Using Dynamic Programming

3. Practical Sequence/Profile Alignment Using Fast Heuristic Methods
(BLAST and PSI-BLAST)

4. Multiple Sequence Alignment

5. Gene |dentification

6. Phylogenetic Analysis

7. Protein Structure Analysis and Prediction

8. RNA Secondary Structure Prediction

9. Clustering and Classification of Gene Expression Data

10. Search and Mining of Biological Databases, Databanks, and
Literature



