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Abstract— Ordinal regression is an important type of [42], Bayesian hierarchical experts [32], binary classiiion
learning, which has properties of both classification and approach [16], [26] that decomposes the original ordinal
regression. Here we describe an effective approach to adapt yaqression problem into a set of binary classifications, and
a traditional neural network to learn ordinal categories. Lo .

Our approach is a generalization of the perceptron method the optimization of nonsmooth cost functions [61_' .

for ordinal regression. On several benchmark datasets, our ~ Most of these methods can be roughly classified into two
method (NNRank) outperforms a neural network classificatim  categories: pairwise constraint approach [22], [24], [15]
method. Compared with the ordinal regression methods using and multi-threshold approach [14], [38], [9]. The former
Gaussian processes and support vector machines, NNRank i 15 convert the full ranking relation into pairwise order

achieves comparable performance. Moreover, NNRank has X . . .
the advantages of traditional neural networks: learmning in constraints. The latter tries to learn multiple threshdatusgli-

both online and batch modes, handling very large training Vide data into ordinal categories. Multi-threshold apjotues
datasets, and making rapid predictions. These features mak also can be unified under the general, extended binary
NNRanI_<_a useful and com_plementary too! for large-scale classification framework [26].

data mining tasks such as information retrieval, web page e ordinal regression methods have different advantages

ranking, collaborative filtering, and protein ranking in .
Bioinformatics. The neural network software is available a: and disadvantages. Prank [14], a perceptron approach that

http://www.cs.missouri.eduf~ chengji/chengsoftware.html. generalizes the binary perceptron algorithm to the ordinal
multi-class situation, is a fast online algorithm. However

like a standard perceptron method, its accuracy suffer;whe
_ _ _ o . dealing with non-linear data, while a quadratic kernel i@rs
ORd'na| regression (or ranking learning) is an importanbf prank greatly relieves this problem. One class of aceurat
supervised problem of learning a ranking or orderingarge-margin classifier approaches [22], [24] convert the
on instances, which has the property of both classificatiofydinal relations into0(n2) (n: the number of data points)
and metric regression. The learning task of ordinal regoess pajrwise ranking constraints for the structural risk mirges
is to assign data points into a set of finite ordered categorigjgn [39], [36]. Thus, it can not be applied to medium size
For example, a teacher rates students’ performance usiggtasets ¥ 10,000 data points), without discarding some
A, B, C, D, and E (A>B > C>D > E) [9] Ordinal pajrwise preference relations. It may also overfit noise due
regression is different from classification due to the ordey, incomparable pairs.
of categories. In contrast to metric regression, the respon The other class of powerful large-margin classifier meth-
yariables (categories) in ordinal regression is discretd a ggg [38], [11] generalize the support vector formulation fo
finite. ordinal regression by findind( — 1 thresholds on the real
The research of ordinal regression dates back to the ordingle that divide data intdk ordered categories. The size of
statistics methods in 1980s [28], [29] and machine learningis optimization problem is linear in the number of traigin
research in 1990s [7], [20], [13]. It has attracted the od@ssi  examples. However, like support vector machine used for
able attention in recent years due to its potential appdioat c|assification, the prediction speed is slow when the smiuti
in many data-intensive domains such as information redtievig not sparse, which makes it not appropriate for time-ati
[20], web page ranking [24], collaborative filtering [18], tasks. Similarly, another state-of-the-art approach, S
[3], [41], image retrieval [40], and protein ranking [8] in process method [9], also has the difficulty of handling large

Bioinformatics. . . training datasets and the problem of slow prediction speed
A number of machine learning methods have been dg; some situations.

velop_ed or _redesigned to address orc_iinal regr_ession proble Here we describe a new neural network approach for
[33], including perceptron [14] and its kernelized generalqging| regression that has the advantages of neural nietwor
ization [3], neural network with gradient descent [7], [S].|earning: learning in both online and batch mode, training o
Gaussian process [10], [9], [37], large margin classifier (Qyery |arge dataset [5], handling non-linear data, goodgperf
support vector machine) [21], [22], [24], [38], [11], [212], mance, and rapid prediction. Our method can be considered
k-partite classifier [1], boosting algorithm [17], [15], @0 5 generalization of the perceptron learning [14] into multi
straint classification [19], regression trees [25], NaivayBs layer perceptrons (neural network) for ordinal regresstur
Jianlin Cheng and Zheng Wang are with the computer scienparde Method is also related to the classic generalized lineaeisod
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I. INTRODUCTION



estimate the probabilities of ordinal categories. Thus; ouhe number of dimensions of input feature vectoand K
method falls into the category of multi-threshold approachoutput nodes corresponding #@ ordinal categories. There
The learning of our method proceeds similarly as traditionacan be one or more hidden layers. Without loss of generality,
neural networks using back-propagation [35]. we use one hidden layer to construct a standard two-layer
On the same benchmark datasets, our method yields tfeedforward neural network. Like a standard neural network
performance better than the standard classification neufar classification, input nodes are fully connected withded
networks and comparable to the state-of-the-art method®des, which in turn are fully connected with output nodes.
using support vector machines and Gaussian processes.Llkewise, the transfer function of hidden nodes can be linea
addition, our method can learn on very large datasets afahction, sigmoid function, and tanh function that is used i
make rapid predictions. our experiment. The only difference from traditional ndura
network lies in the output layer. Traditional neural netiwsor
use softmax;%,zi(or normalized exponential function)
A. Formulation for output nodes, satisfying the constraint that the sum of

Let D represent an ordinal regression dataset consisting @tPUts_;—; o; is 1. z; is the net input to the output node
n data points £, y) , wherexz € R? is an input feature vector 0.

II. METHOD

andy is its ordinal category from a finite s&t. Without loss N contrast, each output nod@; of our neural network
of generality, we assume that = 1,2, ..., K with "<” as Uses a standard sigmoid functq@ﬁ, without including
order relation. the outputs from other nodes, as shown in Figure 1. Output

For a standard classification neural network without corf?ode O; is used to estimate the probability that a data
sidering the order of categories, the goal is to predict theoint belongs to categoryindependently, without subjecting
probability of a data point: belonging to one category to normalization as traditional neural networks do. Thus,
(y = k). The input isz and the target of encoding the for @ data pointz of category k, the target vector is
categoryk is a vectort = (0, ..., 0, 1,0, ..., 0), where only the (1,,1,..,1,0,_0,0), in which the firstk elements |s‘ 1 and
elementt,, is set to 1 and all others to 0. The goal is to learPthers 0. This sets the target value of output nadeg < k)

a function to map input vectar to a probability distribution t© 1 andO; (i > k) to 0. The targets instruct the neural
vectoro = (01, 0, ...0p, ...ox’), Whereoy, is closer to 1 and network to adjust weights to produce probability outputs as
other elements are close to zero, subject to the constraflPS€ as possible to the target vector. It is worth pointing o
ZK_l 0; =1. that using independent sigmoid functions for output nodes

In contrast, like the perceptron approach [14], our neurl0€S not guaranteed the monotonic relation = oy >=
network approach considers the order of the categories: >= ©k), Which is not necessary but, desirable for making
If a data pointz belongs to category, it is classified pred!ctlons [26]. Amorg sophisticated approachils to ingpos
automatically into lower-order categories, 2, ..., k — 1) as the inequality constraints on the outputs to improve the
well. So the target vector of is t = (1,1,..,1,0,0,0), Performance. _ _
wheret; (1 < i < k) is set to 1 and other elements Training of the neural network for ordinal regression
zeros. as shown in Figure 1. Thus, the goal is to learn proceeds very similarly as standard neural networks. The

function to map the input vectar to a probability vector cost function for a data point can be relative entropy
o = (01,09 ok, .0x), Whereo; (i < k) is close to or square error between the target vector and the output
- 9 A 3 ’ (2 =

1 ando; (i > k) is close to 0.5°% o, is the estimate vector. For relativi? entropy, the cost function for output
of number of categories (i.e) that = belongs to, instead N0des isfe = 22, (tilogoi + (1 — ;) log(1 — 0;)). For

of 1. The formulation of the target vector is similar to theSduare error, the error function if. = >2.2, (t; — 0:)*.
perceptron approach [14]. It is also related to the C|asSngreV|ous.studles [34] on neural network cqst functions show
cumulative probit model for ordinal regression [28], in thethat relative entropy and square error functions usualydyi
sense that we can consider the output probability vectd'y Similar results. In our experiments, we use squarer erro

(01, ...0, ...0x) as a cumulative probability distribution on function and standard back-propagation to train the neural
>K o network. The errors are propagated back to output nodes,

categor!es(l, - K, ., K, 18, ~rk B the proportion of and from output nodes to hidden nodes, and finally to input
categories that belongs to, starting from category 1. odes

The target encoding scheme of our method is related i Since the transfer functior, of output node0; is the

but, different from multi-label learning [4] and multiplabel independent siamoid function_ the derivative off, of
learning [23] because our method imposes an order on the P g fre==> t

. e Oft _ i — 1 1
labels (or categories). output node0; is 7t = =y = = (L — =)
_ = 0;(1 — 0;). Thus, the net error propagated to output node
B. Learning O; is gfj gﬁt = Ot(%’ox 0;(1 — 0;) = t; — o, for relative
Under the formulation, we can use the almost exactly sansatropy cost functionag; % = —=2(t; —0;) X 0;(1 —0;) =

neural network machinery for ordinal regression. We con-2o;(t; — 0;)(1 — 0;) for square error cost function. The
struct a multi-layer neural network to learn ordinal redas net errors are propagated through neural networks to adjust
from D. The neural network hag inputs corresponding to weights using gradient descent as traditional neural redsvo



Target 0o 0 1 o0 1 11 0 number of epochs, and the learning rate. We create a grid
for these three parameters, where the hidden unit num-
e 7 1 ber is in the rang€1..15], the epoch number in the set
S E— (50,200, 500, 1000, 1500, 2000), and the initial learning rate
in the range[0.01..0.5]. During the training, the learning
rate is halved if training errors continuously go up for a
pre-defined number (40, 60, 80, or 100) of epochs. For

Transfer
function

Output experiments on each data split, the neural network paramete
nodes o L. . .
arefully optimized on the training data without using any test
Hidd data.
n'od:: For each experiment, after the parameters are optimized on
the training data, we train five models on the training data
| with the optimal parameters, starting from different iaiti
nput . . .
nodes weights. The ensemble of five trained models are then used

St . . to estimate the generalized performance on the test dag. Th

andard neural Ordinal regression neural . . .

networks networks is, the average output of five neural network models is used
to make predictions.

Fig. 1. Comparison between a standard classification neetalork and We evaluate our method using zero-one error and mean

an ordinal regression neural network. Without loss of galitgr the neural  gpsolute error as in [9] Zero-one error is the percentage

networks are assumed to have one hidden layer and one oafpmrtWith . . .

four output nodes. For a data point in category three, thgetavector of of wrong assignments of ordinal categories. Mean absolute

the standard neural network is (0, 0, 1, 0), while the targsttar of the error is the root mean square difference between assigned

ordinal regression neural network is (1, 1, 1, 0). The tran$éinction of categoriesl{’) and true categories:) of all data points. For

output nodei of the standard neural network is the normalized exponlentia

function — & - - In contrast, the ordinal regression neural network useseaCh dataset, the training and evaluation process is mpeat

the si zé;f ft. L 20 times on 20 data splits. Thus, we compute the average
© SIgmoid neton == - error and the standard deviation of the two metrics as in [9].

B. Comparison with Neural Network Classification on Stan-

do. _ _ _ dard Bencharmks
Despite the small difference in the transfer function and i )
the computation of its derivative, the training of our matho Ve first compare our method (NNRank) with a standard

is the same as traditional neural networks. The network cdlfural network classification method (NNClass). We imple-
be trained on data in the online mode where weights afgent both NNRank and NNClass using C++. NNRank and

updated per example, or in the batch mode where weig Class_ share most code with mipor differepce in the tra_ns—
are updated per bunch of examples. fer functllon of outpu? nodes and its derivative computation
as described in Section II-B.

C. Prediction As Table | shows, NNRank outperforms NNClass in all

In the test phase, to make a prediction, our method scahgt one case in terms of both the mean-zero error and the
output nodes in the orded;, O,, ..., Ok. It stops when the mean absolute error. And on some datasets the improvement

output of a node is smaller than the predefined threstiold of NNRank over NNClass is sizable. For instance, on the
(e.g., 0.5) or no nodes left. The indéxof the last nodeD,, ~ Stock and Pyrimidines datasets, the mean zero-one error of
whose output is b|gger thahi is the predicted category of NNRank is about 4% less than NNClass; on four datasets

the data point. (Stock, Pyrimidines, Triazines, and Diabetes) the mean ab-
solute error is reduced by about .05. The results show that

I1l. EXPERIMENTS AND RESULTS the ordinal regression neural network consistently acsev

A. Standard Benchmark Data and Evaluation Metric the better performance than the standard classificatioraheu

We test our method on eight benchmark datasets fG¥etwork.
ordinal regression [9]. The eight datasets (Diabetes,nfRyri . . .
idines, Triazines, Machine CUP, Auto MPG, Boston, Stocks" C(_)mp_an_sor_\ with Neural Network Classification on a
Domain, and Abalone) are originally used for metric re—PrOtem Similarity Dataset
gression. Chu and Ghahramani [9] discretized the realevalu To further verify the effectiveness of neural network ordi-
targets into five equal intervals, corresponding to fivematli nal regression approach, we evaluate NNRank and NNClass
categories. The authors randomly split each dataset intm a protein similarity dataset - a real ordinal regression
training/test datasets and repeated the partition 20 timdataset used in protein fold recognition [8]. Each data fpoin
independently. We use the exactly same partitions as in [8] the dataset corresponds to a protein pair (a query protein
to train and test our method. and a template protein). The data points in the dataset are
We use the online mode to train neural networks. Thelassified into three ordinal similarity categoriefld <
parameters to tune are the number of hidden units, trsuper family< family), depending on the similarity levels



of the protein pairs. The category of each data point wdie the perceptron approach [14], our method can learn
assigned by biologists [31]. in both batch and online mode. The online learning ability
A data point representing a query-template protein pamakes our method a good tool for adaptive learning in the
is labeled adold if the two proteins have similar tertiary real-time. The multi-layer structure of neural network and
structures but do not have evolutionary relationstipper the non-linear transfer function give our method the stesng
family if they have similar structures and weak revolutionanfitting ability than perceptron methods.
relationship; andamily if they have similar structures and Second, the neural network can be trained on very large
strong revolutionary relationship. Each data point has 6@atasets iteratively, while training is more complex than
features, corresponding to specific criteria used to measusupport vector machines and Gaussian processes. Since the
the similarities between a query and a template protein. training process of our method is the same as traditional
The data points are splitted into a training dataset comeural networks, average neural network users can use this
sisting of 6018 data points (2910 in fold, 1810 in supemethod for their tasks.
family, and 1298 in family) and a test dataset containing Third, neural network method can make rapid prediction
747 data points (395 in fold, 166 in super family, and 18@®nce models are trained. The ability of learning on very
in family). Both NNRank and NNClass are trained on thdarge dataset and predicting in time makes our method a
training dataset and evaluated on the test dataset. useful and competitive tool for ordinal regression tasks,
The mean zero one error and mean absolute error phrticularly for time-critical and large-scale rankingopr
NNRank are 23.96% and 0.258, respectively. The mean zelems in information retrieval, web page ranking, collab-
one error and mean absolute error of NNClass are 25.03étative filtering, and the emerging fields of Bioinformat-
and 0.277, respectively. The mean zero one error of NNRanés. To facilitate the application of this new approach,
is 1.1% lower than NNClass. The mean absolute error afe make both NNRank and NNClass to accept a gen-
NNRank is 0.019 less than NNClass. The experiment shovesal input format and freely available to the community at
that NNRank performs better than NNClass on a large, reattp://www.cs.missouri.edtichengji/chengsoftware.html.
ordinal regression dataset. There are some directions to further improve the neural
network (or multi-layer perceptron) approach for ordinal
tPergression. One direction is to design a transfer function
to ensure the monotonic decrease of the outputs of the
To further evaluate the performance of our method, W@eural network; the other direction is to derive the general
compare NNRank with two Gaussian process methods (GBrror bounds of the method under the binary classification
MAP and GP-EP) [9] and a support vector machine methogamework [26]. Furthermore, the other flavors of imple-
(SVM) [38] implemented in [9]. The results of the threementations of the multi-threshold multi-layer perceptay
methods are quoted from [9]. Table Il reports the zero-ongroach for ordinal regression are possible. Since machine
error on the eight datasets. NNRank achieves the bestsesy#arning ranking is a fundamental problem that has wide
on Diabetes, Triazines, and Abalone, GP-EP on Pyrimidineéppﬁcations in many diverse domains such as web page
Auto MPG, and Boston, GP-MAP on Machine, and SVM ontanking, information retrieval, image retrieval, collabtive
Stocks. filtering, bioinformatics and so on, we believe the further
Table IIl reports the mean absolute error on the eighéxploration of the neural network (or multi-layer percepty

datasets. NNRank yields the best results on Diabetes aggproach for ranking and ordinal regression is worthwhile.
Abalone, GP-EP on Pyrimidines, Auto MPG, and Boston,
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Mean zero-one error Mean absolute error

Dataset NNRank NNClass NNRank NNClass
Stocks 12.68:1.8% | 16.97A 2.3% | 0.1274:0.01 | 0.173+0.02
Pyrimidines | 37.714-8.1% 41.8H7.9% | 0.450£0.09 | 0.508+0.11
Auto MPG 27.13:2.0% 28.82:2.7% | 0.2810.02 | 0.30A0.03
Machine 17.03:4.2% 17.80+4.4% | 0.186+0.04 | 0.192+-0.06
Abalone 21.39£0.3% | 21.74+ 0.4% | 0.226+0.01 | 0.232+0.01
Triazines 52.55+5.0% 52.84+5.9% | 0.730+£0.06 | 0.790+0.09
Boston 26.38£3.0% 26.62:2.7% | 0.295+0.03 | 0.297:0.03
Diabetes | 44.90£12.5% | 43.84+10.0% | 0.546+0.15 | 0.592+0.09

TABLE |

STANDARD DEVIATION.

THE RESULTS OFNNRANK AND NNCLASS ON THE EIGHT DATASETS THE RESULTS ARE THE AVERAGE ERROR OVERO TRIALS ALONG WITH THE

Data NNRank SVM GP-MAP GP-EP
Triazines 52.55+5.0% 54.1%1.5% 52.914-2.2% 52.62:2.7%
Pyrimidines | 37.718.1% 41.46+-8.5% 39.7%47.2% | 36.46£6.5%
Diabetes | 44.90+12.5% | 57.31£12.1% | 54.23+13.8% | 54.23:13.8%
Machine 17.03t4.2% 17.3A3.6% | 16.53t3.6% 16.78+3.9%
Auto MPG 27.13+2.0% 25.73+2.2% 23.78£1.9% | 23.75:1.7%
Boston 26.38+3.0% 25.56+2.0% 24.88£2.0% | 24.49+:1.9%
Stocks 12.68£1.8% 10.81.7% 11.99+-2.3% 12.06£2.1%
Abalone 21.3%0.3% 21.58t+0.3% 21.50£0.2% 21.56+0.4%

TABLE Il

ZERO-ONE ERROR OFNNRANK, SVM, GP-MAP,AND GP-EPON THE EIGHT DATASETS SVM DENOTES THE SUPPORT VECTOR MACHINE METHOD
[38], [9]. GP-MAP AND GP-EPARE TWO GAUSSIAN PROCESS METHODS USINGAPLACE APPROXIMATION [27] AND EXPECTATION PROPAGATION
[30] RESPECTIVELY[9]. THE RESULTS ARE THE AVERAGE ERROR OVERO TRIALS ALONG WITH THE STANDARD DEVIATION. WE USE BOLDFACE TO

DENOTE THE BEST RESULTS

Data NNRank SVM GP-MAP GP-EP
Triazines | 0.730Gt0.07 | 0.698t0.03 | 0.68740.02 | 0.688£0.03
Pyrimidines | 0.450+0.10 | 0.450+0.11 | 0.42/A-0.09 | 0.392+-0.07
Diabetes | 0.546+0.15 | 0.746+0.14 | 0.662+0.14 | 0.665+0.14
Machine 0.186+0.04 | 0.192£0.04 | 0.185+0.04 | 0.186+0.04
Auto MPG | 0.2810.02 | 0.26G+0.02 | 0.2410.02 | 0.2410.02
Boston 0.295+0.04 | 0.26A40.02 | 0.260£0.02 | 0.259+0.02
Stocks 0.12A40.02 | 0.108:0.02 | 0.120+0.02 | 0.120+£0.02
Abalone 0.226+0.01 | 0.229£0.01 | 0.232+0.01 | 0.234+0.01
TABLE Il

MEAN ABSOLUTE ERROR OFNNRANK, SVM, GP-MAP,AND GP-EPON THE EIGHT DATASETS SVM DENOTES THE SUPPORT VECTOR MACHINE
METHOD [38], [9]. GP-MAP AND GP-EPARE TWO GAUSSIAN PROCESS METHODS USING APLACE APPROXIMATION AND EXPECTATION
PROPAGATION RESPECTIVELY[9]. THE RESULTS ARE THE AVERAGE ERROR OVERO TRIALS ALONG WITH THE STANDARD DEVIATION. WE USE
BOLDFACE TO DENOTE THE BEST RESULTS



