
A Neural Network Approach to Ordinal Regression

Jianlin Cheng, Zheng Wang, and Gianluca Pollastri

Abstract— Ordinal regression is an important type of
learning, which has properties of both classification and
regression. Here we describe an effective approach to adapt
a traditional neural network to learn ordinal categories.
Our approach is a generalization of the perceptron method
for ordinal regression. On several benchmark datasets, our
method (NNRank) outperforms a neural network classification
method. Compared with the ordinal regression methods using
Gaussian processes and support vector machines, NNRank
achieves comparable performance. Moreover, NNRank has
the advantages of traditional neural networks: learning in
both online and batch modes, handling very large training
datasets, and making rapid predictions. These features make
NNRank a useful and complementary tool for large-scale
data mining tasks such as information retrieval, web page
ranking, collaborative filtering, and protein ranking in
Bioinformatics. The neural network software is available at:
http://www.cs.missouri.edu/∼chengji/chengsoftware.html.

I. INTRODUCTION

ORdinal regression (or ranking learning) is an important
supervised problem of learning a ranking or ordering

on instances, which has the property of both classification
and metric regression. The learning task of ordinal regression
is to assign data points into a set of finite ordered categories.
For example, a teacher rates students’ performance using
A, B, C, D, and E (A> B > C > D > E) [9]. Ordinal
regression is different from classification due to the order
of categories. In contrast to metric regression, the response
variables (categories) in ordinal regression is discrete and
finite.

The research of ordinal regression dates back to the ordinal
statistics methods in 1980s [28], [29] and machine learning
research in 1990s [7], [20], [13]. It has attracted the consider-
able attention in recent years due to its potential applications
in many data-intensive domains such as information retrieval
[20], web page ranking [24], collaborative filtering [18],
[3], [41], image retrieval [40], and protein ranking [8] in
Bioinformatics.

A number of machine learning methods have been de-
veloped or redesigned to address ordinal regression problem
[33], including perceptron [14] and its kernelized general-
ization [3], neural network with gradient descent [7], [5],
Gaussian process [10], [9], [37], large margin classifier (or
support vector machine) [21], [22], [24], [38], [11], [2], [12],
k-partite classifier [1], boosting algorithm [17], [15], con-
straint classification [19], regression trees [25], Naive Bayes

Jianlin Cheng and Zheng Wang are with the computer science depart-
ment and informatics institute, University of Missouri, Columbia, MO
65211, USA (email: chengji@missouri.edu, zwyw6@missouri.edu); Gian-
luca Pollastri is with the school of computer science and informatics,
University of College Dublin, Belfield, Dublin 4, Ireland (email: gian-
luca.pollastri@ucd.ie).

[42], Bayesian hierarchical experts [32], binary classification
approach [16], [26] that decomposes the original ordinal
regression problem into a set of binary classifications, and
the optimization of nonsmooth cost functions [6].

Most of these methods can be roughly classified into two
categories: pairwise constraint approach [22], [24], [15], [5]
and multi-threshold approach [14], [38], [9]. The former
is to convert the full ranking relation into pairwise order
constraints. The latter tries to learn multiple thresholdsto di-
vide data into ordinal categories. Multi-threshold approaches
also can be unified under the general, extended binary
classification framework [26].

The ordinal regression methods have different advantages
and disadvantages. Prank [14], a perceptron approach that
generalizes the binary perceptron algorithm to the ordinal
multi-class situation, is a fast online algorithm. However,
like a standard perceptron method, its accuracy suffers when
dealing with non-linear data, while a quadratic kernel version
of Prank greatly relieves this problem. One class of accurate
large-margin classifier approaches [22], [24] convert the
ordinal relations intoO(n2) (n: the number of data points)
pairwise ranking constraints for the structural risk minimiza-
tion [39], [36]. Thus, it can not be applied to medium size
datasets (> 10,000 data points), without discarding some
pairwise preference relations. It may also overfit noise due
to incomparable pairs.

The other class of powerful large-margin classifier meth-
ods [38], [11] generalize the support vector formulation for
ordinal regression by findingK − 1 thresholds on the real
line that divide data intoK ordered categories. The size of
this optimization problem is linear in the number of training
examples. However, like support vector machine used for
classification, the prediction speed is slow when the solution
is not sparse, which makes it not appropriate for time-critical
tasks. Similarly, another state-of-the-art approach, Gaussian
process method [9], also has the difficulty of handling large
training datasets and the problem of slow prediction speed
in some situations.

Here we describe a new neural network approach for
ordinal regression that has the advantages of neural network
learning: learning in both online and batch mode, training on
very large dataset [5], handling non-linear data, good perfor-
mance, and rapid prediction. Our method can be considered
a generalization of the perceptron learning [14] into multi-
layer perceptrons (neural network) for ordinal regression. Our
method is also related to the classic generalized linear models
(e.g., cumulative logit model) for ordinal regression [28].
Unlike the neural network method [5] trained on pairs of
examples to learn pairwise order relations, our method works
on individual data points and uses multiple output nodes to



estimate the probabilities of ordinal categories. Thus, our
method falls into the category of multi-threshold approach.
The learning of our method proceeds similarly as traditional
neural networks using back-propagation [35].

On the same benchmark datasets, our method yields the
performance better than the standard classification neural
networks and comparable to the state-of-the-art methods
using support vector machines and Gaussian processes. In
addition, our method can learn on very large datasets and
make rapid predictions.

II. M ETHOD

A. Formulation

Let D represent an ordinal regression dataset consisting of
n data points (x, y) , wherex ∈ Rd is an input feature vector
andy is its ordinal category from a finite setY . Without loss
of generality, we assume thatY = 1, 2, ..., K with ”<” as
order relation.

For a standard classification neural network without con-
sidering the order of categories, the goal is to predict the
probability of a data pointx belonging to one categoryk
(y = k). The input isx and the target of encoding the
categoryk is a vectort = (0, ..., 0, 1, 0, ..., 0), where only the
elementtk is set to 1 and all others to 0. The goal is to learn
a function to map input vectorx to a probability distribution
vectoro = (o1, o2, ...ok, ...oK), whereok is closer to 1 and
other elements are close to zero, subject to the constraint∑K

i=1 oi = 1.
In contrast, like the perceptron approach [14], our neural

network approach considers the order of the categories.
If a data point x belongs to categoryk, it is classified
automatically into lower-order categories (1, 2, ..., k − 1) as
well. So the target vector ofx is t = (1, 1, .., 1, 0, 0, 0),
where ti (1 ≤ i ≤ k) is set to 1 and other elements
zeros, as shown in Figure 1. Thus, the goal is to learn a
function to map the input vectorx to a probability vector
o = (o1, o2, ..., ok, ...oK), where oi (i ≤ k) is close to
1 and oi (i ≥ k) is close to 0.

∑K
i=1 oi is the estimate

of number of categories (i.e.k) that x belongs to, instead
of 1. The formulation of the target vector is similar to the
perceptron approach [14]. It is also related to the classical
cumulative probit model for ordinal regression [28], in the
sense that we can consider the output probability vector
(o1, ...ok, ...oK) as a cumulative probability distribution on

categories(1, ..., k, ..., K), i.e.,
P

K

i=1
oi

K
is the proportion of

categories thatx belongs to, starting from category 1.
The target encoding scheme of our method is related to

but, different from multi-label learning [4] and multiple label
learning [23] because our method imposes an order on the
labels (or categories).

B. Learning

Under the formulation, we can use the almost exactly same
neural network machinery for ordinal regression. We con-
struct a multi-layer neural network to learn ordinal relations
from D. The neural network hasd inputs corresponding to

the number of dimensions of input feature vectorx and K

output nodes corresponding toK ordinal categories. There
can be one or more hidden layers. Without loss of generality,
we use one hidden layer to construct a standard two-layer
feedforward neural network. Like a standard neural network
for classification, input nodes are fully connected with hidden
nodes, which in turn are fully connected with output nodes.
Likewise, the transfer function of hidden nodes can be linear
function, sigmoid function, and tanh function that is used in
our experiment. The only difference from traditional neural
network lies in the output layer. Traditional neural networks
use softmax e−zi

P

K

i=1
e−zi

(or normalized exponential function)
for output nodes, satisfying the constraint that the sum of
outputs

∑K
i=1 oi is 1. zi is the net input to the output node

Oi.
In contrast, each output nodeOi of our neural network

uses a standard sigmoid function 1
1+e−zi

, without including
the outputs from other nodes, as shown in Figure 1. Output
node Oi is used to estimate the probabilityoi that a data
point belongs to categoryi independently, without subjecting
to normalization as traditional neural networks do. Thus,
for a data pointx of category k, the target vector is
(1, , 1, .., 1, 0, 0, 0), in which the firstk elements is 1 and
others 0. This sets the target value of output nodesOi (i ≤ k)
to 1 andOi (i > k) to 0. The targets instruct the neural
network to adjust weights to produce probability outputs as
close as possible to the target vector. It is worth pointing out
that using independent sigmoid functions for output nodes
does not guaranteed the monotonic relation (o1 >= o2 >=
... >= oK ), which is not necessary but, desirable for making
predictions [26]. A more sophisticated approach is to impose
the inequality constraints on the outputs to improve the
performance.

Training of the neural network for ordinal regression
proceeds very similarly as standard neural networks. The
cost function for a data pointx can be relative entropy
or square error between the target vector and the output
vector. For relative entropy, the cost function for output
nodes isfc =

∑K
i=1 (ti log oi + (1 − ti) log(1 − oi)). For

square error, the error function isfc =
∑K

i=1 (ti − oi)
2.

Previous studies [34] on neural network cost functions show
that relative entropy and square error functions usually yield
very similar results. In our experiments, we use square error
function and standard back-propagation to train the neural
network. The errors are propagated back to output nodes,
and from output nodes to hidden nodes, and finally to input
nodes.

Since the transfer functionft of output nodeOi is the
independent sigmoid function 1

1+e−zi
, the derivative offt of

output nodeOi is ∂ft

∂zi

= e−zi

(1+e−zi )2
= 1

1+e−zi
(1 −

1
1+e−zi

)

= oi(1 − oi). Thus, the net error propagated to output node
Oi is ∂fc

∂oi

∂ft

∂zi

= ti−oi

oi(1−oi)
× oi(1 − oi) = ti − oi for relative

entropy cost function,∂fc

∂oi

∂ft

∂zi

= −2(ti − oi)× oi(1− oi) =
−2oi(ti − oi)(1 − oi) for square error cost function. The
net errors are propagated through neural networks to adjust
weights using gradient descent as traditional neural networks



Fig. 1. Comparison between a standard classification neuralnetwork and
an ordinal regression neural network. Without loss of generality, the neural
networks are assumed to have one hidden layer and one output layer with
four output nodes. For a data point in category three, the target vector of
the standard neural network is (0, 0, 1, 0), while the target vector of the
ordinal regression neural network is (1, 1, 1, 0). The transfer function of
output nodei of the standard neural network is the normalized exponential
function e

−zi
P

K

i=1
e
−zi

. In contrast, the ordinal regression neural network uses

the sigmoid function 1

1+e
−zi

.

do.
Despite the small difference in the transfer function and

the computation of its derivative, the training of our method
is the same as traditional neural networks. The network can
be trained on data in the online mode where weights are
updated per example, or in the batch mode where weights
are updated per bunch of examples.

C. Prediction

In the test phase, to make a prediction, our method scans
output nodes in the orderO1, O2, ..., OK . It stops when the
output of a node is smaller than the predefined thresholdT

(e.g., 0.5) or no nodes left. The indexk of the last nodeOk

whose output is bigger thanT is the predicted category of
the data point.

III. EXPERIMENTS AND RESULTS

A. Standard Benchmark Data and Evaluation Metric

We test our method on eight benchmark datasets for
ordinal regression [9]. The eight datasets (Diabetes, Pyrim-
idines, Triazines, Machine CUP, Auto MPG, Boston, Stocks
Domain, and Abalone) are originally used for metric re-
gression. Chu and Ghahramani [9] discretized the real-value
targets into five equal intervals, corresponding to five ordinal
categories. The authors randomly split each dataset into
training/test datasets and repeated the partition 20 times
independently. We use the exactly same partitions as in [9]
to train and test our method.

We use the online mode to train neural networks. The
parameters to tune are the number of hidden units, the

number of epochs, and the learning rate. We create a grid
for these three parameters, where the hidden unit num-
ber is in the range[1..15], the epoch number in the set
(50, 200, 500, 1000, 1500, 2000), and the initial learning rate
in the range[0.01..0.5]. During the training, the learning
rate is halved if training errors continuously go up for a
pre-defined number (40, 60, 80, or 100) of epochs. For
experiments on each data split, the neural network parameters
arefully optimized on the training data without using any test
data.

For each experiment, after the parameters are optimized on
the training data, we train five models on the training data
with the optimal parameters, starting from different initial
weights. The ensemble of five trained models are then used
to estimate the generalized performance on the test data. That
is, the average output of five neural network models is used
to make predictions.

We evaluate our method using zero-one error and mean
absolute error as in [9]. Zero-one error is the percentage
of wrong assignments of ordinal categories. Mean absolute
error is the root mean square difference between assigned
categories (k′) and true categories (k) of all data points. For
each dataset, the training and evaluation process is repeated
20 times on 20 data splits. Thus, we compute the average
error and the standard deviation of the two metrics as in [9].

B. Comparison with Neural Network Classification on Stan-
dard Bencharmks

We first compare our method (NNRank) with a standard
neural network classification method (NNClass). We imple-
ment both NNRank and NNClass using C++. NNRank and
NNClass share most code with minor difference in the trans-
fer function of output nodes and its derivative computation
as described in Section II-B.

As Table I shows, NNRank outperforms NNClass in all
but one case in terms of both the mean-zero error and the
mean absolute error. And on some datasets the improvement
of NNRank over NNClass is sizable. For instance, on the
Stock and Pyrimidines datasets, the mean zero-one error of
NNRank is about 4% less than NNClass; on four datasets
(Stock, Pyrimidines, Triazines, and Diabetes) the mean ab-
solute error is reduced by about .05. The results show that
the ordinal regression neural network consistently achieves
the better performance than the standard classification neural
network.

C. Comparison with Neural Network Classification on a
Protein Similarity Dataset

To further verify the effectiveness of neural network ordi-
nal regression approach, we evaluate NNRank and NNClass
on a protein similarity dataset - a real ordinal regression
dataset used in protein fold recognition [8]. Each data point
in the dataset corresponds to a protein pair (a query protein
and a template protein). The data points in the dataset are
classified into three ordinal similarity categories (fold <

super family< family), depending on the similarity levels



of the protein pairs. The category of each data point was
assigned by biologists [31].

A data point representing a query-template protein pair
is labeled asfold if the two proteins have similar tertiary
structures but do not have evolutionary relationship;super
family if they have similar structures and weak revolutionary
relationship; andfamily if they have similar structures and
strong revolutionary relationship. Each data point has 62
features, corresponding to specific criteria used to measure
the similarities between a query and a template protein.

The data points are splitted into a training dataset con-
sisting of 6018 data points (2910 in fold, 1810 in super
family, and 1298 in family) and a test dataset containing
747 data points (395 in fold, 166 in super family, and 186
in family). Both NNRank and NNClass are trained on the
training dataset and evaluated on the test dataset.

The mean zero one error and mean absolute error of
NNRank are 23.96% and 0.258, respectively. The mean zero
one error and mean absolute error of NNClass are 25.03%
and 0.277, respectively. The mean zero one error of NNRank
is 1.1% lower than NNClass. The mean absolute error of
NNRank is 0.019 less than NNClass. The experiment shows
that NNRank performs better than NNClass on a large, real
ordinal regression dataset.

D. Comparison with Gaussian Processes and Support Vector
Machines on Standard Benchmarks

To further evaluate the performance of our method, we
compare NNRank with two Gaussian process methods (GP-
MAP and GP-EP) [9] and a support vector machine method
(SVM) [38] implemented in [9]. The results of the three
methods are quoted from [9]. Table II reports the zero-one
error on the eight datasets. NNRank achieves the best results
on Diabetes, Triazines, and Abalone, GP-EP on Pyrimidines,
Auto MPG, and Boston, GP-MAP on Machine, and SVM on
Stocks.

Table III reports the mean absolute error on the eight
datasets. NNRank yields the best results on Diabetes and
Abalone, GP-EP on Pyrimidines, Auto MPG, and Boston,
GP-MAP on Triazines and Machine, SVM on Stocks.

In summary, on the eight datasets, the performance of
NNRank is comparable to the three state-of-the-art methods
for ordinal regression.

IV. D ISCUSSION ANDFUTURE WORK

We have described a novel approach to adapt traditional
neural networks for ordinal regression. Our neural network
approach can be considered a generalization of one-layer
perceptron approach [14] into multi-layer. On the standard
benchmark of ordinal regression, our method outperforms
standard neural networks used for classification. Further-
more, on the same benchmark, our method achieves the
similar performance as the two state-of-the-art methods (sup-
port vector machines and Gaussian processes) for ordinal
regression.

Compared with existing methods for ordinal regression,
our method has several advantages of neural networks. First,

like the perceptron approach [14], our method can learn
in both batch and online mode. The online learning ability
makes our method a good tool for adaptive learning in the
real-time. The multi-layer structure of neural network and
the non-linear transfer function give our method the stronger
fitting ability than perceptron methods.

Second, the neural network can be trained on very large
datasets iteratively, while training is more complex than
support vector machines and Gaussian processes. Since the
training process of our method is the same as traditional
neural networks, average neural network users can use this
method for their tasks.

Third, neural network method can make rapid prediction
once models are trained. The ability of learning on very
large dataset and predicting in time makes our method a
useful and competitive tool for ordinal regression tasks,
particularly for time-critical and large-scale ranking prob-
lems in information retrieval, web page ranking, collab-
orative filtering, and the emerging fields of Bioinformat-
ics. To facilitate the application of this new approach,
we make both NNRank and NNClass to accept a gen-
eral input format and freely available to the community at
http://www.cs.missouri.edu/∼chengji/chengsoftware.html.

There are some directions to further improve the neural
network (or multi-layer perceptron) approach for ordinal
regression. One direction is to design a transfer function
to ensure the monotonic decrease of the outputs of the
neural network; the other direction is to derive the general
error bounds of the method under the binary classification
framework [26]. Furthermore, the other flavors of imple-
mentations of the multi-threshold multi-layer perceptronap-
proach for ordinal regression are possible. Since machine
learning ranking is a fundamental problem that has wide
applications in many diverse domains such as web page
ranking, information retrieval, image retrieval, collaborative
filtering, bioinformatics and so on, we believe the further
exploration of the neural network (or multi-layer perceptron)
approach for ranking and ordinal regression is worthwhile.

REFERENCES

[1] S. Agarwal and D. Roth. Learnability of bipartite ranking functions.
In Proc. of the 18th annual conference on learning theory (COLT-05).
2005.

[2] F. Aiolli and A. Sperduti. Learning preferences for multiclass
problems. InAdvances in Neural Information Processing Systems 17
(NIPS). 2004.

[3] J. Basilico and T. Hofmann. Unifying collaborative and content-based
filtering. In Proceedings of the twenty-first international conference
on machine learning (ICML), page 9. ACM press, New York, USA,
2004.

[4] C. Bishop. Neural Networks for Pattern Recognition. Oxford
University Press, USA, 1996.

[5] C. J. C. Burges, T. Shaked, E. Renshaw, A. Lazier, M. Deeds,
N. Hamilton, and G. Hullender. Learning to rank using gradient
descent. InProc. of Internaltional Conference on Machine Learning
(ICML-05), pages 89–97. 2005.

[6] C.J.C. Burges, R. Ragno, and Q. V. Le. Learning to rank with nons-
mooth cost functions. InAdvances in Neural Information Processing
Systems (NIPS) 20. MIT press, Cambridge, MA, 2006.

[7] R. Caruana, S. Baluja, and T. Mitchell. Using the future to sort out the
present: Rankprop and multitask learning for medical risk evaluation.
In Advances in neural information processing systems 8 (NIPS). 1996.



[8] J. Cheng and P. Baldi. A machine learning information retrieval
approach to protein fold recognition.Bioinformatics, 22:1456–1463,
2006.

[9] W. Chu and Z. Ghahramani. Gaussian processes for ordinalregression.
Journal of Machine Learning Research, 6:1019–1041, 2005.

[10] W. Chu and Z. Ghahramani. Preference learning with Gaussian
processes. InProc. of International Conference on Machine Learning
(ICML-05), pages 137–144. 2005.

[11] W. Chu and S.S. Keerthi. New approaches to support vector ordinal
regression. InProc. of International Conference on Machine Learning
(ICML-05), pages 145–152. 2005.

[12] W. Chu and S.S. Keerthi. Support vector ordinal regression. Neural
Computation, 19(3), 2007.

[13] W. W. Cohen, R. E. Schapire, and Y. Singer. Learning to order things.
Journal of Artificial Intelligence Research, 10:243–270, 1999.

[14] K. Crammer and Y. Singer. Pranking with ranking. InAdvances in
Neural Information Processing Systems (NIPS) 14, pages 641–647.
MIT press, Cambridge, MA, 2002.

[15] O. Dekel, J. Keshet, and Y. Singer. Log-linear models for label ranking.
In Proc. of the 21st international conference on machine learning
(ICML-06), pages 209–216. 2004.

[16] E. Frank and M. Hall. A simple approach to ordinal classification. In
Proc. of the European Conference on Machine Learning. 2001.

[17] Y. Freund, R. Iyer, R.E. Schapire, and Y. Singer. An efficient boosting
algorithm for combining preferences.Journal of Machine Learning
Research, 4:933–969, 2003.

[18] D. Goldberg, D. Nichols, B. Oki, and D. Terry. Using collaborative
filtering to weave an information tapestry.Communications of the
ACM, 35:61–70, 1992.

[19] S. Har-Peled, D. Roth, and D. Zimak. Constraint classification: a
new approach to multiclass classification and ranking. InAdvances in
Neural Information Processing Systems 15 (NIPS). 2002.

[20] R. Herbrich, T. Graepel, P. Bollmann-Sdorra, and K. Obermayer.
Learning preference relations for information retrieval.In Proc. of
ICML workshop on text categorization and machine learning, pages
80–84. 1998.

[21] R. Herbrich, T. Graepel, and K. Obermayer. Support vector learning
for ordinal regression. InProc. of 9th International Conference on
Artificial Neural Networks (ICANN), pages 97–102. 1999.

[22] R. Herbrich, T. Graepel, and K. Obermayer. Large marginrank bound-
aries for ordinal regression. In A. J. Smola, P. Bartlett, B.Scholkopf,
and D. Schuurmans, editors,Advances in Large Margin Classifiers,
pages 115–132. MIT Press, Cambridge, MA, 2000.

[23] R. Jin and Z. Ghahramani. Learning with multiple labels. In Advances
in Neural Information Processing Systems (NIPS) 15. MIT press,
Cambridge, MA, 2003.

[24] I. Joachims. Optimizing search engines using clickthrough data. In
David Hand, Daniel Keim, and Raymond NG, editors,Proc. of 8th
ACM SIGKDD International conference on knowledge discovery and
data mining, pages 133–142. 2002.

[25] S. Kramer, G. Widmer, B. Pfahringer, and M. DeGroeve. Prediction
of ordinal classes using regression trees.Fundamenta Informaticae,
47:1–13, 2001.

[26] L. Li and H. Lin. Ordinal regression by extended binary classification.
In Advances in Neural Information Processing Systems (NIPS) 20.
MIT press, Cambridge, MA, 2006.

[27] D. J. C. MacKay. A practical bayesian framework for backpropagation
networks.Neural Computation, 4:448–472, 1992.

[28] P. McCullagh. Regression models for ordinal data.Journal of the
Royal Statistical Society B, 42:109–142, 1980.

[29] P. McCullagh and J. A. Nelder.Generalized Linear Models. Chapman
and Hall, London, 1983.

[30] T. P. Minka. A family of algorithms for approximate bayesian
inference.PhD Thesis, Massachusetts Institute of Technology, 2001.

[31] A. G. Murzin, S. E. Brenner, T. Hubbard, and C. Chothia. SCOP:
A structural classification of proteins database for the investigation of
sequences and structures.J. Mol. Biol., 247:536–540, 1995.

[32] U. Paquet, S. Holden, and A. Naish-Guzman. Bayesian hierarchical
ordinal regression. InProc. of the international conference on artifical
neural networks. 2005.

[33] S. Rajaram, A. Garg, X.S. Zhou, and T.S. Huang. Classification
approach towards ranking and sorting problems. InMachine Learning:
ECML 2003, vol. 2837 of Lecture Notes in Artificail Intelligence (N.
Lavrac, D. gamberger, H. Blockeel and L. Todorovski eds.), pages
301–312. Springer-Verlag, 2003.

[34] M.D. Richard and R.P. Lippman. Neural network classifiers estimate
bayesian a-posteriori probabilities.Neural Computation, 3:461–483,
1991.

[35] D.E. Rumelhart, G.E. Hinton, and R.J. Williams. Learning Internal
Representations by Error Propagation. In D. E. Rumelhart and J. L.
McClelland, editors,Parallel Distributed Processing: Explorations in
the Microstructure of Cognition. Vol. I: Foundations, pages 318–362.
Bradford Books/MIT Press, Cambridge, MA., 1986.

[36] B. Scḧolkopf and A.J. Smola.Learning with Kernels, Support Vector
Machines, Regularization, Optimization and Beyond. MIT University
Press, Cambridge, MA, 2002.

[37] A. Schwaighofer, V. Tresp, and K. Yu. Hiearachical bayesian mod-
elling with gaussian processes. InAdvances in Neural Information
Processing Systems 17 (NIPS). MIT press, 2005.

[38] A. Shashua and A. Levin. Ranking with large margin principle: two
approaches. InAdvances in Neural Information Processing Systems
15 (NIPS). 2003.

[39] V. Vapnik. The Nature of Statistical Learning Theory. Springer-Verlag,
Berlin, Germany, 1995.

[40] H. Wu, H. Lu, and S. Ma. A practical svm-based algorithm for ordinal
regression in image retrieval. pages 612–621, 2003.

[41] S. Yu, K. Yu, V. Tresp, and H. P. Kriegel. Collaborative ordinal
regression. InProc. of 23rd international conference on machine
learning, pages 1089–1096. 2006.

[42] H. Zhang, L. Jiang, and J. Su. Augmenting naive bayes forranking.
In International Conference on Machine Learning (ICML-05). 2005.



Mean zero-one error Mean absolute error
Dataset NNRank NNClass NNRank NNClass
Stocks 12.68±1.8% 16.97± 2.3% 0.127±0.01 0.173±0.02

Pyrimidines 37.71±8.1% 41.87±7.9% 0.450±0.09 0.508±0.11
Auto MPG 27.13±2.0% 28.82±2.7% 0.281±0.02 0.307±0.03
Machine 17.03±4.2% 17.80±4.4% 0.186±0.04 0.192±0.06
Abalone 21.39±0.3% 21.74± 0.4% 0.226±0.01 0.232±0.01
Triazines 52.55±5.0% 52.84±5.9% 0.730±0.06 0.790±0.09
Boston 26.38±3.0% 26.62±2.7% 0.295±0.03 0.297±0.03

Diabetes 44.90±12.5% 43.84±10.0% 0.546±0.15 0.592±0.09

TABLE I

THE RESULTS OFNNRANK AND NNCLASS ON THE EIGHT DATASETS. THE RESULTS ARE THE AVERAGE ERROR OVER20 TRIALS ALONG WITH THE

STANDARD DEVIATION.

Data NNRank SVM GP-MAP GP-EP
Triazines 52.55±5.0% 54.19±1.5% 52.91±2.2% 52.62±2.7%

Pyrimidines 37.71±8.1% 41.46±8.5% 39.79±7.2% 36.46±6.5%
Diabetes 44.90±12.5% 57.31±12.1% 54.23±13.8% 54.23±13.8%
Machine 17.03±4.2% 17.37±3.6% 16.53±3.6% 16.78±3.9%

Auto MPG 27.13±2.0% 25.73±2.2% 23.78±1.9% 23.75±1.7%
Boston 26.38±3.0% 25.56±2.0% 24.88±2.0% 24.49±1.9%
Stocks 12.68±1.8% 10.81±1.7% 11.99±2.3% 12.00±2.1%

Abalone 21.39±0.3% 21.58±0.3% 21.50±0.2% 21.56±0.4%

TABLE II

ZERO-ONE ERROR OFNNRANK , SVM, GP-MAP,AND GP-EPON THE EIGHT DATASETS. SVM DENOTES THE SUPPORT VECTOR MACHINE METHOD

[38], [9]. GP-MAP AND GP-EPARE TWO GAUSSIAN PROCESS METHODS USINGLAPLACE APPROXIMATION [27] AND EXPECTATION PROPAGATION

[30] RESPECTIVELY [9]. THE RESULTS ARE THE AVERAGE ERROR OVER20 TRIALS ALONG WITH THE STANDARD DEVIATION. WE USE BOLDFACE TO

DENOTE THE BEST RESULTS.

Data NNRank SVM GP-MAP GP-EP
Triazines 0.730±0.07 0.698±0.03 0.687±0.02 0.688±0.03

Pyrimidines 0.450±0.10 0.450±0.11 0.427±0.09 0.392±0.07
Diabetes 0.546±0.15 0.746±0.14 0.662±0.14 0.665±0.14
Machine 0.186±0.04 0.192±0.04 0.185±0.04 0.186±0.04

Auto MPG 0.281±0.02 0.260±0.02 0.241±0.02 0.241±0.02
Boston 0.295±0.04 0.267±0.02 0.260±0.02 0.259±0.02
Stocks 0.127±0.02 0.108±0.02 0.120±0.02 0.120±0.02

Abalone 0.226±0.01 0.229±0.01 0.232±0.01 0.234±0.01

TABLE III

MEAN ABSOLUTE ERROR OFNNRANK , SVM, GP-MAP,AND GP-EPON THE EIGHT DATASETS. SVM DENOTES THE SUPPORT VECTOR MACHINE

METHOD [38], [9]. GP-MAP AND GP-EPARE TWO GAUSSIAN PROCESS METHODS USINGLAPLACE APPROXIMATION AND EXPECTATION

PROPAGATION RESPECTIVELY[9]. THE RESULTS ARE THE AVERAGE ERROR OVER20 TRIALS ALONG WITH THE STANDARD DEVIATION. WE USE

BOLDFACE TO DENOTE THE BEST RESULTS.


