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ABSTRACT
Motivation: Protein homology detection and sequence alignment are
at the basis of protein structure prediction, function prediction and
evolution.
Results: We have generalized the alignment of protein sequences
with a profile hidden Markov model (HMM) to the case of pairwise
alignment of profile HMMs. We present a method for detecting distant
homologous relationships between proteins based on this approach.
The method (HHsearch) is benchmarked together with BLAST, PSI-
BLAST, HMMER and the profile–profile comparison tools PROF_SIM
and COMPASS, in an all-against-all comparison of a database of 3691
protein domains from SCOP 1.63 with pairwise sequence identities
below 20%.
Sensitivity: When the predicted secondary structure is included in the
HMMs, HHsearch is able to detect between 2.7 and 4.2 times more
homologs than PSI-BLAST or HMMER and between 1.44 and 1.9
times more than COMPASS or PROF_SIM for a rate of false positives
of 10%. Approximately half of the improvement over the profile–profile
comparison methods is attributable to the use of profile HMMs in place
of simple profiles.
Alignment quality: Higher sensitivity is mirrored by an increased align-
ment quality. HHsearch produced 1.2, 1.7 and 3.3 times more good
alignments (‘balanced’ score >0.3) than the next best method (COM-
PASS), and 1.6, 2.9 and 9.4 times more than PSI-BLAST, at the family,
superfamily and fold level, respectively.
Speed: HHsearch scans a query of 200 residues against 3691
domains in 33 s on an AMD64 2GHz PC. This is 10 times faster than
PROF_SIM and 17 times faster than COMPASS.
Availability: HHsearch can be downloaded from http://www.
protevo.eb.tuebingen.mpg.de/download/ together with up-to-date
versions of SCOP and PFAM. A web server is available at http://
www.protevo.eb.tuebingen.mpg.de/toolkit/index.php?view=hhpred
Contact: johannes.soeding@tuebingen.mpg.de

INTRODUCTION
Homology detection and sequence alignment are central themes in
bioinformatics because of their manifold applications in areas such
as protein function prediction, 3D protein structure prediction and
protein evolution (Bork and Koonin, 1998; Kinchet al., 2003; Henn-
Saxet al., 2001). But often no close homolog with known function
or structure can be found that would allow to make inferences about
the protein of interest. In many of these cases, new and highly sensit-
ive methods could detect and align remotely homologous sequences
that provide information about the protein’s function, structure or

evolution. Extending the limits of sensitivity is therefore of great
practical importance.

The development of profile–sequence comparison methods such
as PSI-BLAST (Altschulet al., 1997) has led to a great improve-
ment in sensitivity over sequence–sequence comparison methods
such as FASTA or BLAST (Pearson and Lipman, 1988; Altschul
et al., 1990). This is because a sequence profile, which is built
from a multiple alignment of homologous sequences, contains more
information about the sequence family than a single sequence. The
profile allows one to distinguish between conserved positions that
are important for defining members of the family and non-conserved
positions that are variable among the members of the family. More
than that, it describes exactly what variation in amino acids is pos-
sible at each position by recording the probability for the occurrence
of each amino acid along the multiple alignment.

A significant improvement over profile–sequence based methods
was made possible by comparing profiles to profiles. Several pro-
grams for homology recognition have recently been developed that
are based on profile–profile comparison: LAMA by Pietrokovski
(1996), PROF_SIM by Yona and Levitt (2002) and COMPASS by
Sadreyev and Grishin (2003). These programs were shown to be sig-
nificantly more sensitive than PSI-BLAST and have been applied for
identifying evolutionary links between protein families previously
thought to be unrelated (Pietrokovski, 1996; Kuninet al., 2001;
Sadreyevet al., 2003). LAMA is part of the BLOCKS database
software suite and was developed to compare a sequence align-
ment with a database of conserved, ungapped alignments (blocks)
that characterize protein families. PROF_SIM and COMPASS allow
for gaps and use the Smith–Waterman local alignment algorithm.
PROF_SIM employs a column score based on Jensen–Shannon
entropy. Statistical significance is reported as a P-value that is cal-
culated directly from the raw score. COMPASS uses a column score
based on the relative entropy between the two amino acid distribu-
tions. It estimates E-values analytically by generalizing the approach
of PSI-BLAST to the profile–profile case. Before profile–profile
comparison was applied to homology detection it was standardly
employed in multiple sequence alignment methods, for example in
the popular tool CLUSTAL by Thompsonet al. (1994). Programs
for multiple sequence alignment that incorporate recent advances
in profile–profile comparison are PCMA by Peiet al. (2003) and
SATCHMO by Edgar and Sjölander (2003).

A number of structure prediction servers exist that rely on profile–
profile comparison (Rychlewskiet al., 2000; Ginalskiet al., 2003;
Tang et al., 2003; von Öhsenet al., 2003; Tomii and Akiyama,
2004). They build a profile from the query sequence and search for
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homologous templates of known structure. In general, these tem-
plates are similar in structure because structures diverge much more
slowly than sequences, and proteins may remain structurally very
similar long after their sequence similarity has disappeared (Kinch
and Grishin, 2002). These servers are among the best-performing
present-day methods for fold recognition, as can be seen from the
results of the blind, automated structure prediction contests CAFASP,
LIVEBENCH and EVA (Fischeret al., 2003; Rychlewskiet al., 2003;
Koh et al., 2003).

Profile HMMs are similar to simple sequence profiles, but in addi-
tion to the amino acid frequencies in the columns of a multiple
sequence alignment they contain the position-specific probabilities
for inserts and deletions along the alignment (Fig. 1a). The logar-
ithms of these probabilities are in fact equivalent to position-specific
gap penalties (Durbinet al., 1998). Profile HMMs perform better
than sequence profiles in the detection of homologs and in the qual-
ity of alignments (Kroghet al., 1994; Eddy, 1998; Karpluset al.,
2001), albeit at the price of a decrease in computational speed. The
higher sensitivity is due to the fact that the position-specific gap pen-
alties penalize chance hits much more than true positives which tend
to have insertions or deletions at the same positions as the sequences
from which the HMM was built. Lyngsøet al. (1999) developed an
algorithm for the alignment of two HMMs based on the exact maxim-
ization of the co-emission probability. They compared several score
variants with each other but did not benchmark their method against
others.

Here, we generalize the log-odds score maximized in HMM–
sequence alignment to the case of HMM–HMM alignment. We
present a novel algorithm for HMM–HMM alignment that is based
on this theory and that makes some simplifications for increased
efficiency. We show that by aligning profile HMMs instead of
simple sequence profiles we are able to improve both sensitivity and
alignment quality significantly.

Even sequences that are only distantly homologous will have sec-
ondary structures more similar to each other than what is to be
expected by chance. For this reason the predicted secondary struc-
ture can help to distinguish real homologs from chance hits. Several
methods score secondary structure to improve homology recogni-
tion. Kelley et al. (2000) score secondary structure with a simple
+1/−1 scoring function. Hargbo and Elofsson (1999) include pre-
dicted probabilities to emit one of three secondary structure states in
their profile HMMs.1 Kawabata and Nishigawa (2000) developed a
statistical approach using a 3× 3 substitution matrix for secondary
structure states in their structure comparison program Matras. For
HHsearch we developed a statistical method which aims at exploit-
ing all available information, including the confidence values and the
full seven-state secondary structure determined by DSSP2 (Kabsch
and Sander, 1983). Like Kawabata and Nishigawa, we score pairs of
aligned secondary structure states with substitution matrices, but we
use ten 3× 7 matrices, one for each confidence value, that we derive
from a statistical analysis of PSIPRED predictions.

Our motivation in developing HHsearch was to provide the
scientific community with a powerful tool for remote homology

1A problem with this approach is that the probabilities given for example by
PSIPRED (Jones, 1999) do not represent a probability distribution since they
do not sum to one.
2Theπ -helix is very rare and is mapped to the coil state.

Fig. 1. (a) The alignment of a sequence to a profile HMM can be represented
by a path through the HMM (bold arrows). (b) Alignment of two HMMs by
maximization of log-sum-of-odds score. The path through the two HMMs
corresponds to a sequence that is co-emitted by both HMMs. With dynamical
programming one finds the path which maximizes the log-sum-of-odds score
[Equation (2)]. (c) Allowed transitions between pair states. Other transitions
are possible but can be neglected.

detection which maximizes sensitivity while ensuring reliability,
speed and ease of use. To achieve maximum sensitivity we include
as much information about query and database sequences as pos-
sible. We use HMM–HMM comparison instead of profile–profile
comparison and we score predicted secondary structure. Reliability
is crucial for a tool that is to be applied to detect evolutionary links.
It was found that E-values reported by most tools, including ours,
can be very unreliable. HHsearch therefore reports, in addition to
E-values, the probability for each match to be a true positive, based
on the 1.4× 107 pairwise comparisons of our benchmark.

THEORY
In the first subsection we show how to generalize the log-odds score
to the case of pairwise comparison of profile HMMs. In the next
subsection we then derive an efficient method to find the alignment

952



Protein homology detection by HMM–HMM comparison

between two profile HMMs that maximizes the log-sum-of-odds
score.

Log-sum-of-odds score
The log-odds score for sequence–profile or sequence–HMM com-
parison has proven to be highly successful in homology recognition.
This is underscored by the fact that virtually all sequence–profile
and sequence–HMM comparison methods are based on it (Barrett
et al., 1997). The log-odds score is a measure for how much more
probable it is that a sequence is emitted by an HMM rather than
by a random null model. More specifically, we write the probabil-
ity for emitting the sequencex1, . . . ,xL along the path through an
HMM (Fig. 1a) byP(x1, . . . ,xL|emission on path). This probability
is a product of the amino acid emission probabilities for each state on
the path and the transition probabilities between states. The log-odds
score for the sequence to be emitted along the path by the HMM is
(Durbin et al., 1998)

SLO = log
P(x1, . . . ,xL|emission on path)

P (x1, . . . ,xL|Null)
. (1)

The denominator is the probability of the standardly used null model,
P(x1, . . . ,xL|Null) = ∏L

l=1 f (xl), wheref (a) are the fixed amino
acid background frequencies.

We would like to generalize the log-odds score for sequence–
HMM comparison to the case of HMM–HMM comparison. Suppose
we are given an alignment of two profile HMMs,q andp (Fig. 1b).
This alignment corresponds to a certain path through the two HMMs
along which the HMMs emit amino acid residues. A natural gener-
alization of Equation (1) to the case of HMM–HMM comparison is
the log-sum-of-odds (LSO) score

SLSO = log
∑

x1,...,xL

P (x1, . . . ,xL|co-emission on path)

P (x1, . . . ,xL|Null)
. (2)

The sum overx1, . . . ,xL runs over all sequences ofL residues that can
be emitted along the alignment path through the HMMs (e.g.L = 6
in Fig. 1b). The numerator is the probability thatx1, . . . ,xL is co-
emitted by both HMMs along the alignment path and the denominator
is the same null model probability as before.

The log-sum-of-odds score generalizes the log-odds score: when
we use one of the HMMs to represent a single sequence, i.e. the HMM
can emit only this single sequence, only one term can contribute in
the sum and we get the same result as with Equation (1). Note that
the omission of the null model probability in the denominator would
yield the logarithm of the co-emission probability.

In order to apply the Viterbi algorithm (i.e. dynamical program-
ming) to find the path through the two HMMs with the maximum
log-sum-of-odds score, we need to be more explicit about what
Equation (2) means in terms of HMM probabilities. Let the two
HMMs q andp have probabilitiesqi(a) andpj (a) to emit amino
acida in match statei or j and transition probabilitiesqi(X,X′) and
pj (Y ,Y ′) to go from stateX or Y ∈ {M, I ,D} in columni or j to a
stateX′ or Y ′ ∈ {M, I ,D}. Insert states emit amino acids according
to the fixed amino acid background frequenciesf (a). Suppose we are
given an alignment ofq with p, or rather the pathP through the two
HMMs (Fig. 1b). We defineK as the number of columns of the align-
ment ofq with p (e.g.K = 7 in Fig. 1b). Let theXk ,Yk ∈ {M, I ,D}
be the states inq andp in thekth column of the pairwise alignment of
q andp and leti(k) andj(k) be the respective columns fromq andp.

For the residuesx_1(1 = 1, . . . ,L) emitted along the path, we define
qP

k(l)(a) and pP
k(l)(a) as the emission probabilities fromq and p.

More explicitely,qP
k (a) = qi(k)(a) for Xk = M andqP

k (a) = f (a)

for Xk = I . Finally, we definePtr as the product of all transition
probabilities for the path throughp andq. With these definitions, we
can rewrite the log-sum-of-odds score as

SLSO = log
∑

x1,...,xL

∏L
l=1 qP

k(l)(xl)p
P
k(l)(xl) × Ptr∏L

l=1 f (xl)

= log
20∑

x1=1

. . .

20∑
xL=1

L∏
l=1

qP
k(l)(xl)p

P
k(l)(xl)

f (xl)
× Ptr

= log
L∏

l=1

(
20∑

a=1

qP
k(l)(a)pP

k(l)(a)

f (a)

)
+ logPtr

=
∑

k:XkYk=MM

Saa(qi(k),pj(k)) + logPtr . (3)

In the last line we have introduced the column score,

Saa(qi ,pj ) = log
20∑

a=1

qi(a)pj (a)

f (a)
, (4)

by which we compare the amino acid distributions from the two
HMMs. If we omitted the factor 1/f (a), we would obtain the
logarithm of the co-emission probability as the total score. In this
respect, the 1/f (a) can be interpreted asweight factors to the co-
emission probability. They increase the weight of the rare amino
acids with respect to the more common ones. This makes sense
since co-emission of rare amino acids is harder to produce by
chance. When one profile column contains only amino acidxi , i.e.
qi(xi) = 1, the 1/f (a) ensure that we retrieve the log-odds score
Saa(qi ,pj ) = log(pj (xi)/f (xi)). Furthermore, when one of the
columns is completely non-conserved,pj (a) = f (a), the column
score vanishes. For the same reason, insert states have vanishing
column scores. The column score is positive when the two distribu-
tions are similar and negative otherwise, a property that makes local
alignment possible. The column score is symmetric and furthermore
fast to evaluate since it contains only one logarithm.

Pairwise alignment of HMMs
A profile HMM contains in each column a match stateM, a delete
stateD and an insert stateI (Fig. 1a). Match states and insert states
emit amino acids whereas delete states do not. Therefore a match or
insert state in one HMM can only be aligned with a match or insert
state in the other HMM. Conversely, a delete state can only be aligned
with a delete state or with a GapG (Fig. 1b). A gap in a pairwise
alignment of HMMs is completely analogous to a gap in a pairwise
sequence alignment. It signifies that the column of the other HMM
that is aligned with the gap does not have a homologous partner.3

We denote the alignment pair states asMM,MI , IM, II ,DD,DG

andGD. Figure 1b shows an example of two aligned profile HMMs.
In the third column HMMq emits a residue from itsM state and
HMM p emits a residue from theI state. The pair state for this

3Residues or columns from multiple alignments are homologous if they
evolve from the same residue in an ancestral sequence.
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alignment column isMI . In column six of the alignment HMMq
does not emit anything since it passes through theD state. HMM
p does not emit anything either since it has a gap in the alignment.
The corresponding pair state isDG. In principle, pair statesMI

andDG can be interchanged without changing the alignment of the
two HMMs. The reason why we distinguish between them is that
changing the path through the two HMMs changes the transition
probabilities that contribute to the total score [Equation (2)].

At this point, we make two simplifications that speed up the
algorithm and that can be argued to have a negligible or even pos-
itive effect on its performance: First, we exclude pair statesII and
DD, and second, we only allow transitions between a pair state and
itself and between pair stateMM and pair statesMI , IM,DG or
GD (Fig. 1c). The reasoning is very similar to the case of neglecting
theI → D andD → I transitions in profile HMMs (Durbinet al.,
1998).

To calculate the log-sum-of-odds score according to Equation (3),
we need five dynamical programming matricesSXY , one for each
pair stateXY ∈ {MM,MI , IM,DG,GD}. They contain the score
of the best partial alignment which ends in columni of q and column
j of p in pair stateXY . These matrices are calculated recursively,

SMM(i, j) = Saa(qi ,pj )

+ max




SMM(i − 1,j − 1) + log[qi−1(M,M)pj−1(M,M)]
SMI (i − 1,j − 1) + log[qi−1(M,M)pj−1(I ,M)]
SIM(i − 1,j − 1) + log[qi−1(I ,M)pj−1(M,M)]
SDG(i − 1,j − 1) + log[qi−1(D,M)pj−1(M,M)]
SGD(i − 1,j − 1) + log[qi−1(M,M)pj−1(D,M)]

(5)

SMI (i, j) = max

{
SMM(i − 1,j) + log[qi−1(M,M)pj (M, I )]
SMI (i − 1,j) + log[qi−1(M,M)pj (I , I )]

(6)

SDG(i, j) = max

{
SMM(i − 1,j) + log[qi−1(M,D)]
SDG(i − 1,j) + log[qi−1(D,D)] (7)

and similarly for SIM(i, j) and SGD(i, j). Note that in the last
equation no transition probabilities for HMMp appear. The pair
stateDG that is joined to the best partial alignment by this equation
has a gap in HMMp and therefore no new transition is added to the
path throughp (Fig. 1b).

We have implemented both a semi-global and a local alignment
version in HHsearch. For semi-global alignment the terminal gaps
are not scored, so we setSMM(i, 0) = SMM(0,j) = 0. The other
four matrices are initialized to−∞ to forbid any pair state except
MM as the first state. The total scoreSLSO is the maximum over
the last column and last row ofSMM . For local alignment a zero is
added as a sixth case to the maximization in Equation (5) to permit
the HMM–HMM alignment to start at anyMM pair state without
penalty. The total scoreSLSO is found as the maximum over the
whole matrixSMM . The optimal alignment is constructed as usual
by backtracing from the cell with maximum score.

Score offset
Most profile–profile methods add a score offset to the column score
Saa in order to adjust how greedily the alignments will be constructed

(Wang and Dunbrack, 2004), negative offsets producing shorter
alignments. We found that adding a small offset of−0.1 bits indeed
improves the performance of HHsearch and we use it as a default
parameter. We think that this suppresses false matches caused by
compositional bias, i.e. by a global similarity in amino acid com-
position. This compositional bias can lead to per-column scores
slightly above zero (but in general below 0.1) which can add up
to appreciable total scores over long proteins. We have also experi-
mented with more refined methods for compositional bias correction.
We replaced the background frequenciesf (a) in Equation (4) by
the average amino acid frequencies in the query or target protein,
q̄(a) or p̄(a), for example, but found the simple offset method to
work best.

Sequence weighting and pseudocounts
For sequence weighting, we use the scheme of PSI-BLAST (Altschul
et al., 1997) which is a modified version of Henikoff and Henikoff’s
scheme (1994). We add amino acid pseudocounts to both HMMs
with a substitution matrix method similar to PSI-BLAST (Altschul
et al., 1997), employing the Gonnet matrix (Gonnetet al., 1992) in
place of the BLOSUM62 matrix as default. In contrast to the scheme
of PSI-BLAST, the pseudocount admixture depends on the position
in the multiple alignment. The modification ensures that, as in the
sequence weighting scheme, alignments that are composed of several
(sub)domains and which contain many sequences that cover only
parts of the alignment get transformed to profiles in the same way
as if the alignment was first cut into (sub)domains and the profiles
calculated separately. Transition pseudocounts are added in a way
analogous to amino acid pseudocounts.

Scoring correlations
It was shown by Peiet al. that in alignments of homologous
sequences conserved columns tend to occur in clusters along the
sequence (Pei and Grishin, 2001). When applied to the alignment
of homologous HMMs, conserved columns of the underlying super-
alignment should also occur in clusters. The conservation score of the
super-alignment constructed from the two alignments will be higher
wherever the distributions in the two aligned columns are similar, or,
in other words, wherever the column scoreSaa[Equation (4)] is high.
To sum up, in an alignment of twohomologous HMMs we expect
high column scores to occur in clusters along the sequence whereas
in an alignment of non-homologous HMMs we do not expect any
clustering.

This observation can help to distinguish homologous from non-
homologous alignments. Suppose thelth pair state of the optimum
path aligns columnsi(l) from q andj(l) from p. We writeSl for the
column score of thelth pair state, i.e.Sl = Saa(qi(l),pj(l)) if the lth
pair state is anMM state and zero otherwise. The autocorrelation
function

g(d) =
L−d∑
l=1

Sl Sl+d (8)

describes the correlation ofSl at a fixed sequence separationd. When
the two HMMs are homologous we expectg(d) to be positive for
smalld. We therefore add

Scorr = wcorr

4∑
d=1

g(d) (9)
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to the total score,after the best alignment is found.4 The weight
wcorr = 0.1 was determined empirically on a small test set of 317×
317 pairwise alignments.

Scoring secondary structure
HHsearch allows to score a predicted secondary structure either
against a predicted secondary structure or against a known second-
ary structure. We first treat the latter case which is applicable to 3D
structure prediction. The goal is a statistical score for aligning a pair
of secondary structure states that takes the confidence values of the
secondary structure prediction into account. Intuitively, the confid-
ence values contain very valuable information since, for example, an
H aligned to a predictedE should be penalized much more when
the confidence value is 9 instead of 0.

We use DSSP (Kabsch and Sander, 1983) to assign one of seven
states of observed secondary structure. PSIPRED is employed to
predict secondary structure states H, E and C (Jones, 1999). We pre-
dicted the secondary structure for all domains in SCOP (version 1.63,
filtered to a maximum sequence identity of 20%) and compared the
PSIPRED predictions for each residue with the DSSP assignments.
We counted how often each combination(σ ; ρ, c) occurred in which
a DSSP stateσ ∈ {H ,E,C,G,B,S,T } was predicted by PSIPRED
as stateρ ∈ {H ,E,C} with confidence valuec ∈ {0, 1,. . . , 9}. From
this we calculated the probabilityP(σ ; ρ, c) for σ ,ρ andc to occur
together, as well as the probabilityP(σ) for σ to occur and the prob-
ability P(ρ, c) for the pair (ρ, c) to occur. In this way we derived ten
3 × 7 substitution matrices, one for each value ofc:

MSS(σ ; ρ, c) = log
P(σ ; ρ, c)

P (σ )P (ρ, c)
. (10)

Now suppose columni of HMM q has predicted secondary structure
ρ

q

i and confidence valuecq

i and columnj of HMM p has known
secondary structure5 σ

p

j . The secondary structure score forqi and
pj is obtained by multiplying the log-odds inMSSwith a weightwSS,

SSS(qi ,pj ) = wSSMSS(σ
p

j ; ρq

i , cq

i ). (11)

This score is added to the amino acid column scoreSaa(qi ,pj ) in
Equation (5). The weight coefficientwSS accounts for the fact that
the secondary structure states are not independent of their neighbors.
Since the average length of stretches of identical states of predicted
secondary structure is∼7 we expect an optimum weightwSS ≈ 1/7.
Empirically we indeed find a broad optimum aroundwSS = 0.15,
the value we use in this benchmark.

Note that matrixMSS only quantifies how actual secondary struc-
ture is correlated with predicted secondary structurefor one profile
HMM. What is missing is a matrix that quantifies the mapping of the
actual secondarystructure fromoneHMMtoanotherdistantly related
HMM. We derived such a 7×7 matrix and provided it with a variable
exponent, but we find that an exponent of zero represents the optimum
case, which is why this matrix was omitted in the following.6

4We devised an alignment algorithm that maximizes the total scoreincluding
the correlation score but the performance was only marginally better at
approximately twice the computation time.
5The known secondary structure ofp is the secondary structure of the seed
sequence of the alignment.
6One explanation is that the PSIPRED prediction is calculated from align-
ments that may be quite diverse. Therefore the matrixMSS already contains
some contribution of evolution in time.

We now come to the case of scoring predicted against predicted
secondary structure. This time we need to account for the mapping of
DSSP secondary structure states to predicted states twice, once forq

and once forp. Again we can omit the mapping of the DSSP seven-
state secondary structure from one profile HMM to a homologous
HMM. The substitution matrix for the alignment of states (ρ

q

i , cq

i )
and (ρp

j , cp

j ) is

MSS(ρ
q

i , cq

i ; ρp

j , cp

j , ) = log
P(ρ

q

i , cq

i ; ρp

j , cp

j )

P (ρ
q

i , cq

i ) P (ρ
p

j , cp

j )

= log
∑
σ

P (ρ
q

i , cq

i |σ)

P (ρ
q

i , cq

i )

P (ρ
p

j , cp

j |σ)

P (ρ
p

j , cp

j )
P (σ ),

(12)

where the sum runs over all seven DSSP states. This matrix tells
us how much more probable it is to obtain predictions(ρ

q

i , cq

i ) and
(ρ

p

j , cp

j ) for a pair of aligned homologous residues than to obtain
them independently of each other, whatever the actual secondary
structure stateσ may be. The secondary structure score calculated
from this matrix bySSS(qi ,pj ) = wSSMSS(ρ

q

i , cq

i ; ρp

j , cp

j ) is added
to the column score with the same weightwSS = 0.15 as before.

RESULTS AND DISCUSSION
We have performed an all-against-all comparison with various simil-
arity search tools to test their ability to detect remote homologs and to
produce high-quality alignments below the twilight zone (Doolittle,
1981) of sequence similarity. We compared BLAST and PSI-BLAST
(version 2.2.9) as popular representatives of sequence–sequence and
profile–sequence methods, the HMM–sequence comparison pack-
age HMMER (2.2g), the profile–profile alignment tools PROF_SIM
(obtained 04/02/2004) and COMPASS (1.24), and our method
HHsearch (1.0). All tools except COMPASS were run with default
parameters.7

In order to pinpoint the source of improvments, we benchmarked
four versions of HHsearch. HHsearch 0 uses simple profile–profile
comparison by setting all gap opening penalties to−3.5 bits and
all gap extension penalties to−0.2 bits and using these instead
of the logarithms of the transition probabilities in Equations (5)–
(7). HHsearch 1 is the basic HMM–HMM version, HHsearch 2
includes the correlation score [Equation (9)]; in addition to this
HHsearch 3 compares predicted with predicted secondary struc-
ture [Equation (12)] and HHsearch 4 uses predicted versus known
secondary structure [Equation (10)].

The 3691 sequences of the SCOP database (Murzinet al.,
1995) (version 1.63) filtered to a maximum sequence identity
of 20% (‘SCOP-20’) were obtained from the ASTRAL server
(Chandoniaet al., 2004). Each sequence corresponds to a single
structural domain, except for 73 sequences from the SCOP class
of multi-domain proteins. An alignment was built from each seed
sequence by PSI-BLAST with up to eight iterations. An inclusion
threshold of 10−4 in the last iteration and 10−5 in previous itera-
tions was used. We used several filters in order to make sure that

7We obtained significantly better results by changing the default setting ‘−g
0.5’ to ‘ −g 1.0’ and building the profiles from those columns of the mul-
tiple alignment that have a residue in the seed sequence instead of using the
50% gaps rule.
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only homologous sequences enter the alignments. All methods in
the benchmark (except BLAST) were tested with this same set of
alignments.

Detection of homologs
Each domain in SCOP is classified into a hierarchy of family, super-
family, fold and class (Murzinet al., 1995). Domains within one
family are clearly homologous, based either on a sequence identity
>30% or on a very similar structure and function at lower sequence
similarity. Domains from the same superfamily but different family
are likely to be homologous based on an expert analysis of struc-
tural and sequence similarity, location of binding sites, functional
groups, etc. Domains in the same fold but different superfamilies
share the same spatial arrangement and connectivity of secondary
structure elements. They may be similar either by common des-
cent or by convergence. Following SCOP, we classify each pair of
domains as homologous if they are members of the same superfam-
ily. Domains from different classes are classified as non-homologous.
All other pairs are considered as ‘unknown’ in the benchmark since
their evolutionary relationship cannot be ascertained.

Figure 2 is a classical chart with the number of true positives
(TP) versus the number of false positives (FP). True positives are
homologous pairs and false positives are non-homologous pairs with
a score above a certain threshold. By varying the threshold score the
curve of TP versus FP is traced out. The ideal method would detect
all homologs before the first non-homologous pair is reported. The
curve would rise up vertically from zero until it reached the total
number of homologous pairs.

Starting from the bottom, we see that BLAST is obviously inad-
equate to search for homologies in such a difficult dataset. At a
rate of false positives (‘error rate’)FP/(T P +FP) = 10% (dashed
line) it finds only 908 homologous pairs, or 2.2% out of a total
of 41 505. PSI-BLAST detects 17.7% and HMMER finds 18.7%.
PROF_SIM and COMPASS find 24.9% and 34.0%, respectively.
Next in performance is HHsearch 0 with 40.0% and the basic
HMM–HMM version HHsearch 1 with 44.2%. Inclusion of the cor-
relation score [Equation (9)] improves this value to 46.7% (HHsearch
2). When in addition, the predicted secondary structure is used for
both HMMs, a value of 48.8% is achieved (HHsearch 3). And finally,
HHsearch 4 uses actual secondary structure from DSSP in one of the
two HMMs and finds 50.0% of the 41 505 homologs. This is a factor
23 more than BLAST, 2.8 and 2.7 times more than PSI-BLAST and
HMMER, 2.0 times more than PROF_SIM and 1.47 times more than
COMPASS.

All of the HHsearch versions in Figure 2 use local alignment. We
found that the semi-global version did not perform nearly as well
(data not shown). We believe that this is owing to the fact that distant
homologs are often not alignable over their entire length but only
over a core that defines their superfamily. The semi-global algorithm
aligns these non-homologous regions by force which leads to random
noise added to the score of the aligned homologous regions.

In an analysis of the complete data we found many pairs of
sequences from different superfamilies and sometimes even different
folds that HHsearch predicts as homologs with high confidence. In
most cases their structures are also very similar, either in parts or
globally. This convinced us that many superfamilies that are classi-
fied by SCOP into different folds are in fact homologous. We name
just two examples, the TIM barrels (Henn-Saxet al., 2001) (SCOP
superfamilies c.1.1 – c.1.25) and the beta propellers (SCOP folds

Fig. 2. Sensitivity of various homology detection tools, measured by how
many true positives are detected at varying numbers of false positives in an
all-against-all benchmark on SCOP-20 . True positives are pairs from the
same superfamily, false positives are pairs from different classes. Dashed
straight line: error rate 10%. There are 41 505 true positives and 1.08× 107

false positives in total. For definitions of HHsearch 0–4, please refer to the
main text.

b.66 – b.70). To test how well the various methods detect these cases
of structural similarity and putative homology, we analyze the data
with a second, alternative definition of true and false positives. A
pair is now defined as true positive if the domains belong to the same
SCOP superfamilyor if the sequence-based alignment yields a struc-
tural alignment with a MaxSub score (Siewet al., 2000) of at least
0.1. Pairs of sequences from different classes and with zero MaxSub
score are classified as non-homologous. All other relationships are
classified as unknown. Roughly speaking, the MaxSub score tells us
what fraction of the query residues can be structurally superposed
with the aligned residues from the other structure. It is defined such
that a score >0 occurs rarely by chance.8

Figure 3 plots true versus false positives for the new definition. The
overall picture is similar to the previous figure with a few noteworthy
differences. First, all tools except BLAST find more true positives
at a fixed error rate. Second, the more sensitive tools improve more
than the less sensitive ones, even in relative terms. This indicates that
the new definition of true and false positives comes closer to defining
homology than the previous, more rigid definition by SCOP super-
families. The improvement is particularly conspicuous for HHsearch
3 and 4 that use secondary structure. The reason is that the ‘new’
true positives which come from different superfamilies are on aver-
age harder to detect than the ‘old’ true positives used in the previous
figure. Since the less sensitive tools are not likely to detect them as
homologs it is mainly the most sensitive tools which profit from their
reclassification as true positives. Third, a notable exception to the

8More specifically, MaxSub equals the weighted number of aligned pairs that
can be superimposed with a maximum distance per pair of 3.5 Å, divided by
the number of residues in the query sequence. Pairs with 0 Å deviation carry
weight 1 and pairs with 3.5 Å deviation have weight 0.5. If no subset with
40 or more aligned residue pairs can be found that are within 3.5 Å and if no
more than 25 such pairs can be found with score≥ 0.125 the MaxSub score
is set to 0.
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Fig. 3. Same as previous figure, but for a broader definition of true positives:
True positives are pairs from the same superfamilyor with MaxSub score of
at least 0.1; false positives are pairs from different classesand zero MaxSub
score.

Fig. 4. Same as in previous figure, but all pairs at family level are ignored.
This leaves as closest homologs only the pairs related at the superfamily level.

above remark is the improvement of PROF_SIM and COMPASS in
relation to the basic profile–profile version of HHsearch (HHsearch
0). Whereas HHsearch 0 was 18% more sensitive than COMPASS
in Figure 2 it is only 6% more sensitive now (at 10% error rate). This
could mean that they reach their peak performance at more remote
relationships than HHsearch.

To test this hypothesis we plot the number of true versus false pos-
itives again (Fig. 4), but this time we keep only the true positive pairs
from different families. Indeed PROF_SIM further improves with
respect to HHsearch 0 and COMPASS even draws equal. Remark-
ably, HHsearch 3 and 4 which use secondary structure information
are now much more sensitive(∼50%) than HHsearch 2. At an error
rate of 10%, HHsearch 3 detects a factor of 190 more true pos-
itives than BLAST, 7.5 and 7.2 times more than PSI-BLAST and
HMMER, 4.0 times more than PROF_SIM and 2.2 times more than
COMPASS. Note that the improvement in sensitivity due to inclusion

of secondary structure grows quickly with increasing evolutionary
divergence.

Interestingly, the sensitivity for HHsearch in Figures 3 and 4
decreases slightly when known instead of predicted secondary struc-
ture is used in one HMM. The likely reason is that the way in which we
score predicted versus predicted secondary structure makes it better
optimized forremote homologies for which the secondary structures
have diverged more: The scoring matrix for this case [Equation (12)]
embodies twice as much uncertainty as the scoring matrix for known
versus predicted secondary structure [Equation (10)].

Alignment quality
The quality of an alignment between a query protein and a dis-
tant homolog is critical to its usefulness for structure prediction,
evolutionary studies and functional analysis. In comparative model-
ing, for example, the alignment between query and template is the
key determinant of model quality (Venclovas, 2003). The quality of
sequence alignments can be assessed by comparing them with refer-
ence alignments generated by structural alignment algorithms (‘the
gold standard’). Here we employ a more direct approach, developed
for the automatic assessment of structure prediction servers (Siew
et al., 2000), where the generation of a structure-based sequence
alignment is omitted as an intermediate step. One thus avoids the
arbitrariness involved in transforming a structural superposition into
a sequence alignment (see also O’Sullivanet al., 2003). Instead, the
sequence alignment is assessed directly by looking at the spatial dis-
tances between aligned pairs of residues upon superposition of their
3D structures.

We use two scores for alignment quality. The first is the plain
MaxSub score. A drawback of this score is that it does not penalize
overprediction: pairs of residues that are wrongly predicted to be
superposable are not penalized at all. A method optimized for this
score will generate alignments of maximal length even when only a
few residues can be reliably aligned. Similar to the MaxSub score is
the developer’s score,SDev = Ncorrect/ min(Lq ,Lp), whereNcorrect

is the number of residue pairs that are present in the maximum subset
identified by MaxSub, andLq andLp denote the number of residues
in the two sequences to be aligned. At the other extreme, the so-called
modeler’s score does not penalize underprediction of residues. It is
defined asSMod = Ncorrect/Lali, whereLali is the number of aligned
residue pairs in the sequence alignment. A method optimized for this
score alone would always predict just one pair of aligned residues.9

As the golden mean between these two extremes we define a
‘balanced’ score which penalizes both overprediction and under-
prediction:

Sbalanced= (SDev + SMod)/2 . (13)

We setSbalancedto zero when the maximum subset contains less than
40 residue pairs. As for the MaxSub score, this ensures that a score
larger than zero is unlikely to occur by chance. Other balanced scores
have been proposed by Clineet al. (2002) and Yona and Levitt (2002).

Figure 5a–c plots the binned distribution of MaxSub scores for
all pairs related at the family level (10 223 pairs), superfamily level

9The developer’s score and the modeler’s score were first defined by Sauder
et al. (2000) in a slightly different way using the structure-based alignments
as gold standard. In their definition, min(Lq ,Lp) is replaced by the number
of aligned residue pairs in the structural alignment andNcorrect refers to the
number of residues which are aligned in the same way as in the structure-based
sequence alignment.
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Fig. 5. Distribution of MaxSub scores for alignments of domain pairs related
at the family, superfamily and fold level in percent of the total number of
homologous sequence pairs at that level of relationship. Counts with MaxSub
score of exactly zero are not shown.

(31 282 pairs) and fold level (66 813 pairs). First of all, note that
PSI-BLAST produces much better alignments than BLAST. Second,
the group of profile–profile methods PROF_SIM, COMPASS and
HHsearch 0 perform clearly better than PSI-BLAST, especially at the
superfamily level. Third, within this group COMPASS is a little better
than PROF_SIM and HHsearch 0 is a little better than COMPASS at
all levels of relationship. Fourth, aligning profile HMMs (HHsearch
2) instead of simple profiles (HHsearch 0) improves the alignment
quality significantly, especially for the difficult alignments on the
superfamily and fold levels. Fifth, adding predicted secondary struc-
ture greatly improves alignment quality on the superfamily and fold
levels. Sixth, as a general trend the good methods get even better
relative to the others with increasing difficulty of the alignments,
the same as was observed for the sensitivity in Figures 2–4. Last,
HMMER alignments have better MaxSub scores than the simple
profile–profile methods because HMMer is run in its default global
mode and MaxSub does not penalize overpredicted residues.

Figure 6a–c plots the binned score distribution for the balanced
score defined in Equation (13). The points discussed with the pre-
vious figure are borne out here, with the exception that HMMER
now comes out as inferior to the profile–profile methods, as it

Fig. 6. Distribution of balanced scores [Equation (13)] for alignments of
domain pairs related at the family, superfamily and fold level. Counts with
zero score are not shown.

should. HHsearch 3 is the clear winner. At the family level, it aligns
58% of all pairs with a balanced score of 0.3 or larger. This is
1.23 times more than COMPASS, 1.28 times more than PROF_SIM,
1.34 times more than HMMER, 1.57 times more than PSI-BLAST
and 4.4 times more than BLAST. At the superfamily level, where
27% of HHsearch 3 alignments have a score of 0.3 or above, the
improvement over the other tools is by a factor 1.7 (COMPASS), 1.9
(PROF_SIM), 2.2 (HMMER), 2.9 (PSI-BLAST) and 14 (BLAST).
At the fold level, where 4.5% of HHsearch 3 alignments have a score
of 0.3 or above, the factors are 3.3 (COMPASS), 6.0 (PROF_SIM),
7.3 (HMMER), 9.4 (PSI-BLAST) and 63 (BLAST).10

In several recent benchmark studies, column scores for profile–
profile alignment were compared for their ability to produce align-
ments similar to structure-based alignments (Mittelmanet al., 2003;
Panchenko, 2003; Marti-Renomet al., 2004; Edgar and Sjölander,
2004). In these studies differences in performance between the tested

10Note that 4.5% of all alignments at the fold level is quite a lot. Domain
pairs related at the fold level are deemed non-homologous by SCOP and we
might not expect any reasonably good alignments at all. This relatively high
number suggests that many sequences classified into different superfamilies
by SCOP are in fact homologous.
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Fig. 7. Distribution of MaxSub scores for the best match in each of 3691
database scans that are related at maximum (a) at the family level, (b) at
the superfamily, or (c) at the fold level. For HHsearch 4g all HHsearch 4
alignments are realigned with the semi-global algorithm.

column scores are generally small and no clear winner has emerged.
Indeed, the quality of alignments produced by HHsearch 0, COM-
PASS and PROF_SIM is rather similar in our benchmark. In this
light the improvements by HMM–HMM alignment (HHsearch 2)
and secondary structure scoring (HHsearch 3 or 4) is all the more
remarkable and shows that they matter much more than the choice
of column score.

Structure prediction
When predicting structure we are allowed to use thebest match with
a sequence in the database, whereas Figures 5 and 6 show the score
distribution forall pairs at a given level. Figure 7a shows the score
distribution of the best match in each of the 3691 database scans.
Figure 7b plots the alignment score distribution of the best matches
at or below the superfamily level, i.e. where members from the same
family have been excluded as templates. Similarly, Figure 7c shows
the score distribution for pairs at or below the fold level. For structure
prediction the true secondary structure of the templates is available
and HHsearch 4 can be used. We also show the results for HHsearch
4g, which is the same as HHsearch 4 except that the alignments have
all been realigned with the semi-global algorithm.

As expected, the performance in Figure 7 depends on a combina-
tion of alignment quality and sensitivity per database scan because
the more sensitive a method is, the better it will be able to rank
the best 3D template at the top. HHsearch 4 is again much bet-
ter than COMPASS and PROF_SIM. COMPASS and PROF_SIM
are much better than PSI-BLAST and HMMER due to their much
higher sensitivities. A bit surprisingly, PROF_SIM is better than
COMPASS on the superfamily level and particularly so at the fold
level. We think that the method of calculating its P-values is the cause
for PROF_SIM’s rather sub-optimal sensitivity in Figures 2–4. On a
per-scan basis it seems to be even better than COMPASS in ranking
the best structural templates at the top, at least below the family level.
Finally, HHsearch 4g with its global alignments fares a bit better than
HHsearch 4.

What chances does one have to get a structural template with a
usable alignment? If a template from the same family as the query
is available in the database HHsearch 4 will produce a usable align-
ment with MaxSub score≥0.1 in 66% of all cases, and COMPASS
and PROF_SIM in 56% of all cases. When the closest relative in
the structure database is from the same superfamily, a usable align-
ment is produced in 44% (HHsearch 4), 29% (COMPASS) and 31%
(PROF_SIM) of all cases. When the most closely related structure
has the same fold, HHsearch 4 can still come up with an alignment
with a score of at least 0.1 in 19% of all cases, COMPASS in 7.3%
and PROF_SIM in 9.7%.

CONCLUSION
We have generalized HMM–sequence alignment to the pairwise
alignment of profile HMMs and presented a fast algorithm that
maximizes the log-sum-of-odds score, the generalization of the well-
known log-odds score. A novel correlation score was derived which
increases the sensitivity by 5–10% at no cost and which can easily be
applied to other similarity search methods. Moreover, we have pro-
posed a statistical method to score predicted versus known secondary
structure as well as predicted versus predicted secondary structure
that exploits the confidence values of the secondary structure pre-
diction. Based on these methods, we have developed the homology
detection tool HHsearch which we benchmarked together with five
other homology detection tools on a hard dataset below the twilight
zone of sequence similarity (20% sequence identity). HHsearch rep-
resents a significant improvement over existing methods, both in
terms of sensitivity and alignment quality, and the contributions to
this improvement were analyzed.

Two servers (HHpred.2/3) that use HHsearch have been registered
for the blind structure prediction contests CAFASP4 (Fischeret al.,
2003) and LiveBench (Rychlewskiet al., 2003). Preliminary results
are below our expectations and indicate that the multiple alignment
construction method rather than HHsearch limited the performance,
since it was geared too much to high selectivity at the cost of sensit-
ivity. We plan to improve this by using seperate alignment databases
for structure prediction and homology detection.

We hope that HHsearch will be a useful tool for functional annota-
tion, structure prediction and protein evolution. We have set up a web
server for homology detection and structure prediction that we plan
to extend into a structure and function prediction pipeline with max-
imum flexibility for manual use. But the speed of HHsearch should
also allow an application to large-scale automatic annotation projects
and any requests in this direction are welcome.
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