
BIOINFORMATICS Vol. 20 no. 8 2004, pages 1309–1318
DOI: 10.1093/bioinformatics/bth091

COACH: profile–profile alignment of protein
families using hidden Markov models

Robert C. Edgar1,∗ and Kimmen Sjölander2

1195 Roque Moraes Drive, Mill Valley, CA 94941, USA and 2Department of
Bioengineering, University of California, Berkeley, CA 94720, USA

Received on August 8, 2003; revised on December 23, 2003; accepted on December 24, 2003

Advance Access publication February 12, 2004

ABSTRACT
Motivation: Alignments of two multiple-sequence alignments,
or statistical models of such alignments (profiles), have import-
ant applications in computational biology. The increased
amount of information in a profile versus a single sequence can
lead to more accurate alignments and more sensitive homolog
detection in database searches. Several profile–profile align-
ment methods have been proposed and have been shown
to improve sensitivity and alignment quality compared with
sequence–sequence methods (such as BLAST) and profile–
sequence methods (e.g. PSI-BLAST). Here we present a new
approach to profile–profile alignment we call Comparison of
Alignments by Constructing Hidden Markov Models (HMMs)
(COACH). COACH aligns two multiple sequence alignments
by constructing a profile HMM from one alignment and aligning
the other to that HMM.
Results: We compare the alignment accuracy of COACH with
two recently published methods: Yona and Levitt’s prof_sim
and Sadreyev and Grishin’s COMPASS. On two sets of refer-
ence alignments selected from the FSSP database, we find
that COACH is able, on average, to produce alignments giv-
ing the best coverage or the fewest errors, depending on the
chosen parameter settings.
Availability: COACH is freely available from www.drive5.com/
lobster
Contact: bob@drive5.com

1 INTRODUCTION
1.1 Profiles and profile alignments
The construction of pairwise alignments of two protein
sequences is a fundamental technique in computational
biology. A pairwise alignment of an uncharacterized pro-
tein with a sequence of known function or structure can help
identify homologous regions, from which inferences about
function and structure can be made. A score or expectation
value can be computed from the alignment, giving a statist-
ical measure of the relatedness of the two sequences. This can
be used to discriminate homologs from unrelated sequences

∗To whom correspondence should be addressed.

and indicate the degree of functional or structural similarity
that may be inferred reliably. Distantly related proteins may
share a common fold and function, but their similarity can
be hard to detect from the primary sequence alone (Brenner
et al., 1998). Multiple alignments of related proteins provide
further information about the family, indicating patterns of
conservation or variation at each position. A profile is a statist-
ical model of a multiple alignment. Profiles typically contain
the estimated probability of finding each amino acid type at
each position and may include position-specific gap penalties.
We distinguish three classes of pairwise alignment algorithms.
Sequence–sequence methods such as BLAST (Altschul et al.,
1990) and FASTA (Pearson, 1990) use the two primary
sequences alone. Profile–sequence methods (Gribskov et al.,
1988; Tatusov et al., 1994) such as PSI-BLAST (Altschul
et al., 1997) and SAM-T98 (Karplus et al., 1998) align a query
sequence to a profile. Recently, several profile–profile meth-
ods have been proposed (Pietrokovski, 1996; Lyngso et al.,
1999; Panchenko et al., 2000; Rychlewski et al., 2000; Yona
and Levitt, 2002; von Öhsen et al., 2003; Panchenko, 2003;
Sadreyev and Grishin, 2003). These construct an alignment of
two profiles, from which a similarity score and pairwise align-
ment of the two query sequences can be derived. Improve-
ments in both alignment accuracy and homolog recognition
have been reported for profile–profile methods over profile–
sequence and sequence–sequence methods. Profile–profile
methods have been used in genome annotation and protein
classification (e.g. Pawlowski et al., 1999, 2001; Henikoff
et al., 2000; Kunin et al., 2001). Profile–profile alignment
is also the iterated step in progressive multiple alignment
algorithms such as CLUSTALW (Thompson et al., 1994).

1.2 COACH: aligning a multiple-sequence
alignment to a hidden Markov model (HMM)

In the following, we describe a new profile–profile algorithm
we call Comparison of Alignments by Constructing HMMs
(COACH). COACH aligns two multiple-sequence alignments
by estimating a profile HMM from one alignment and aligning
the other alignment to that HMM. COACH is the iterated step
in SATCHMO, a progressive multiple-sequence alignment
method that has been shown (Edgar and Sjölander, 2003) to

Bioinformatics 20(8) © Oxford University Press 2004; all rights reserved. 1309



R.C.Edgar and K.Sjölander

Dk 

Mk 

Ik 

Dk+1 

Mk+1 

Fig. 1. Two consecutive nodes k and k+1 in a profile HMM. Letters
represent states, arrows represent transitions. Match (M) and insert
(I) states emit residues; delete (D) states are silent. Insert state Ik+1

and transitions out of Mk and Dk are not shown.

produce alignments of quality comparable with CLUSTALW.
We compare COACH with two recently published profile–
profile methods: prof_sim (Yona and Levitt, 2002) and
COMPASS (Sadreyev and Grishin, 2003). We assess align-
ment accuracy by comparing sequence alignments produced
by these methods with structural alignments from the FSSP
database (Holm and Sander, 1996).

1.3 Profile HMMs
A profile HMM (Krogh et al., 1994; Eddy, 1996) is a graph-
ical model of a protein family that emits a sequence of letters
representing amino acids. Each position (node) k in a pro-
file HMM has a match state (Mk), insert state (Ik) and delete
state (Dk) (Fig. 1). M states represent conserved positions,
I states represent insertions relative to the consensus. M and
I states emit letters; D states are silent, allowing for gaps.
Mk → Ik and Mk → Dk+1 transition probabilities corres-
pond to scores for opening a gap in the profile and the emitted
sequence, respectively; Dk → Dk+1 and Ik → Ik probabil-
ities correspond to gap-extend scores. Gap penalties are thus
position-specific, and the associated transition probabilities
can be estimated from observed sequences.

1.4 Aligning an alignment to an HMM
Consider two multiple alignments, A and T . A has N

sequences. Estimate an HMM from T . Run the HMM
N times, generating N sequences. Align those sequences to
each other by placing letters emitted by a given model state
in the same column; call the resulting multiple alignment B.
If A and B are identical (to within a trivial re-ordering of the
sequences), we say that the HMM generated A. In that case,
we achieve an alignment (call it C) of A to T via the model
in which the columns of A and T are kept intact, as they
must be if we trust that A and T are correct (Fig. 2). Given
this view, we can treat an HMM as an emitter of alignments.
For example, we can compute the probability P(A | HMM)

that the model generates A and seek an optimal alignment
of A to the HMM. Note that this differs from aligning the
sequences individually to the model as all letters in a given
column of A must be emitted from the same state, whereas the

Fig. 2. Example alignment of two multiple alignments via an HMM.
We start from two alignments, A and T . An HMM is estimated
from T (top panel). In this example, we create a match state from
each column (dotted arrows). A is then aligned to the HMM (middle
panel) by assigning columns in A to emitter states in the model
(solid arrows). The result is the output alignment C (bottom panel),
in which columns of A and T are preserved intact. A column of gaps
is inserted into T if one or more sequences in A visit an insert state; a
column of gaps is inserted into A if all sequences visits a delete state.
The first sequence in A, QDW, is a gapless sequence. It takes the path
D1 → M2 → I2 → M3, which by definition is the route. The second
sequence, Q–W, takes the path D1 → M2 → M3. The path taken by
a sequence is determined uniquely, given the route and the location
of gaps in that sequence as it appears in A. An optimal alignment is
determined by finding a route that maximizes the probability of C,
which is computed by multiplying the probabilities of the paths for
each sequence in A.

optimal alignment of an individual sequence might assign the
letter in that column to a different state. If A is a good align-
ment, this may allow distantly related sequences to be aligned
more accurately to the model. To make this more formal, we
define the following terms. The template alignment (T ) is the
multiple sequence alignment from which the HMM is estim-
ated. The input alignment (A) is the multiple alignment that
is to be aligned to the HMM. An output alignment (C) is an
alignment of the input alignment to the HMM or, equival-
ently, of the input alignment to the template alignment. A
gapless sequence is a sequence in the input alignment that has
a residue in every column. A gapless sequence need not be
present but is helpful conceptually. An output alignment is
constructed by assigning each column in the input alignment
to an emitter state in the HMM. Such an assignment uniquely

1310



COACH

determines the path that a gapless sequence must take through
the HMM; we call this path a route. Given a route, a sequence
with one or more gaps in the input alignment is uniquely
constrained to take a related path, as illustrated in Figure 2.
The probability of a route, given the input alignment and an
HMM, is obtained by multiplying the probabilities of the paths
implied by that route for each sequence in the input alignment.
We construct a Viterbi output alignment (Section 2.1) by find-
ing a most probable route that generates the input alignment.
We fully account for transition probabilities associated with
gapped positions in every sequence. Perhaps surprisingly, this
turns out to be possible without increasing the effective time
complexity of our algorithm compared with other profile–
profile dynamic programming (DP) methods. We are thus able
to exploit information about conserved patterns of gaps of dif-
ferent lengths, in contrast to methods that treat a gap as the
21st letter and are invariant under a permutation of a column
(e.g. COMPASS) and those that apply position-independent
affine gap penalties, ignoring internal gaps within a profile
(e.g. prof_sim). Rather than estimate the HMM from the tem-
plate alignment, it would be more natural to estimate an HMM
from both the input alignment A and template alignment T

and align both A and T to that HMM. This would treat A and
T symmetrically and avoid the question of which alignment
is chosen to be the template. However, our approach appears
to be more computationally tractable.

2 METHODS
2.1 Dynamic programming applied to a multiple

alignment
Alignment of a sequence to an HMM is accomplished using
the Viterbi algorithm (Bellman, 1957; Viterbi, 1967; Rabiner,
1989). The Viterbi algorithm finds a most probable path
through the model that generates the input sequence and relies
on recursion relations that express the probability of a most
probable partial path in terms of paths with one edge less. By
developing analogous recursion relations for routes, we can
extend the Viterbi algorithm to handle multiple alignments.
We introduce the term leg to refer to an edge in a route. For
a given consecutive pair of columns in the input alignment,
with assignments of those columns to emitter states, the leg
is the edge implied for a sequence that has no gaps in those
columns. A difficulty arises related to gaps in columns emit-
ted by insert (I) states, as illustrated in Figure 3. Suppose
we know the probability of a most probable partial route that
ends in state Ik and emits the input alignment up to column
i − 1. Now we wish to compute the change in probability
due to adding a leg that ends in the Ik state again, emitting
column i. It is clear that this adds an Ik → Ik edge for Seq1 in
Figure 3, but the edge for Seq2 is undetermined by the inform-
ation given because the predecessor state for Seq2’s path is
unknown (it could be Ik , Mk or Dk). We overcome this diffi-
culty by (1) computing tables that characterize the occurrence

Fig. 3. Gap in a column assigned to an insert state. In this example,
two consecutive columns i − 1, i in the input alignment are assigned
to insert state Ik in the model. Seq1 has letters in both columns; this
means that Seq1 must take a self-loop in that insert state. Seq2 has a
gap in the first of these columns, which implies that Seq2 makes one
visit less to the insert state than Seq1. Columns i − 1, i thus imply
an edge Ik → Ik for Seq1. However, it is not possible to deduce the
edge induced for Seq2 without looking further back in the path. If
column i − 2 is assigned to Ik , then a self-loop is also implied for
Seq2. However, if column i − 2 is assigned to Mk , then an Mk → Ik
edge is implied. A similar situation arises whenever a gap appears
in a column assigned to an insert state, and presents a difficulty in
developing the recursion relations.

of gaps and (2) introducing new DP matrices that track the
leg by which a most probable route enters a given insert state.
This enables us to ‘trace back’ to the start of an insert of any
length both in the route (by means of the new DP matrices)
and in the input alignment (using the new gap tables) with an
O(1) computation. We show further that the gap tables can
be computed efficiently by visiting each position in the input
alignment once only. Thus, we create two different types of
profile: an HMM for the template alignment and a new type
of profile for the input alignment. This second type of profile
includes observed residue frequencies at each position plus
the frequencies of observed gaps with all starting positions
and lengths. The recursion relations are relatively complic-
ated; we derive and state them in full in the Appendix. As
expected, they reduce to the familiar Viterbi algorithm in the
case where the input alignment contains exactly one sequence.

3 VALIDATION
3.1 Reference alignments
In earlier work (Edgar and Sjölander, 2003), we assessed
the alignment accuracy of 23 different profile–profile scoring
functions by comparing sequence alignments generated by
those functions with 488 structural alignments from the FSSP
database. We demonstrated improved accuracy of profile–
profile over profile–sequence and sequence–sequence meth-
ods but found no statistically significant difference between
most of the scoring functions in this test set, which we call PP1.
The PP1 data set is composed of regions selected for a high
degree of structural alignability in order to reduce possible
ambiguities in the sequence alignment implied by a structural
alignment. This was done by requiring the DALI struc-
tural alignment z-score to be ≥15, root-mean square distance
(RMSD) to be ≤2.5 Å and an exact agreement between FSSP
and the CE structural aligner (Shindyalov and Bourne, 1998)

1311



R.C.Edgar and K.Sjölander

over a minimum of 50 consecutive positions. We speculate
that these stringent criteria, which tend to limit the num-
ber of gapped positions, produced a test set for which the
detection of weak sequence similarity is sufficient to produce
high-quality alignments, making it relatively insensitive to
possible performance differences between alignment methods
and parameters. For the present work, we therefore designed
a new test set based on criteria designed to include more
structurally diverged proteins and hence more gaps. We call
this new test set PP2. We selected pairs of sequences from
the FSSP having ≤30% identity, DALI z-score ≥8 and ≤12,
RMSD ≤3.5 Å and alignment length ≥50. These criteria alone
are sufficiently relaxed to allow matches between convergent
folds and regions of similar secondary structure, so we addi-
tionally required that the two sequences were homologous
according to the SCOP database (Murzin et al., 1995). To
reduce redundancy, these pairs were filtered so that no two
sequences aligned to a common third sequence had >30%
identity. Finally, we selected 500 pairs at random from the
remainder. We retained all positions considered alignable by
FSSP (agreement with CE was not required, in contrast to
PP1). These alignments can therefore be expected to con-
tain regions upon which different structural aligners disagree
and within which consideration of probable homology rather
than atom coordinates alone may produce some shifts (Cline,
2000). We consider this a reasonable price to pay in an attempt
to improve the sensitivity of the reference data and see no
reason to suppose that our criteria might bias alignments in
favor of one sequence-based method over another. Alignments
were created by PSI-BLAST from a release of the NCBI
non-redundant protein sequence database (Pruitt et al., 2003)
downloaded in January 2003. We used blastpgp version 2.2.5
with options –h5 –e0.1, keeping only alignments produced by
the final iteration.

3.2 Quality scores
We use three quality scores for comparing a test alignment
with a reference alignment. QDev (the developer’s score)
is the number of correctly aligned pairs in the test align-
ment, tc, divided by the length of the reference alignment.
This score has been used, e.g. by Thompson et al. (1999),
who call it SP, Sauder et al. (2000), who refer to it as fD,
and Sadreyev and Grishin (2003), who call it Qdeveloper.
QMod (the modeler’s score) is tc divided by the length of the
test alignment; this is Sauder et al.’s fM and Sadreyev and
Grishin’s Qmodeler. Each of these scores is useful in some
applications but also has drawbacks. QDev does not penalize
over-alignment (i.e. aligning residue pairs that are not struc-
turally alignable); QMod does not penalize under-alignment.
Neither gives credit for regions in the test alignment that are
shifted by one or a few positions relative to the reference
alignment; however, such regions may still be successfully
used in homology modeling and may even be more ‘cor-
rect’ when probable homology is considered rather than atom

coordinates alone. Cline et al. (2002) have proposed a score
that is designed to address these issues; we call it QCline (the
Cline score). It penalizes both over- and under-alignment and
gives positive, although reduced, scores for positions with
small shifts. QCline has a parameter ε that controls the range
of shifts that get positive scores; following Cline et al. (2002)
we set ε = 0.2. All three scores have a maximum value of
1 in the case of perfect agreement. QDev and QMod have a
minimum of 0 when no pairs are correctly aligned; QCline can
achieve negative values when there are many large shifts.

3.3 Other profile–profile methods
COMPASS is readily available in binary form. Dr Golan Yona
kindly provided a binary version of prof_sim. CLUSTALW
includes a profile–profile algorithm but was unable to
process many of the alignments in our test set, apparently
because its sequence weighting scheme requires that all pairs
of sequences in a profile have at least one position in com-
mon (T.J. Gibson, personal communication). We were unable
to obtain implementations of other published profile–profile
methods.

3.4 COACH HMM estimation
HMM parameters were estimated from PSI-BLAST align-
ments as follows. Henikoff sequence weights were applied
(Henikoff and Henikoff, 1994), with the effective number of
sequences estimated using an entropy method due to Kevin
Karplus as described in Edgar and Sjölander (2003). A match
state was created for each column. Match state emission dis-
tributions were computed using the Dirichlet mixture prior
of Sjölander et al. (1996). Transition distributions were com-
puted using the default Dirichlet density prior in the HMMER
package (Eddy, 2001, http://hmmer.wustl.edu/)

3.5 Alignment boundary conditions
COMPASS and prof_sim construct local alignments. At least
one published profile–profile method (von Öhsen et al., 2003)
is based on global alignment. In COACH we allow a choice
of boundary conditions: local to both sequences, global to
the HMM but local to the sequence (semi-global) and global
to both sequences. For database searching, local alignments
are often chosen; however semi-global searches are useful for
domain recognition, and a requirement of global similarity
may be more appropriate if functional inferences are to be
made for a multi-domain protein. COACH requires that one
alignment be chosen as the template and the other as the target.
In the semi-global case, we choose the shorter profile as the
template (we found weak evidence, not presented here, that
this gives more accurate alignments). With other boundary
conditions, we found no feature of the alignments that pre-
dicted the better choice, including the log-odds scores relative
to different null models, and therefore choose arbitrarily.

1312

http://hmmer.wustl.edu/


COACH

Table 1. Alignment quality scores

Algorithm Reference set
PP1 PP2
QDev QCline QMod QDev QCline QMod

COACH semi-global 0.787 0.787 0.751 0.311 0.303 0.311
prof_sim 0.787 0.795 0.785 0.307 0.346 0.476
COACH global 0.780 0.779 0.779 0.288 0.278 0.301
COACH local S = SDiv 0.756 0.767 0.748 0.229 0.262 0.391
COMPASS 0.740 0.763 0.783 0.257 0.312 0.492
COACH local S = SavgMM 0.667 0.712 0.796 0.171 0.234 0.580
COACH local S = SNull 0.661 0.708 0.798 0.163 0.226 0.590
PSI-BLAST 0.733 0.758 0.768 0.231 0.265 0.383
BLAST 0.536 0.592 0.678 0.100 0.110 0.214

This table gives the mean developer (QDev), Cline (QCline) and modeler (Qmodler ) scores for the tested algorithms on our two sets of reference alignments, PP1 and PP2. For comparison,
PSI-BLAST (profile–sequence) and BLAST (sequence–sequence) scores are also shown. As expected, profile–profile methods generally show a small improvement over PSI-BLAST.
In both reference sets, coverage is maximized (high developer score) by choosing COACH semi-global, and errors are minimized (high modeler score) by COACH local S = SNull .
We observe the expected trade-off between coverage and error produced by adjusting the null-model self-loop probability, S. Note, for example, that the low error rate of COACH
local S = SNull comes at the expense of lower coverage than PSI-BLAST.

3.6 COACH local alignment options
Local alignment requires special consideration. Adding a
match state to a sub-path always reduces its probability; it
is therefore not possible to define local alignment by seeking
the most probable sub-path. A common solution is to add ter-
minal insert states before and after the end of the main model
and to allow transitions from the N-terminal insert state into
any match state and from any match state into the C-terminal
insert state. Letters before the locally aligned region are emit-
ted by the N-terminal inserter; letters following the region
are emitted by the C-terminal inserter. The self-loop trans-
ition probability, S, of the terminal insert states controls the
average length of a local alignment. If S is chosen to be the
average M → M probability, then, on average, local align-
ments will be extended only if there is a positive match state
score for the additional letter (because the cost of adding an
additional match state is compensated by the reduced cost
of making one self-loop less in the terminal insert state).
However, this design may not be optimal for alignments of
distant homologs because match-state scores may be negat-
ive for residues that are plausible for a given position when
sequence identity is low, causing a local alignment to be
truncated. A simple heuristic to correct for this effect is to
adjust S: reducing the terminal self-loop probability makes it
more favorable to add match states to the local path, allow-
ing weakly negative matches to extend the local alignment.
A more rigorous approach would be to re-estimate match
state probabilities for different degrees of divergence, e.g. as a
function of sequence identity; however, this raises theoretical
and practical issues beyond the scope of this report. COACH
offers three alternatives for local alignment. (1) Set S = SNull,
the self-loop probability in a simple null model consisting
of a single insert state. SNull is chosen, following HMMER,
such that the null model emits sequences of length 350, the

approximate average length of a protein. SNull is larger than
the typical Mk → Mk+1 probability; so this setting requires
positive local match scores and can therefore be considered
very conservative, tending to produce short alignments of high
confidence. (2) Set S = SAvgMM, the average Mk → Mk+1

probability. With this setting, any non-negative match score
will extend the alignment. (3) Set S = SDiv, a value tuned
to the estimated divergence of the two profiles by optimiz-
ing on training sets of different divergences. Moving from
option (1) to (2) and then (3) increases coverage (makes
longer alignments) at the expense of higher error rates (over-
alignment). Option (2) is roughly equivalent to introducing
what we have previously called a center parameter (Edgar
and Sjölander, 2003) and Yona and Levitt (2002) have termed
a shift, i.e. a constant value added to all match scores, having
the effect of tuning the local alignment length. It should be
emphasized that these issues with local alignment are found
in most dynamic programming methods; they are not spe-
cific to COACH. Some profile HMM methods, e.g. SAM and
HMMER, use approximate solutions with a pre-determined
length bias. In BLAST, the choice of substitution matrix biases
the length of the alignment; e.g. BLOSUM62 (Henikoff and
Henikoff, 1992) has fewer positive scores than BLOSUM30
and therefore tends to create shorter alignments.

3.7 Results
We aligned profiles (or sequences) derived from our refer-
ence sets PP1 and PP2 using COACH, prof_sim, COMPASS,
PSI-BLAST and BLAST. The average quality scores of the
resulting alignments are summarized in Table 1. We find,
in agreement with previous studies, that profile methods
clearly out-perform BLAST, which uses primary sequence
only. The improvements in score over BLAST are highly
significant, as shown by the p-values in Table 2. In most

1313



R.C.Edgar and K.Sjölander

Table 2. Selected p-values

COACH local COACH global prof_sim COMPASS PSI-BLAST BLAST

COACH local −10−9 −<10−9 −1 × 10−8 −0.04 +<10−9

COACH global −2 × 10−8 −6 × 10−4 +1 × 10−8 +<10−9 +<10−9

prof_sim 0.1 +<10−9 +<10−9 +<10−9 +<10−9

COMPASS 0.1 +<10−9 0.4 +0.01 +<10−9

PSI-BLAST −1 × 10−7 0.5 −1 × 10−4 −2 × 10−7 +<10−9

BLAST −1 × 10−9 −2 × 10−6 −1 × 10−9 −1 × 10−9 −1 × 10−9

This table shows some selected p-values derived from the Friedman non-parametric rank test for two quality scores on the PP1 set. The upper-right triangle is for QDev, lower-left
for QMod. The sign indicates whether the method on the left is better (+) or worse (−); if p > 0.05, then no sign is given as the difference is not considered statistically significant.
COACH local is with S = SNull . For example, COACH global is better than COMPASS on QDev with p = 10−8, and COACH local is better than PSI-BLAST on QMod with
p = 10−9. Values less than 10−9 are indicated by <10−9.

cases, profile–profile methods achieve higher scores than PSI-
BLAST (a profile–sequence method), but a trade-off is now
apparent. For example, the lowest error rate, i.e. best QMod

average score, is obtained with COACH local S = SNull, at the
expense of a coverage (QDev) that is lower than PSI-BLAST.
Similarly, the best QDev is always obtained by COACH semi-
global but at the cost of error rates that are higher than other
choices. We observe similar rankings between the methods
and similar trade-offs between coverage and error in both sets
of reference alignments (PP1 and PP2). As expected, PP2 is
much more challenging, with all methods producing much
lower quality scores than in PP1.

3.8 Execution speed
The recursion relations for COACH are relatively complic-
ated. However, the algorithm can be implemented efficiently,
and the CPU time needed by COACH on our reference
data was competitive with other methods. For example,
COACH required only 8 min to complete PP2 on a 2 GHz
Pentium 4 PC, including HMM parameter estimation and
construction of input profiles, compared with 40 min for
COMPASS. (Direct comparison with prof_sim is not possible
as that method relies on profiles previously constructed by
PSI-BLAST.)

4 DISCUSSION
We have presented a new algorithm, COACH, that computes
an optimal alignment of a multiple sequence alignment to a
profile HMM. We showed that the Viterbi algorithm can be
implemented with low complexity, despite difficulties related
to gaps in columns emitted by insert states. COACH is the
iterated step in SATCHMO, a multiple sequence alignment
algorithm that was previously shown to produce alignments
of accuracy comparable with CLUSTALW. The alignment
accuracy of COACH was compared with two recent meth-
ods: Yona and Levitt’s prof_sim, and Sadreyev and Grishin’s
COMPASS. Like COMPASS, but unlike prof_sim, COACH
reduces to a method expected to work well in the case where

one or both profiles are derived from a single sequence.
Accuracy was assessed on two sets of reference alignments
derived from the FSSP database. One set (PP1) was selected
for a high degree of structural alignability, the other (PP2)
for more diverged pairs of structures. Multiple alignments
were generated from each selected FSSP sequence using PSI-
BLAST, from which profiles were constructed. In agreement
with previous studies, we find that profile methods are clearly
superior to BLAST and generally superior to PSI-BLAST.
However, in the latter case, the differences in performance are
smaller and vary according to the parameter settings and the
chosen measure of alignment quality. On both PP1 and PP2,
on average, COACH gave the best coverage (with semi-global
boundary conditions) and the fewest errors (with local bound-
ary conditions and a suitably chosen null model). However,
the differences in quality score were not statistically signific-
ant in some cases. We conclude that COACH is competitive
in accuracy and speed with other available profile–profile
methods. We suggest that it is useful to have a choice of
boundary conditions and perhaps also a means to select
increased coverage or reduced error rates when using local
alignment.

ACKNOWLEDGEMENTS
The authors thank Melissa Cline, Sean Eddy and Kevin
Karplus for helpful discussions.

REFERENCES
Altschul,S.F. (1998) Generalized affine gap costs for protein

sequence alignment. Proteins, 32, 88–96.
Altschul,S.F., Gish,W., Miller,W., Myers,E.E. and Lipman,D.J.

(1990) Basic local alignment search tool. J. Mol. Biol., 215,
403–410.

Altschul,S.F., Madden,T.L., Schaffer,A.A., Zhang,J., Zhang,Z.,
Miller,W. and Lipman,D.J. (1997) Gapped BLAST and
PSI-BLAST: a new generation of protein database search pro-
grams. Nucleic Acids Res., 25, 3389–3402.

Bellman,R. (1957) Dynamic Programming. Princeton University
Press, Boston.

1314



COACH

Brenner,S.E., Chothia,C. and Hubbard,T.J.P. (1998) Assessing
sequence comparison methods with reliable structurally identified
distant evolutionary relationships. Proc. Natl Acad. Sci., USA, 95,
6073–6078.

Cline,M. (2000) Protein sequence alignment reliability: predic-
tion and measurement. Ph.D. thesis, University of California
Santa Cruz.

Cline,M., Hughey,R. and Karplus,K. (2002) Predicting reliable
regions in protein sequence alignments. Bioinformatics, 18,
306–314.

Eddy,S.R. (1996) Hidden Markov models. Curr. Opin. Struct. Biol.,
6, 361–365.

Eddy,S.R. (2001) HMMER: profile hidden Markov models for
biological sequence analysis.

Edgar,R.C. and Sjölander,K. (2003) SATCHMO: simultaneous
alignment and tree construction using hidden Markov models.
Bioinformatics, 19, 1404–1411.

Edgar,R.C. and Sjölander,K. (2004) A comparison of scoring func-
tions for protein sequence profile alignment. Bioinformatics
(to appear).

Gribskov,M., Homyak,M., Edenfield,J. and Eisenberg,D. (1988)
Profile scanning for three-dimensional structural patterns in
protein sequences. Comput. Appl. Biosci., 4, 61–66.

Henikoff,S. and Henikoff,J.G. (1992) Amino acid substitution
matrices from protein blocks. Proc. Natl Acad. Sci., USA, 89,
10915–10919.

Henikoff,J.G., Greene,E.A., Pietrokovski,S. and Henikoff,S. (2000)
Increased coverage of protein families with the blocks database
servers. Nucleic Acids Res., 28, 228–230.

Henikoff,S. and Henikoff,J.G. (1994) Position-based sequence
weights. J. Mol. Biol., 243, 574–578.

Holm,L. and Sander,C. (1996) Mapping the protein universe.
Science, 273, 595–602.

Karplus,K., Barrett,C. and Hughey,R. (1998) Hidden Markov mod-
els for detecting remote protein homologies. Bioinformatics, 14,
846–856.

Krogh,A., Brown,M., Mian,I.S., Sjölander,K. and Haussler,D.
(1994) Hidden Markov models in computational biology. Applic-
ations to protein modeling. J. Mol. Biol., 235, 1501–1531.

Kunin,V., Chan,B., Sitbon,E., Lithwick,G. and Pietrokovski,S.
(2001) Consistency analysis of similarity between multiple
alignments: prediction of protein function and fold structure
from analysis of local sequence motifs. J. Mol. Biol., 307,
939–949.

Lyngso,R.B., Pedersen,C.N. and Nielsen,H. (1999) Metrics and sim-
ilarity measures for hidden Markov models. Proc. Int. Conf. Intell.
Syst. Mol. Biol., 178–186.

Murzin,A.G., Brenner,S.E., Hubbard,T. and Chothia,C. (1995).
SCOP: a structural classification of proteins database for the
investigation of sequences and structures. J. Mol. Biol., 247,
536–540.

Panchenko,A.R. (2003) Finding weak similarities between proteins
by sequence profile comparison. Nucleic Acids Res., 31, 683–689.

Panchenko,A.R., Marchler-Bauer,A. and Bryant,S.H. (2000)
Combination of threading potentials and sequence profiles
improves fold recognition. J. Mol. Biol., 296, 1319–1331.

Pawlowski,K., Rychlewski,L., Zhang,B. and Godzik,A. (2001)
Fold predictions for bacterial genomes. J. Struct. Biol., 134,
219–231.

Pawlowski,K., Zhang,B., Rychlewski,L. and Godzik,A. (1999) The
Helicobacter pylori genome: from sequence analysis to structural
and functional predictions. Proteins, 36, 20–30.

Pearson,W.R. (1990) Rapid and sensitive sequence comparison with
FASTP and FASTA. Meth. Enzymol., 183, 63–98.

Pietrokovski,S. (1996) Searching databases of conserved sequence
regions by aligning protein multiple-alignments. Nucleic Acids
Res., 24, 3836–3845.

Pruitt,K.D., Tatusova,T. and Maglott,D.R. (2003) NCBI Reference
Sequence project: update and current status. Nucleic Acids Res.,
31, 34–37.

Rychlewski,L., Jaroszewski,L., Li,W. and Godzik,A. (2000)
Comparison of sequence profiles, strategies for structural predic-
tions using sequence information. Protein Sci., 9, 232–241.

Rabiner,L.R. (1989) A tutorial on hidden Markov models and
selected applications in speech recognition. Proc. IEEE, 77,
257–286.

Sadreyev,R. and Grishin,N. (2003) COMPASS: a tool for compar-
ison of multiple protein alignments with assessment of statistical
significance. J. Mol. Biol., 326, 317–336.

Sauder,J.M., Arthur,J.W. and Dunbrack,R.L. (2000) Large-scale
comparison of protein sequence alignments with structure align-
ments. Proteins, 40, 6–22.

Shindyalov,I.N. and Bourne,P.E. (1998) Protein structure alignment
by incremental combinatorial extension (CE) of the optimal path.
Protein Eng., 11, 739–747.

Sjölander,K., Karplus,K., Brown,M., Hughey,R., Krogh,A.,
Mian,I.S. and Haussler,D. (1996) Dirichlet mixtures: a method
for improving detection of weak but significant protein sequence
homology. Comput. Appl. Biosci., 12, 327–345.

Tatusov,R.L., Altschul,S.F. and Koonin,E.V. (1994) Detection of
conserved segments in proteins: iterative scanning of sequence
databases with alignment blocks. Proc. Natl Acad. Sci., USA, 91,
12091–12095.

Thompson,J.D., Higgins,D.G. and Gibson,T.J. (1994) CLUSTALW:
improving the sensitivity of progressive multiple sequence align-
ment through sequence weighting, position-specific gap penalties
and weight matrix choice. Nucleic Acids Res., 22, 4673–4680.

Thompson,J.D., Plewniak,F. and Poch,O. (1999) A comprehensive
comparison of multiple sequence alignment programs. Nucleic
Acids Res., 27, 2682–2690.

Viterbi,A.J. (1967) Error bounds for convolutional codes and an
asymptotically optimal decoding algorithm. IEEE Trans. Info.
Theory, IT-13, 260–269.

von Öhsen,N., Sommer,I. and Zimmer,R. (2003) Profile–profile
alignment, a powerful tool for protein structure prediction. Proc.
Pacific Symp. Biocomp., 252–263.

Yona,G. and Levitt,M. (2002) Within the twilight zone: a sensit-
ive profile–profile comparison tool based on information theory.
J. Mol. Biol., 315, 1257–1275.

A APPENDIX
A.1 Viterbi recursion relations
For brevity, we develop the Viterbi recursion relations for
typical model nodes and typical columns without considering
the boundary cases at the beginning and end of the model and
of the input alignment; these are easily determined for a given

1315



R.C.Edgar and K.Sjölander

model architecture and are used, e.g. to choose local versus
global alignments. We use the following notation.

A The input alignment, i.e. the alignment to
be aligned to the HMM

N Number of sequences in A

L Number of columns in A

Ai The i-th column of A, i = 1 . . . , L

aiv Number of letters of type v in Ai

A{i} The first i columns of A

Q, R, q, r HMM states
t(QR) Log-odds transition score for Q → R
e(R, v) Log-odds emission score of letter v in R
π(R, i) A most probable route that emits A{i} and

assigns state R to column i

πs(R, i) The path of sequence s implied by π(R, i)
σ (πs(R, i)) The log-odds score of πs

Here, a log-odds score is bit score, i.e. log2(P ) for a given
probability P . We define

σ (π(R, i)) =
∑

s

σ (πs(R, i)). (1)

This is the log-odds score of a most probable route that gener-
ates the input alignment through column i and assigns state R
to that column. We define the leg score λ for column i, given
two states Q and R connected by an edge Q → R, as

λ(QR, i + δR) = σ (π(Q, i)) − σ (π(R, i + δR)), (2)

where δR = 1 if R is an emitter state, δR = 0 otherwise.
The leg score is the incremental cost of adding a QR leg to a
most probable route. If λ(QR, i) can be calculated for all Q,
R and i, this gives the Viterbi recursion relations:

σ (π(R, i + δR)) = maxQ{σ (π(Q, i))+λ(QR, i + δR)}. (3)

The leg score can be expressed as an emission term, ε, and a
transition term, τ :

λ(QR, i) = ε(QR, i) + τ (QR, i). (4)

If R is a delete state, ε is zero; otherwise

ε(QR, i) =
∑

v

aive(R, v). (5)

The transition score, τ , can be expressed as

τ (QR, i) =
∑

s

t(qrs), (6)

where qrs is the edge, if any, implied for sequence s by leg QR.
If no edge is implied, t(qrs) is understood to be zero. In many
cases, qrs can be deduced from the leg type by looking at
column i and the previous column, i − 1, to see if there is a
gap or letter in those positions, as shown in Table 3.

Table 3. Edge type implied by leg type and gaps

Case Column Leg Edge
i − 1 i Q R q r

1 X X Mk−1 Mk Mk−1 Mk

2 — X Mk−1 Mk Dk−1 Mk

3 X — Mk−1 Mk Mk−1 Dk

4 — — Mk−1 Mk Dk−1 Dk

5 X X Mk Ik Mk Ik
6 — X Mk Ik Dk−1 Ik
7 X — Mk Ik none
8 — — Mk Ik none
9 X X Ik Ik Ik Ik
10 — X Ik Ik ? Ik
11 X — Ik Ik none
12 — — Ik Ik none
13 X X Ik−1 Mk Ik−1 Mk

14 — X Ik−1 Mk ? Mk

15 X — Ik−1 Mk Ik−1 Dk

16 — — Ik−1 Mk ? Dk

17 ∗ X Mk−1 Dk Mk−1 Dk

18 ∗ — Mk−1 Dk Dk−1 Dk

19 ∗ X Ik−1 Dk Ik−1 Dk

20 ∗ — Ik−1 Dk ? Dk

21 ∗ X Dk−1 Mk Dk−1 Mk

22 ∗ — Dk−1 Mk Dk−1 Dk

23 ∗ X Dk Ik Dk Ik
24 ∗ — Dk Ik none
25 ∗ ∗ Dk−1 Dk Dk−1 Dk

For each leg type QR, the table shows the edge type, qr, implied for a sequence, given
that it contains a letter (X) or gap (—) in the columns assigned to Q and R. A star
(∗) indicates that the edge can be deduced without knowing whether there is a gap. A
question mark (?) indicates that the q state for the sequence cannot be deduced without
further information; these cases arise when a gap assigned to an insert state. In cases
marked none, no new edge is implied by the leg. Cases are numbered for references in
the text.

We define the following occupancy vectors over the input
alignment. The values are the number of sequences that have
the given contents in columns i and, if applicable, i − 1.

Gi Gap in column i (7)

Li Letter in column i (8)

LLi Letter in columns i − 1 and i (9)

GGi Gaps in columns i − 1 and i (10)

LGi Letter in column i − 1, gap in column i (11)

GLi Gap in column i − 1, letter in column i (12)

These vectors enable us to calculate τ (QR, i) for all leg types
except those for which q=? in Table 3. For example, by
considering cases 1–4, it follows that

τ(Mk−1Mk , i) = LLi t(Mk−1Mk) + GLi t(Dk−1Mk)

+ LGi t(Mk−1Dk) + GGi t(Dk−1Dk).
(13)

1316



COACH

Fig. 4. A route with sequences exhibiting case 10. For each
sequence, the edge induced by the last leg is indicated.

Similarly,

τ (MkIk , i) = LLi t(MkIk) + GLi t(Dk−1Ik). (14)

τ (Mk−1Dk , i) = Li t(Mk−1Dk) + Gi t(Dk−1Dk). (15)

τ (Dk−1Mk , i) = Li t(Dk−1Mk) + Gi t(Dk−1Dk). (16)

τ (DkIk , i) = Li t(DkIk). (17)

τ (Dk−1Dk , i) = N t(Dk−1Dk). (18)

We next consider the IkIk leg shown in Figure 4. We assume
that the Ik state was entered via Mk , and denote by C the
first column assigned to the Ik state. If there is a continuous
series of gaps that extends exactly from column C to column
i − 1, as in Seq3, we can see that this implies an Mk → Ik
edge. Given that we have a sequence exhibiting case 10, we
know that there is a gap of length ≥1 that ends in column
i − 1. The edge type is determined by the length of that gap.
Let c = i − C − 1; then the possible scenarios are

Gap length = c, edge is Mk → Ik ,

Gap length < c, edge is Ik → Ik ,

Gap length > c, edge is Dk → Ik .

We now define the following gap matrices. The values in these
matrices are the number of sequences that have the given type
of gap.

BEi[c] Gaps of length = c ending in column i, (19)

BLi[c] Gaps of length < c ending in column i, (20)

BGi[c] Gaps of length > c ending in column i. (21)

Given that we know that the insert state was entered via the
match state and the column number C assigned to that leg
by considering cases 9 and 10, we can express the transition
score as

τ(IkIk , i) = (LLi + BLi−1[c])t(IkIk) + BEi−1[c]t(MkIk)

+ BGi−1[c]t(DkIk). (22)

Now suppose that the insert state was entered via the delete
state, as shown in Figure 5. As this example illustrates, the
scenarios are now

Gap length < c, edge is Ik → Ik ,

Gap length ≥ c, edge is Dk → Ik .

Fig. 5. A route with sequences that exhibit case 10. This differs from
Figure 4 in that the insert state is entered via the delete state rather
than the match state.

The transition score is therefore

τ(IkIk , i) = (LLi +BLi−1[c])t(IkIk)+BGi−1[c−1]t(DkIk).
(23)

We introduce two new DP matrices that track the leg enter-
ing a given insert state. Nk[i] is the column number of the
first column to be assigned to Ik in π(R, i). Sk[i] is the last
state prior to Ik in π(R, i). The recursion relations for these
matrices depend on the leg type added in an iteration, as
follows.

Leg Nk[i] Sk[i]

MkIk i Mk

DkIk i Dk

IkIk Nk[i − 1] Sk[i − 1]

We can then calculate c as

c = i − Nk−1[i − 1]. (24)

This gives us an O(1) calculation of τ(IkIk , i):

if Sk[i − 1] is Mk then

τ(IkIk , i) = (LLi + BLi−1[c])t(IkIk) + BEi−1[c]t(MkIk)

+ BGi−1[c]t(DkIk)

else

τ(IkIk , i) = (LLi + BLi−1[c])t(IkIk)

+ BGi−1[c − 1]t(DkIk)

endif. (25)

The transition scores for the remaining leg types can be
obtained through similar reasoning. We need to introduce one
more gap matrix: BT[i, j ] is the number of sequences with
a gap that includes columns i and j . Note that for any three
columns a, b, c such that a ≤ b ≤ c, the number of gaps that
include a and b but not c is

BT[a, b] − BT[a, c]. (26)

Also, the number of gaps that include b and c but not a is

BT[b, c] − BT[a, c]. (27)

1317



R.C.Edgar and K.Sjölander

This leads to the following calculations for IkMk and IkDk

legs (here, C = Nk−1[i − 1]):
if Sk[i − 1] is Mk then

τ(IkMk , i) = (LLi + BLi−1[c])t(Ik−1Mk)

+ BEi−1[c]t(Mk−1Mk)

+ BGi−1[c]t(Dk−1Mk)

+ (BT[C, i] − BT[C − 1, i])t(Mk−1Dk)

+ (Gi − BT[C, i])t(Ik−1Dk)

+ BT[C, i]t(Dk−1Dk)

else

τ(IkMk , i) = (LLi + BLi−1[c])t(Ik−1Mk)

+ BGi−1[c − 1]t(Dk−1Mk)

+ (Gi − BT[C, i])t(Ik−1Dk)

+ BT[C, i]t(Dk−1Dk) (28)

endif,

if Sk[i − 1] is Mk then

τ(Ik−1Dk , i) = BT[C, i]t(Dk−1Dk)

+ (Ri + BT[i, i] − BT[C, i])t(Ik−1Dk)

+ (BT[C, i] − BT[C − 1, i])t(Mk−1Dk)

else

τ(IkDk , i) = BT[C, i]t(Dk−1Dk)

+ (Ri + BT[i, i] − BT[C, i])t(Ik−1Dk)

endif. (29)

We now have O(1) expressions for the transition scores of
all leg types that, via Equations (3)–(6), give the recursion
relations for the Viterbi algorithm.

BE can be constructed using the following procedure.
Create an L × L matrix and initialize all entries to zero.
Traverse each sequence in the input alignment from left to
right, maintaining a counter c. If a position i contains a gap,
add 1 to c; otherwise add 1 to BEi[c] and set c to 0. To construct
BL, we start from its definition (20), which can be expressed as

BLi[c] =
∑

x<c

BEi[x]. (30)

This implies the following recursion relation:

BLi[0] = 0,

BLi[c + 1] = BLi[c] + BEi[c]. (31)

For BG, we can exploit the fact that the total number of gaps
ending in column i is GLi−1:

GLi−1 = BLi[c] + BEi[c] + BGi[c], ∀c, i. (32)

Rearranging,

BGi[c] = GLi−1 − BLi[c] − BEi[c]. (33)

Finally we can compute BT by applying Equation (26) to two
consecutive columns:

BT[i, i] = Gi ,

BT[i, j + 1] = BT[i, j ] − BGj [j − i]. (34)

A.2 Complexity
The time and space complexity of our Viterbi algorithm is
O(L2). Profile construction, both for the HMM and for
the gap matrices and residue frequencies needed for the
input alignment, can be accomplished in O(LN) time and
O(L) space. Despite the formidable appearance of the recur-
sion relations, the complexity is therefore comparable with
traditional profile–profile alignment methods.

A.3 Unaligned regions
Columns in the input alignment may be marked as containing
positions that are not alignable due to structural information,
a low score for those positions or other evidence (Altschul,
1998; Edgar and Sjölander, 2003). Such columns should never
be assigned to a match state—if they cannot be aligned to each
other, they cannot be aligned to a profile position. We there-
fore require zero probability for such letters to be emitted by
a match state, forcing unaligned columns to be assigned to
insert states. It is advantageous to compress each unaligned
region into a single column-like object that we call a pillar.
We define a pillar to be either an aligned column or a max-
imal consecutive series of unaligned columns. Expressed in
the form of pillars, an input alignment is transformed into a
new data structure of equal or shorter length. The reduced
length can reduce memory use and speed significantly due to
the O(L2) complexity of our Viterbi algorithm. If no regions
are marked as unaligned, this transformation has no effect.
It is straightforward to develop recursion relations for pillars
similar to those we have derived here for columns.

1318


