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History of SVM 

•  Started in the late 1970s. (Vapnik, 1979) 
•  Hot since the middle of 1990s. (Vapnik, 

1995 and Vapnik 1998), still hot now.  
•  There are a lot of applications in many areas 

such as bioinformatics, text classification, 
computer vision, handwriting recognition, 
object recognition, speaker identification, 
face detection, time series, …..  



Theories Related to SVM 
•  Bias variance tradeoff (Geman and Bienenstock, 

1992) 
•  Capacity control (Guyon et al., 1992, Vapnik, 

1995 and Vapnik 1998) 
•  Overfitting (Montgomery and Peck, 1992) 
•  Basic idea: for a given learning task, with a given 

finite amount of training data, the best 
generalization performance will be achieved if the 
right balance is struck between the accuracy 
attained on the particular training set, and the 
capacity of the machine.  



A Machine with Too Much / Little 
Capacity 

•  A machine with too much capacity is like a 
botanist with a photographic memory who, 
when presented with a new tree, concludes 
that it is not a tree because it has a different 
number of leaves from anything she has 
seen before;  

•  a machine with too little capacity is like the 
botanist’s lazy brother, who declares that if 
it is green, it’s a tree.  



Notation 
•  l observations. 
•  Each observation consists of a pair: a vector Xi  in Rn, i = 

1, …, l and associated truth yi.  
•  Tree recognition problem: Xi is a vector of pixel values 

( 256, 16*16 image) and yi  is 1 if the image contains a tree 
and -1 otherwise.  

•  It is assumed that there exists some unknown probability 
distribution P(X, y) from which these data are drawn, the 
data is assumed iid: independently drawn and identically 
distributed. P for cumulative probability distribution, p for 
their density.  



Learning Machine 

•  Learning the mapping: Xi |à yi.  
•  The machine is defined by a set of mappings X |à 

f(X, a), where the functions f(X,a) themselves are 
labeled by the adjustable parameters a. The 
machine is assumed to be deterministic.  

•  A particular choice of a generates a “trained” 
machine. (e.g. neural network with fixed 
architecture and trained weights) 



Expectation of Test Error 
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R(a) is called expected risk or actual risk.   

Empirical Risk Remp(a) is defined to be the measured  
mean error rate on the training set (for a fixed, finite number 
of observations. 
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Loss and Risk Bound 

•  ½|yi – f(Xi, a)| is called the loss.  It can only take the 
values 0 and 1.  

•  Choose η such that 0 <= η <= 1. With probability 1 
– η, the following bound holds (Vapnik, 1995) 
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Where h is a non-negative integer called the Vapnik Chevonenkis 
(VC) dimension, and is a measure of the notion of capacity.  
Second part of  the right is called VC confidence.  



Insights about Risk Bound 
•  It is independent of P(X,y).  
•  It is usually not possible to compute the left hand side. 
•  If we know h, we can easily compute right hand side.  
•  Structural Risk Minimization: Given several learning 

machines f(X,a), and choosing a fixed, sufficiently small η, 
by then taking the machine which minimize the right hand 
side, giving the lowest upper bound on the actual risk.  

•  Question: how does the bound change according to η?  



VC Dimension 
•  VC dimension is a property of a set of functions { f(a) }. 

Here we consider functions that correspond to two-class 
pattern recognition case, so that f(X,a)      {-1, +1}.  

•  If a given set of l points can be labeled in all possible 2l 
ways, and for each labeling, a member of set {f(a)} can be 
found to correctly assign those labels, we say that set of 
points is shattered by that set of functions. 

•  VC dimension for a set of functions {f(a)} is defined as the 
maximum number of training points that can be shattered 
by {f(a)}.  

•  If the VC dimension is h, then there exists at least one set 
of h points that can be shattered. But not necessary for 
every set of h points. 
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8 possible labeling of 3 points can be separated by lines. 



Simply can not separate the labeling of these four points 
using a line. So the VC dimension of a line is 3. 



VC Dimension and the Number of 
Parameters 

•  Intuitively, more parameters -> higher VC 
dimension. 

•  However, 1 parameter function can have infinite 
VC dimension. (see Burge’s tutorial)  

If sin(ax) > 0, f(x,a) = 1, -1 otherwise 



VC Confidence and  VC Dimension h 

VC confidence is monotonic in h. (here l = 10,000, η = 0.05 (95%)) 



Structural Risk Minimization 
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Given some selection of learning machines whose empirical 
risk is zero, one wants to choose that learning machine 
whose associated set of functions has minimal VC dimension. 
This is called Occam’s Razor.  
"All things being equal, the simplest solution tends to  
be the best one."  
In general, for non-zero empirical risk, one wants to choose 
the learning machine which minimizes the Risk Bound.  



Comments 

•  The risk bound equation gives (with some chosen 
probability) an upper bound on the actual risk. 
This does not prevent a particular machine with 
the same value for empirical risk, and whose 
function set has higher VC dimension from having 
better performance.  

•  For higher h value, the bound is guaranteed not 
tight.  

•  h/l > 0.37, VC confidence exceeds unity.  



Example 
•  kth nearest neighbor classifier, with k =1, has infinite VC 

dimension and zero empirical risk, since any number of 
points, labeled arbitrarily, will be successfully learned by 
the algorithm (provided no two points of opposite class lie 
right on top of each other). Thus the bound provides no 
information.  

•  For any classifier with infinite VC dimension, the bound is 
not even valid.  

•  Nearest neighbor classifier can still perform well. Thus, 
infinite capacity does not guarantee poor performance.  



Structure Risk Minimization 

•  We would like to find that subset of the 
chosen set of functions, such that the risk 
bound for that subset is minimized.  



Linear Support Vector Machines 

•  Linear machine trained on separable data.  
•  Label training data {xi, yi}, i = 1, …, l, yi in {-1, 1}. 

xi in Rd.  
•  A hyperplane separates the positive from negative 

examples. The points which lie on the hyperplane 
satisfy w.x + b = 0, where w is normal to the 
hyperplane. |b| / ||w|| is the perpendicular distance 
from the  hyperplane to the origin, and ||w|| is the 
Euclidean norm of w.  



Origin 

|b| 
|w| 

w 

wx + b = 0 

wx + b = 1 

wx + b = -1 

+ 

- 

xi . w + b >= +1 for yi = +1 
xi . w + b <= -1, for yi = -1 

combined into:  yi(xi.w+b) – 1 >= 0  



•  Distance from origin to wx + b=0 is |b| / |w|.  
•  Choose a point x on wx+b=0 that vector (0, 

x) is perpendicular to wx+b = 0. So x is λw 
because w is norm of wx+b=0. 

•  So λww+b = 0. so λ = -b/ w.w = -b  / |w|2 

•  So x = -b / |w|2 *w  
•  So |x| = |b| / |w|.  

Distance from Origin to 
Hyperplane 



Q2: From your intuition, 
why we choose this line 2? 

Q1: How perceptron 
finds a linear function? 
Is the function found by 
perceptron unique? 

1 

2 
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Margin 

wx + b = 1 

wx + b = 0 

wx + b = -1 

M  



Why Maximize Margin? 
•  Intuitively this feels safest. 
•  If we’ve made a small error in the location of the 

boundary (it’s been jolted in its perpendicular 
direction) this gives us the least chance of causing 
a misclassification 

•  LOOCV is easy since the model is immune to 
removal of any non-support vector data points 

•  Related to VC dimension / structural risk 
minimization. 

•  Empirically it works very well.  

A. Moore, 2003 



How to Compute Margin? 

A. Moore, 2003 
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wx+b = 0 

wx+b = +1 

wx+b = -1 

origin 

x+ 

x- 

λw 

x+ = x- + λw  

x+ - x- = λw  



A. Moore, 2003 
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Objectives 

•  Maximize 2 / |w|, subject to the linear constraints 
•  xi . w + b >= +1, for yi = +1 
•  xi . w + b <= -1, for yi = -1 
•  Combined into one set of inequalities 
    yi(xi.w + b) – 1 >= 0, for all i.  
•  How many constraints are there? 
•  How to solve the constraint optimization problem? 

(Lagrangian) 



Lagrange Multiplier 
•  An mathematical optimization technique named after 

Joseph Louis Lagrange 
•  A method for finding local minima of a function of several 

variables subject to one or more constraints 
•  The method reduces a problem in n variables with k 

constraints to a solvable problem in n+k variables with no 
constraints.  

•  The method introduces a new unknown scalar variable, the 
Lagrange multiplier, for each constraint and forms a linear 
combination involving the multipliers as coefficients.  

http://en.wikipedia.org/wiki/Lagrange_multipliers 



Primal Optimization (Lp) 

•  Constraints:  yi(xi.w + b) – 1 >= 0, for all i. 
(constraints set C1) 

•  1 - yi(xi.w + b) – 1 <= 0 
•  Introduce a Lagrange multiplier for each 

inequalities: ai.   
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Dual Optimization Problem (LD) 

•  Set the derivative of Lp with respect to w and b to 0. 
•  w = Σaiyixi. 
•  Σaiyi = 0 
•  Substitute the equality constraints above into the 

primal equation to get the dual equation.  
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Lp and LD arise from the same objective function, but with 
different constraints  (Σaiyi = 0, and ai >= 0, constraint set C2);  
the solution is found by minimizing Lp or by maximizing LD.  



Primal Problem ó Dual Problem 
•  Minimize Lp with respect to w, b, and simultaneously 

require that the derivatives of Lp with respect to ai vanish, 
(Constraints C1 - original constraints). 

•  A convex quadratic programming problem.  
•  Equivalent to maximize LD, subject to the constraints that 

the gradient of LD with respect to w and b vanish 
(Constraints C2, new constraints).  

•  This dual formulation is called the Wolfe dual (Fletcher, 
1987).  

•  It has the property that the maximum of LD, subject to C2, 
occurs at the same values of the w, b, and a, as the 
minimum of Lp, subject to constraints C1.  



Learning and Support Vectors 
•  Support vector training therefore amounts to 

maximizing Ld with respect to ai, subject to Σaiyi = 
0 and ai >= 0.  

•  There is a Lagrange multiplier ai for every training 
point. Those points for which ai > 0 are called 
“support vectors” 



Margin 

wx + b = 1 

wx + b = 0 

wx + b = -1 

M = 2 / |w| 

H1 

H2 

H 



Questions 

•  Why the data points lying on the H1 and H2 
are support vectors (ai > 0)? 

•  Why the data points not lying on the H1 and 
H2 are not support vectors (ai = 0)? 

•  What happen if a non-support vector is 
removed? Does the solution change? 

•  What happen if a support vector is 
removed? Does solution change? 



Margin 

wx + b = 1 

wx + b = 0 

wx + b = -1 

M = 2 / |w| 

Support vectors, 
lying on the  
hyperplane 

H1 

H2 

H 



Karush-Kuhn-Tucker (KKT) Condition 

•  w = Σaiyixi.                                               (1) 
•  Σaiyi = 0                                                    (2) 
•  yi(xi.w+b) – 1 >= 0, i = 1, …, l                 (3) 
•  ai >= 0                                                       (4) 
•  ai(yi(w.xi+b)-1)  = 0                                  (5) 
(5) is called complementary slackness due to the 

Lagrange theory and can be explained in 
intuition. 



How to Determine w and b 

•  Use quadratic programming to solve ai and 
compute w is trivial. (use KKT condition (1)) 

•  How to compute b? 
•  Use KKT condition (5), for any support vector 

(point ai > 0), yi(w.xi+b)-1 = 0.  
•  We compute b in terms of a support vector.  

Better: we computer b in terms of all support 
vectors and take the average. 



Test Phase 

•  We simply determine on which side of the 
decision boundary (that hyperplane lying 
half way between H1 and H2 and parallel to 
them) a given test pattern x lies and assign 
the corresponding class label 

•  Class of x is sign(w.x+b) 



Non-Separable Case 

+ 

- 

Can’t satisfy the constraints yi(wxi+b) >=1 for  
some data points? What can we do? 





Relax Constraints – Soft Margin 
•  Introduce positive slack variables ξi, i = 1, …, l to 

relax constraints. (ξi  >= 0) 
•  New constraints: 
•  xi.w + b >= +1 - ξi  for yi = +1 
•  xi.w + b <= -1 + ξi  for yi = -1 
•  Or yi(wxi +b) >= 1- ξi  
•  ξi >= 0 
•  For an classification error to happen, the 

corresponding ξi  must exceed unity, so Σ ξi is an 
upper bound on the number of training errors.  



New Objective Function 

•  Minimize |w|2/2 + C(Σξi)k.  
•  C is parameter to be chosen by the user, a larger C 

corresponding to assigning a higher penalty to 
errors. 

•  This is a convex programming problem for any 
positive integer k. The choice k=1 has the further 
advantage that neither ξi  and their multipliers 
appear in the Wolfe dual problem.  
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ui is the Lagrange multipliers introduced to enforce 
Non-negativity of ξi  

Primal Optimization (Lp) 



Max Welling, 2005 

KKT Conditions 



What’s the only difference from the linearly separable cases? 

Dual Optimization (LD) 

We can get LD by substitute w by  



Values of Multipliers 

+ 

- 

ai = C, ξi > 0, ui = 0  

ai = 0, ξi = 0, ui > 0  

ai < C, ξi = 0, ui > 0  



Solution of w and b 
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Use complementary slackness to compute b 



Solution of w and b 
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Use complementary slackness to compute b (choose 
a support vector (0 < ai < C ) to compute b, where 
ξi = 0. ξi = 0 is derived by combining equations 3 and 9. 



Non-Linear Classification 

x1 

x2 

C1 C2 

x1
2+x2

2 = 10 



SVM Demo 

•  http://www.youtube.com/watch?
v=3liCbRZPrZA 



Challenges 

•  Know how to do mapping 
•  High computational cost 





Nonlinear Support Vector Machines 

•  In the LD function, what really matters is dot products: xi.xj.  
•  Idea: map the data to some other (possibly infinite 

dimensional) Euclidean space H, using a mapping.  

HRd :Φ
Then the training algorithm would only depend on the data 
through dot products in H, i.e. Φ(xi). Φ(xj).  



Kernel Trick 
•  If there were a kernel function K such that K(xi,xj) = Φ(xi). 
Φ(xj), we would only need to use K in the training 
algorithm and would never need to explicitly do the 
mapping Φ.  

•  One example Gaussian kernel: K(xi,xj) = e^(-|xi-xj|2/2σ2). 
In this example, H is infinite dimensional.  

•  So we simply replace xi.xj with K(xi,xj) in the training 
algorithm, the algorithm will happily produce a support 
vector machine which lives in an infinite dimensional 
space, and furthermore do so in roughly the same amount 
of time it would take to train on the un-mapped data.  



A Simple Kernel Example 

•  Is K(xi,xj)=(xi.xj)2  a 
kernel? xi, xj live in R2 
space.  

•  Try to find a Φ from 
R2 to H, such that 
(x.y)2 = Φ(x) Φ(y). 

•  Here are two possible 
mappings Φ  (map R2 
to R3 and R4 spaces)  



What’s the effect of a mapping? 



How to Use the Machine? 

•  We can’t get w if we do not do explicit mapping. 
•  Once again we use kernel trick.  
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What’s the problem from a computational point of view? 



Speedup SVM Prediction 

•  Remove some redundant support vectors. 
•  Burges C.J.C. Simplified support vector 

decision rules. ICML, 1996 
•  Osuna E and Girosi F. Reducing the run-

time complexity of support vector 
machines. International Conference on 
Pattern Recognition, 1998.  



Kernel Function and Hilbert Space 

•  Hilbert space is a generalization of 
Euclidean space. 

•  It is a linear space, with an inner product 
define. 

•  Its inner product can be any inner product, 
not just scalar dot. 



What Conditions Make a Function a 
Kernel? 

•  Mercer’s condition 
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is finite. g(x) is any function. 

It is hard to check Mercer’s condition because it must hold 
For every g with finite L2 norm.  

What happens if one uses a kernel which does not satisfy  
Mercer’s condition? Some time QP has no solution. Sometime, there  
is a solution, but the geometrical interpretation is lacking.  



Common Kernels 

   (1) K(x,y) = (x.y + 1)p
.  

p is degree. p = 1, 
linear kernel. 
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(3) Hyperbolic Tanh kernel 

Note: RBF kernel, the weights (ai) and centers (Si) are automatically 
Learned. 
Tanh kernel is equivalent to two-layer neural network, where 
Number of hidden units is number of support vectors. ai corresponds 
To the weights of the second layer.  



Connection between NN and SVM 

S1 

x1 x2 xd …… 

Si Sn 

X 

a1 ai 

S11 
S12 

S1d 



Multi-Class SVM 

•  Most widely used method: one versus all 
•  Also direct multi-classification using SVM. 

(K. Crammer and Y. Singer. On the Algorithmic Implementation of Multi-class SVMs, 

JMLR, 2001) 
Class 1 or others 

Yes 

No 

Class 2 or others 



Global Solutions and Uniqueness 

•  For SVM optimization, every local solution 
is global due to the property to the convex 
objective function.  

•  The solution is guaranteed to be unique.  
•  SVM training always finds a global solution 

is in contrast to the case of neural networks, 
where many local minima usually exist.  



Method of Solution 

•  The support vector optimization problem can be 
solved analytically only when the number of 
training data is very small, or for the separable 
case when it is known beforehand which of the 
training data become support vectors.  

•  For the general analytic case, the worst case 
computational complexity is of order Ns

3 
(inversion of Hessian), where Ns is the number of 
support vectors.  



Method of Solution 

•  In most real world cases, the quadratic optimization 
problem must be solved numerically.  

•  For small problems, any general purpose optimization 
package that solves linearly constrained convex quadratic 
programs will do. (a good survey: More and Wright, 
1993) 

•  For large problems, divide and conquer technique is 
usually used, e.g. Sequential Minimal Optimization  
algorithm (J. Platt, 1998, http://research.microsoft.com/users/jplatt/

smo.html) 



Time Complexity of Testing 

•  O(MNs). M is the number of operations 
required to evaluate the kernel. For RBF 
kernel, M is O(dL). Ns is the number of 
support vectors.  



A Bound from Leave-One-Out 

•  E[P(error)] = Ns / number of training 
samples, where Ns is the number of support 
vectors 

•  What does this tells us? 



Limitations and Extensions 

•  Choice of kernel. Once the kernel is fixed, 
SVM classifiers have only one user-chosen 
parameter (the error penalty) and kernel 
parameters 

•  Speed in test phase (Burges 96, Burges and 
Scholkopf 97, speed up 50 times) 

•  Challenge: Training for very large datasets 
(millions of data points) 



SVM Tools 

•  SVM-light: http://svmlight.joachims.org/ 
•  LIBSVM: 

http://www.csie.ntu.edu.tw/~cjlin/libsvm/ 
•  Gist: http://bioinformatics.ubc.ca/gist/ 
•  More: 

http://www.kernel-machines.org/
software.html 
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