
Statistical Machine Learning
Methods for Bioinformatics

V. Support Vector Machine
Theory

Jianlin Cheng, PhD
Computer Science Department and Informatics Institute

University of Missouri, Columbia
2012

Free for Academic Use. Copyright @ Jianlin Cheng & original sources of some materials.

History of SVM

•  Started in the late 1970s. (Vapnik, 1979)
•  Hot since the middle of 1990s. (Vapnik,

1995 and Vapnik 1998), still hot now.
•  There are a lot of applications in many areas

such as bioinformatics, text classification,
computer vision, handwriting recognition,
object recognition, speaker identification,
face detection, time series, …..

Theories Related to SVM
•  Bias variance tradeoff (Geman and Bienenstock,

1992)
•  Capacity control (Guyon et al., 1992, Vapnik,

1995 and Vapnik 1998)
•  Overfitting (Montgomery and Peck, 1992)
•  Basic idea: for a given learning task, with a given

finite amount of training data, the best
generalization performance will be achieved if the
right balance is struck between the accuracy
attained on the particular training set, and the
capacity of the machine.

A Machine with Too Much / Little
Capacity

•  A machine with too much capacity is like a
botanist with a photographic memory who,
when presented with a new tree, concludes
that it is not a tree because it has a different
number of leaves from anything she has
seen before;

•  a machine with too little capacity is like the
botanist’s lazy brother, who declares that if
it is green, it’s a tree.

Notation
•  l observations.
•  Each observation consists of a pair: a vector Xi in Rn, i =

1, …, l and associated truth yi.
•  Tree recognition problem: Xi is a vector of pixel values

(256, 16*16 image) and yi is 1 if the image contains a tree
and -1 otherwise.

•  It is assumed that there exists some unknown probability
distribution P(X, y) from which these data are drawn, the
data is assumed iid: independently drawn and identically
distributed. P for cumulative probability distribution, p for
their density.

Learning Machine

•  Learning the mapping: Xi |à yi.
•  The machine is defined by a set of mappings X |à

f(X, a), where the functions f(X,a) themselves are
labeled by the adjustable parameters a. The
machine is assumed to be deterministic.

•  A particular choice of a generates a “trained”
machine. (e.g. neural network with fixed
architecture and trained weights)

Expectation of Test Error

),(|),(|
2
1)(yXdPaXfyaR −= ∫

dXdyyXpyXdP),(),(= if p(X,y) exists.

R(a) is called expected risk or actual risk.

Empirical Risk Remp(a) is defined to be the measured
mean error rate on the training set (for a fixed, finite number
of observations.

∑
=

−=
l

i
iiemp aXfy

l
aR

1

|),(|
2
1)(

Loss and Risk Bound

•  ½|yi – f(Xi, a)| is called the loss. It can only take the
values 0 and 1.

•  Choose η such that 0 <= η <= 1. With probability 1
– η, the following bound holds (Vapnik, 1995)

))4/log()1)/2(log(()()(
l

hlhaRaR emp
η−+

+≤

Where h is a non-negative integer called the Vapnik Chevonenkis
(VC) dimension, and is a measure of the notion of capacity.
Second part of the right is called VC confidence.

Insights about Risk Bound
•  It is independent of P(X,y).
•  It is usually not possible to compute the left hand side.
•  If we know h, we can easily compute right hand side.
•  Structural Risk Minimization: Given several learning

machines f(X,a), and choosing a fixed, sufficiently small η,
by then taking the machine which minimize the right hand
side, giving the lowest upper bound on the actual risk.

•  Question: how does the bound change according to η?

VC Dimension
•  VC dimension is a property of a set of functions { f(a) }.

Here we consider functions that correspond to two-class
pattern recognition case, so that f(X,a) {-1, +1}.

•  If a given set of l points can be labeled in all possible 2l
ways, and for each labeling, a member of set {f(a)} can be
found to correctly assign those labels, we say that set of
points is shattered by that set of functions.

•  VC dimension for a set of functions {f(a)} is defined as the
maximum number of training points that can be shattered
by {f(a)}.

•  If the VC dimension is h, then there exists at least one set
of h points that can be shattered. But not necessary for
every set of h points.

∈

8 possible labeling of 3 points can be separated by lines.

Simply can not separate the labeling of these four points
using a line. So the VC dimension of a line is 3.

VC Dimension and the Number of
Parameters

•  Intuitively, more parameters -> higher VC
dimension.

•  However, 1 parameter function can have infinite
VC dimension. (see Burge’s tutorial)

If sin(ax) > 0, f(x,a) = 1, -1 otherwise

VC Confidence and VC Dimension h

VC confidence is monotonic in h. (here l = 10,000, η = 0.05 (95%))

Structural Risk Minimization

))4/log()1)/2(log(()()(
l

hlhaRaR emp
η−+

+≤

Given some selection of learning machines whose empirical
risk is zero, one wants to choose that learning machine
whose associated set of functions has minimal VC dimension.
This is called Occam’s Razor.
"All things being equal, the simplest solution tends to
be the best one."
In general, for non-zero empirical risk, one wants to choose
the learning machine which minimizes the Risk Bound.

Comments

•  The risk bound equation gives (with some chosen
probability) an upper bound on the actual risk.
This does not prevent a particular machine with
the same value for empirical risk, and whose
function set has higher VC dimension from having
better performance.

•  For higher h value, the bound is guaranteed not
tight.

•  h/l > 0.37, VC confidence exceeds unity.

Example
•  kth nearest neighbor classifier, with k =1, has infinite VC

dimension and zero empirical risk, since any number of
points, labeled arbitrarily, will be successfully learned by
the algorithm (provided no two points of opposite class lie
right on top of each other). Thus the bound provides no
information.

•  For any classifier with infinite VC dimension, the bound is
not even valid.

•  Nearest neighbor classifier can still perform well. Thus,
infinite capacity does not guarantee poor performance.

Structure Risk Minimization

•  We would like to find that subset of the
chosen set of functions, such that the risk
bound for that subset is minimized.

Linear Support Vector Machines

•  Linear machine trained on separable data.
•  Label training data {xi, yi}, i = 1, …, l, yi in {-1, 1}.

xi in Rd.
•  A hyperplane separates the positive from negative

examples. The points which lie on the hyperplane
satisfy w.x + b = 0, where w is normal to the
hyperplane. |b| / ||w|| is the perpendicular distance
from the hyperplane to the origin, and ||w|| is the
Euclidean norm of w.

Origin

|b|
|w|

w

wx + b = 0

wx + b = 1

wx + b = -1

+

-

xi . w + b >= +1 for yi = +1
xi . w + b <= -1, for yi = -1

combined into: yi(xi.w+b) – 1 >= 0

•  Distance from origin to wx + b=0 is |b| / |w|.
•  Choose a point x on wx+b=0 that vector (0,

x) is perpendicular to wx+b = 0. So x is λw
because w is norm of wx+b=0.

•  So λww+b = 0. so λ = -b/ w.w = -b / |w|2

•  So x = -b / |w|2 *w
•  So |x| = |b| / |w|.

Distance from Origin to
Hyperplane

Q2: From your intuition,
why we choose this line 2?

Q1: How perceptron
finds a linear function?
Is the function found by
perceptron unique?

1

2
3

Margin

wx + b = 1

wx + b = 0

wx + b = -1

M

Why Maximize Margin?
•  Intuitively this feels safest.
•  If we’ve made a small error in the location of the

boundary (it’s been jolted in its perpendicular
direction) this gives us the least chance of causing
a misclassification

•  LOOCV is easy since the model is immune to
removal of any non-support vector data points

•  Related to VC dimension / structural risk
minimization.

•  Empirically it works very well.

A. Moore, 2003

How to Compute Margin?

A. Moore, 2003

A. Moore, 2003

A. Moore, 2003

A. Moore, 2003

wx+b = 0

wx+b = +1

wx+b = -1

origin

x+

x-

λw

x+ = x- + λw

x+ - x- = λw

A. Moore, 2003

A. Moore, 2003

A. Moore, 2003

A. Moore, 2003

A. Moore, 2003

A. Moore, 2003

Objectives

•  Maximize 2 / |w|, subject to the linear constraints
•  xi . w + b >= +1, for yi = +1
•  xi . w + b <= -1, for yi = -1
•  Combined into one set of inequalities
 yi(xi.w + b) – 1 >= 0, for all i.
•  How many constraints are there?
•  How to solve the constraint optimization problem?

(Lagrangian)

Lagrange Multiplier
•  An mathematical optimization technique named after

Joseph Louis Lagrange
•  A method for finding local minima of a function of several

variables subject to one or more constraints
•  The method reduces a problem in n variables with k

constraints to a solvable problem in n+k variables with no
constraints.

•  The method introduces a new unknown scalar variable, the
Lagrange multiplier, for each constraint and forms a linear
combination involving the multipliers as coefficients.

http://en.wikipedia.org/wiki/Lagrange_multipliers

Primal Optimization (Lp)

•  Constraints: yi(xi.w + b) – 1 >= 0, for all i.
(constraints set C1)

•  1 - yi(xi.w + b) – 1 <= 0
•  Introduce a Lagrange multiplier for each

inequalities: ai.

∑ ∑
= =

++−=
l

i

l

i
iiiiP abwxyawL

1 1

2).(||
2
1

Dual Optimization Problem (LD)

•  Set the derivative of Lp with respect to w and b to 0.
•  w = Σaiyixi.
•  Σaiyi = 0
•  Substitute the equality constraints above into the

primal equation to get the dual equation.

∑ ∑−=
i ji

jijijiiD xxyyaaaL
,

.
2
1

Lp and LD arise from the same objective function, but with
different constraints (Σaiyi = 0, and ai >= 0, constraint set C2);
the solution is found by minimizing Lp or by maximizing LD.

Primal Problem ó Dual Problem
•  Minimize Lp with respect to w, b, and simultaneously

require that the derivatives of Lp with respect to ai vanish,
(Constraints C1 - original constraints).

•  A convex quadratic programming problem.
•  Equivalent to maximize LD, subject to the constraints that

the gradient of LD with respect to w and b vanish
(Constraints C2, new constraints).

•  This dual formulation is called the Wolfe dual (Fletcher,
1987).

•  It has the property that the maximum of LD, subject to C2,
occurs at the same values of the w, b, and a, as the
minimum of Lp, subject to constraints C1.

Learning and Support Vectors
•  Support vector training therefore amounts to

maximizing Ld with respect to ai, subject to Σaiyi =
0 and ai >= 0.

•  There is a Lagrange multiplier ai for every training
point. Those points for which ai > 0 are called
“support vectors”

Margin

wx + b = 1

wx + b = 0

wx + b = -1

M = 2 / |w|

H1

H2

H

Questions

•  Why the data points lying on the H1 and H2
are support vectors (ai > 0)?

•  Why the data points not lying on the H1 and
H2 are not support vectors (ai = 0)?

•  What happen if a non-support vector is
removed? Does the solution change?

•  What happen if a support vector is
removed? Does solution change?

Margin

wx + b = 1

wx + b = 0

wx + b = -1

M = 2 / |w|

Support vectors,
lying on the
hyperplane

H1

H2

H

Karush-Kuhn-Tucker (KKT) Condition

•  w = Σaiyixi. (1)
•  Σaiyi = 0 (2)
•  yi(xi.w+b) – 1 >= 0, i = 1, …, l (3)
•  ai >= 0 (4)
•  ai(yi(w.xi+b)-1) = 0 (5)
(5) is called complementary slackness due to the

Lagrange theory and can be explained in
intuition.

How to Determine w and b

•  Use quadratic programming to solve ai and
compute w is trivial. (use KKT condition (1))

•  How to compute b?
•  Use KKT condition (5), for any support vector

(point ai > 0), yi(w.xi+b)-1 = 0.
•  We compute b in terms of a support vector.

Better: we computer b in terms of all support
vectors and take the average.

Test Phase

•  We simply determine on which side of the
decision boundary (that hyperplane lying
half way between H1 and H2 and parallel to
them) a given test pattern x lies and assign
the corresponding class label

•  Class of x is sign(w.x+b)

Non-Separable Case

+

-

Can’t satisfy the constraints yi(wxi+b) >=1 for
some data points? What can we do?

Relax Constraints – Soft Margin
•  Introduce positive slack variables ξi, i = 1, …, l to

relax constraints. (ξi >= 0)
•  New constraints:
•  xi.w + b >= +1 - ξi for yi = +1
•  xi.w + b <= -1 + ξi for yi = -1
•  Or yi(wxi +b) >= 1- ξi
•  ξi >= 0
•  For an classification error to happen, the

corresponding ξi must exceed unity, so Σ ξi is an
upper bound on the number of training errors.

New Objective Function

•  Minimize |w|2/2 + C(Σξi)k.
•  C is parameter to be chosen by the user, a larger C

corresponding to assigning a higher penalty to
errors.

•  This is a convex programming problem for any
positive integer k. The choice k=1 has the further
advantage that neither ξi and their multipliers
appear in the Wolfe dual problem.

Ca

uaC
L

ubwxyaCwL

i

ii
i

p

N

i
ii

l

i
iiii

i
iP

<=⇒

=−−=
∂

∂

−+−+−+= ∑∑∑
==

0

))1).((||
2
1

11

2

ξ

ξξξ

ui is the Lagrange multipliers introduced to enforce
Non-negativity of ξi

Primal Optimization (Lp)

Max Welling, 2005

KKT Conditions

What’s the only difference from the linearly separable cases?

Dual Optimization (LD)

We can get LD by substitute w by

Values of Multipliers

+

-

ai = C, ξi > 0, ui = 0

ai = 0, ξi = 0, ui > 0

ai < C, ξi = 0, ui > 0

Solution of w and b

∑
=

=
Ns

i
iii xyaw

1

Use complementary slackness to compute b

Solution of w and b

∑
=

=
Ns

i
iii xyaw

1

Use complementary slackness to compute b (choose
a support vector (0 < ai < C) to compute b, where
ξi = 0. ξi = 0 is derived by combining equations 3 and 9.

Non-Linear Classification

x1

x2

C1 C2

x1
2+x2

2 = 10

SVM Demo

•  http://www.youtube.com/watch?
v=3liCbRZPrZA

Challenges

•  Know how to do mapping
•  High computational cost

Nonlinear Support Vector Machines

•  In the LD function, what really matters is dot products: xi.xj.
•  Idea: map the data to some other (possibly infinite

dimensional) Euclidean space H, using a mapping.

HRd :Φ
Then the training algorithm would only depend on the data
through dot products in H, i.e. Φ(xi). Φ(xj).

Kernel Trick
•  If there were a kernel function K such that K(xi,xj) = Φ(xi).
Φ(xj), we would only need to use K in the training
algorithm and would never need to explicitly do the
mapping Φ.

•  One example Gaussian kernel: K(xi,xj) = e^(-|xi-xj|2/2σ2).
In this example, H is infinite dimensional.

•  So we simply replace xi.xj with K(xi,xj) in the training
algorithm, the algorithm will happily produce a support
vector machine which lives in an infinite dimensional
space, and furthermore do so in roughly the same amount
of time it would take to train on the un-mapped data.

A Simple Kernel Example

•  Is K(xi,xj)=(xi.xj)2 a
kernel? xi, xj live in R2
space.

•  Try to find a Φ from
R2 to H, such that
(x.y)2 = Φ(x) Φ(y).

•  Here are two possible
mappings Φ (map R2
to R3 and R4 spaces)

What’s the effect of a mapping?

How to Use the Machine?

•  We can’t get w if we do not do explicit mapping.
•  Once again we use kernel trick.

∑ ∑
= =

+=+ΦΦ=
Ns

i

Ns

i
iiiiii bxsKyabxsyaxf

1 1

),()())(()(

What’s the problem from a computational point of view?

Speedup SVM Prediction

•  Remove some redundant support vectors.
•  Burges C.J.C. Simplified support vector

decision rules. ICML, 1996
•  Osuna E and Girosi F. Reducing the run-

time complexity of support vector
machines. International Conference on
Pattern Recognition, 1998.

Kernel Function and Hilbert Space

•  Hilbert space is a generalization of
Euclidean space.

•  It is a linear space, with an inner product
define.

•  Its inner product can be any inner product,
not just scalar dot.

What Conditions Make a Function a
Kernel?

•  Mercer’s condition

∫

∑ ∫ ≥⇔ΦΦ=

dxxgwhere

dxdyygxgyxKyxyxK
i

ii

2)(

0)()(),()()(),(

is finite. g(x) is any function.

It is hard to check Mercer’s condition because it must hold
For every g with finite L2 norm.

What happens if one uses a kernel which does not satisfy
Mercer’s condition? Some time QP has no solution. Sometime, there
is a solution, but the geometrical interpretation is lacking.

Common Kernels

 (1) K(x,y) = (x.y + 1)p
.

p is degree. p = 1,
linear kernel.

).tanh(),(
),(

22 2/||

δ

σ

−=

= −−

ykxyxK
eyxK yx(2) Gaussian radial basis kernel

(3) Hyperbolic Tanh kernel

Note: RBF kernel, the weights (ai) and centers (Si) are automatically
Learned.
Tanh kernel is equivalent to two-layer neural network, where
Number of hidden units is number of support vectors. ai corresponds
To the weights of the second layer.

Connection between NN and SVM

S1

x1 x2 xd ……

Si Sn

X

a1 ai

S11
S12

S1d

Multi-Class SVM

•  Most widely used method: one versus all
•  Also direct multi-classification using SVM.

(K. Crammer and Y. Singer. On the Algorithmic Implementation of Multi-class SVMs,

JMLR, 2001)
Class 1 or others

Yes

No

Class 2 or others

Global Solutions and Uniqueness

•  For SVM optimization, every local solution
is global due to the property to the convex
objective function.

•  The solution is guaranteed to be unique.
•  SVM training always finds a global solution

is in contrast to the case of neural networks,
where many local minima usually exist.

Method of Solution

•  The support vector optimization problem can be
solved analytically only when the number of
training data is very small, or for the separable
case when it is known beforehand which of the
training data become support vectors.

•  For the general analytic case, the worst case
computational complexity is of order Ns

3
(inversion of Hessian), where Ns is the number of
support vectors.

Method of Solution

•  In most real world cases, the quadratic optimization
problem must be solved numerically.

•  For small problems, any general purpose optimization
package that solves linearly constrained convex quadratic
programs will do. (a good survey: More and Wright,
1993)

•  For large problems, divide and conquer technique is
usually used, e.g. Sequential Minimal Optimization
algorithm (J. Platt, 1998, http://research.microsoft.com/users/jplatt/

smo.html)

Time Complexity of Testing

•  O(MNs). M is the number of operations
required to evaluate the kernel. For RBF
kernel, M is O(dL). Ns is the number of
support vectors.

A Bound from Leave-One-Out

•  E[P(error)] = Ns / number of training
samples, where Ns is the number of support
vectors

•  What does this tells us?

Limitations and Extensions

•  Choice of kernel. Once the kernel is fixed,
SVM classifiers have only one user-chosen
parameter (the error penalty) and kernel
parameters

•  Speed in test phase (Burges 96, Burges and
Scholkopf 97, speed up 50 times)

•  Challenge: Training for very large datasets
(millions of data points)

SVM Tools

•  SVM-light: http://svmlight.joachims.org/
•  LIBSVM:

http://www.csie.ntu.edu.tw/~cjlin/libsvm/
•  Gist: http://bioinformatics.ubc.ca/gist/
•  More:

http://www.kernel-machines.org/
software.html

Acknowledgements

•  Chris Burges’s excellent tutorial. A
Tutorial on Support Vector Machines for
Pattern Recognition. Data Mining and
Knowledge Discovery, 1998.

•  Andrew Moore’s SVM Slides.

