Statistical Machine Learning Methods for Bioinformatics V. Support Vector Machine Theory

Jianlin Cheng, PhD

Computer Science Department and Informatics Institute
University of Missouri, Columbia 2012

History of SVM

- Started in the late 1970s. (Vapnik, 1979)
- Hot since the middle of 1990s. (Vapnik, 1995 and Vapnik 1998), still hot now.
- There are a lot of applications in many areas such as bioinformatics, text classification, computer vision, handwriting recognition, object recognition, speaker identification, face detection, time series,

Theories Related to SVM

- Bias variance tradeoff (Geman and Bienenstock, 1992)
- Capacity control (Guyon et al., 1992, Vapnik, 1995 and Vapnik 1998)
- Overfitting (Montgomery and Peck, 1992)
- Basic idea: for a given learning task, with a given finite amount of training data, the best generalization performance will be achieved if the right balance is struck between the accuracy attained on the particular training set, and the capacity of the machine.

A Machine with Too Much / Little Capacity

- A machine with too much capacity is like a botanist with a photographic memory who, when presented with a new tree, concludes that it is not a tree because it has a different number of leaves from anything she has seen before;
- a machine with too little capacity is like the botanist's lazy brother, who declares that if it is green, $\mathrm{it}^{\prime} \mathrm{s}$ a tree.

Notation

- l observations.
- Each observation consists of a pair: a vector X_{i} in $\mathrm{R}^{\mathrm{n}}, i=$ $1, \ldots, l$ and associated truth y_{i}.
- Tree recognition problem: X_{i} is a vector of pixel values ($256,16^{*} 16$ image) and y_{i} is 1 if the image contains a tree and -1 otherwise.
- It is assumed that there exists some unknown probability distribution $P(\mathrm{X}, \mathrm{y})$ from which these data are drawn, the data is assumed iid: independently drawn and identically distributed. P for cumulative probability distribution, p for their density.

Learning Machine

- Learning the mapping: $\mathrm{X}_{i} \mid \rightarrow y_{i}$.
- The machine is defined by a set of mappings $\mathrm{X} \mid \rightarrow$ $f(\mathrm{X}, a)$, where the functions $f(\mathrm{X}, a)$ themselves are labeled by the adjustable parameters a. The machine is assumed to be deterministic.
- A particular choice of a generates a "trained" machine. (e.g. neural network with fixed architecture and trained weights)

Expectation of Test Error

$$
\begin{aligned}
& R(a)=\int \frac{1}{2}|y-f(X, a)| d P(X, y) \\
& \quad d P(X, y)=p(X, y) d X d y \text { if } \mathrm{p}(\mathrm{X}, \mathrm{y}) \text { exists. }
\end{aligned}
$$

$R(a)$ is called expected risk or actual risk.

Empirical Risk $\mathrm{R}_{\text {emp }}(\mathrm{a})$ is defined to be the measured mean error rate on the training set (for a fixed, finite number of observations.

$$
R_{e m p}(a)=\frac{1}{2 l} \sum_{i=1}^{l}\left|y_{i}-f\left(X_{i}, a\right)\right|
$$

Loss and Risk Bound

- $1 / 2\left|y_{i}-f\left(X_{i}, a\right)\right|$ is called the loss. It can only take the values 0 and 1 .
- Choose η such that $0<=\eta<=1$. With probability 1 $-\eta$, the following bound holds (Vapnik, 1995)

$$
R(a) \leq R_{e m p}(a)+\sqrt{\left(\frac{h(\log (2 l / h)+1)-\log (\eta / 4)}{l}\right)}
$$

Where h is a non-negative integer called the Vapnik Chevonenkis (VC) dimension, and is a measure of the notion of capacity. Second part of the right is called VC confidence.

Insights about Risk Bound

- It is independent of $P(\mathrm{X}, y)$.
- It is usually not possible to compute the left hand side.
- If we know h, we can easily compute right hand side.
- Structural Risk Minimization: Given several learning machines $f(\mathrm{X}, a)$, and choosing a fixed, sufficiently small η, by then taking the machine which minimize the right hand side, giving the lowest upper bound on the actual risk.
- Question: how does the bound change according to η ?

VC Dimension

- VC dimension is a property of a set of functions $\{f(a)\}$. Here we consider functions that correspond to two-class pattern recognition case, so that $f(\mathrm{X}, \mathrm{a}) \in\{-1,+1\}$.
- If a given set of l points can be labeled in all possible 2^{l} ways, and for each labeling, a member of set $\{f(a)\}$ can be found to correctly assign those labels, we say that set of points is shattered by that set of functions.
- VC dimension for a set of functions $\{f(a)\}$ is defined as the maximum number of training points that can be shattered by $\{f(a)\}$.
- If the VC dimension is h, then there exists at least one set of h points that can be shattered. But not necessary for every set of h points.

8 possible labeling of 3 points can be separated by lines.

Simply can not separate the labeling of these four points using a line. So the VC dimension of a line is 3 .

VC Dimension and the Number of Parameters

- Intuitively, more parameters -> higher VC dimension.
- However, 1 parameter function can have infinite VC dimension. (see Burge' s tutorial)
$f(x, \alpha) \equiv \theta(\sin (\alpha x)), \quad x, \alpha \in \mathbf{R}$.
If $\sin (a x)>0, \mathrm{f}(x, a)=1,-1$ otherwise

VC Confidence and VC Dimension h

VC confidence is monotonic in h. (here $l=10,000, \eta=0.05(95 \%)$)

Structural Risk Minimization

$$
R(a) \leq R_{e m p}(a)+\sqrt{\left(\frac{h(\log (2 l / h)+1)-\log (\eta / 4)}{l}\right)}
$$

Given some selection of learning machines whose empirical risk is zero, one wants to choose that learning machine whose associated set of functions has minimal VC dimension.
This is called Occam's Razor.
"All things being equal, the simplest solution tends to be the best one."
In general, for non-zero empirical risk, one wants to choose the learning machine which minimizes the Risk Bound.

Comments

- The risk bound equation gives (with some chosen probability) an upper bound on the actual risk. This does not prevent a particular machine with the same value for empirical risk, and whose function set has higher VC dimension from having better performance.
- For higher h value, the bound is guaranteed not tight.
- $h / l>0.37$, VC confidence exceeds unity.

Example

- $\mathrm{k}^{\text {th }}$ nearest neighbor classifier, with $\mathrm{k}=1$, has infinite VC dimension and zero empirical risk, since any number of points, labeled arbitrarily, will be successfully learned by the algorithm (provided no two points of opposite class lie right on top of each other). Thus the bound provides no information.
- For any classifier with infinite VC dimension, the bound is not even valid.
- Nearest neighbor classifier can still perform well. Thus, infinite capacity does not guarantee poor performance.

Structure Risk Minimization

- We would like to find that subset of the chosen set of functions, such that the risk bound for that subset is minimized.

Linear Support Vector Machines

- Linear machine trained on separable data.
- Label training data $\left\{\mathrm{x}_{\mathrm{i}}, y_{\mathrm{i}}\right\}, \mathrm{i}=1, \ldots, l, y_{\mathrm{i}}$ in $\{-1,1\}$. x_{i} in R^{d}.
- A hyperplane separates the positive from negative examples. The points which lie on the hyperplane satisfy $\mathbf{w} \cdot \mathbf{x}+\mathbf{b}=\mathbf{0}$, where w is normal to the hyperplane. $|\mathrm{b}| /\|\mathrm{w}\|$ is the perpendicular distance from the hyperplane to the origin, and $\|\mathrm{w}\|$ is the Euclidean norm of w.

$\mathrm{x}_{\mathrm{i}} \cdot \mathrm{w}+\mathrm{b}>=+1$ for $y_{\mathrm{i}}=+1$
$\mathrm{x}_{\mathrm{i}} \cdot \mathrm{w}+\mathrm{b}<=-1$, for $y_{\mathrm{i}}=-1$
combined into: $\mathrm{y}_{\mathrm{i}}\left(\mathrm{x}_{\mathrm{i}} \cdot \mathrm{w}+\mathrm{b}\right)-1>=0$

Distance from Origin to Hyperplane

- Distance from origin to $w x+b=0$ is $|b| /|w|$.
- Choose a point x on $\mathrm{wx}+\mathrm{b}=0$ that vector $(0$, x) is perpendicular to $w x+b=0$. So x is λw because w is norm of $w x+b=0$.
- So $\lambda w w+b=0$. so $\lambda=-b / w . w=-b /|w|^{2}$
- So $\mathrm{x}=-\mathrm{b} /|\mathrm{w}|^{2} *_{\mathrm{w}}$
- So $|x|=|b| /|w|$.

Q1: How perceptron finds a linear function?

Q2: From your intuition, why we choose this line 2 ?

Why Maximize Margin?

- Intuitively this feels safest.
- If we' ve made a small error in the location of the boundary (it's been jolted in its perpendicular direction) this gives us the least chance of causing a misclassification
- LOOCV is easy since the model is immune to removal of any non-support vector data points
- Related to VC dimension / structural risk minimization.
- Empirically it works very well.
A. Moore, 2003

How to Compute Margin?

Computing the margin width

- Plus-plane $=\{\boldsymbol{x}: \boldsymbol{w} \cdot \boldsymbol{x}+b=+1\}$
- Minus-plane $=\{\boldsymbol{x}: \boldsymbol{w} \cdot \boldsymbol{x}+b=-1\}$

Claim: The vector \mathbf{w} is perpendicular to the Plus Plane. Why?
A. Moore, 2003

Computing the margin width

- Plus-plane $=\{\boldsymbol{x}: \boldsymbol{w} \cdot \boldsymbol{x}+b=+1\}$
- Minus-plane $=\{\boldsymbol{x}: \boldsymbol{w} \cdot \boldsymbol{x}+b=-1\}$

Claim: The vector \mathbf{w} is perpendicular to the Plus Plane $y / h y$?
Let \mathbf{u} and \mathbf{v} be two vectors on the Plus Plane. What is $w .(u-v)$?

And so of course the vector \mathbf{w} is also perpendicular to the Minus Plane
A. Moore, 2003

Computing the margin width

- Plus-plane $=\{\boldsymbol{x}: \boldsymbol{w} . \boldsymbol{x}+b=+1\}$
- Minus-plane $=\{\boldsymbol{x}: \boldsymbol{w} \cdot \boldsymbol{x}+b=-1\}$
- The vector \mathbf{w} is perpendicular to the Plus Plane
- Let \boldsymbol{x}^{-}be any point on the minus plane
- Let \boldsymbol{x}^{+}be the closest plus-plane-point to \boldsymbol{x}^{-}.

Any location in R^{m} : not necessarily a datapoint

Computing the margin width

- Plus-plane $=\{\boldsymbol{x}: \boldsymbol{w} \cdot \boldsymbol{x}+b=+1\}$
- Minus-plane $=\{\boldsymbol{x}: \boldsymbol{w} \cdot \boldsymbol{x}+b=-1\}$
- The vector \mathbf{w} is perpendicular to the Plus Plane
- Let \boldsymbol{x}^{-}be any point on the minus plane
- Let \boldsymbol{x}^{+}be the closest plus-plane-point to \boldsymbol{x}^{-}.
- Claim: $\boldsymbol{x}^{+}=\boldsymbol{x}^{-}+\lambda \boldsymbol{w}$ for some value of λ. Why?
A. Moore, 2003

Computing the margin width

What we know:

- w. $\boldsymbol{x}^{+}+b=+1$
- w. $\boldsymbol{x}^{-}+b=-1$
- $\boldsymbol{x}^{+}=\boldsymbol{x}^{-}+\lambda w$
- $\left|\boldsymbol{x}^{+}-\boldsymbol{x}^{-}\right|=M$

It's now easy to get M in terms of \boldsymbol{w} and b
A. Moore, 2003

Computing the margin width

A. Moore, 2003

Computing the margin width

$$
=?|\mathbf{w}|=? \sqrt{\mathbf{w} \cdot \mathbf{w}}
$$

- w. $\boldsymbol{x}^{+}+b=+1$
- w. $\boldsymbol{x}^{-}+b=-1$
- $\boldsymbol{x}^{+}=\boldsymbol{x}^{-}+\lambda \boldsymbol{w}$
- $\left|\boldsymbol{x}^{+}-\boldsymbol{x}^{-}\right|=M$

$$
?=\frac{2}{\mathbf{w} \cdot \mathbf{w}}
$$

What we know:

$$
=\frac{2 \sqrt{\mathbf{w} \cdot \mathbf{w}}}{\mathbf{w} \cdot \mathbf{w}}=\frac{2}{\sqrt{\mathbf{w} \cdot \mathbf{w}}}
$$

- $?=\frac{2}{\mathbf{w} \cdot \mathbf{w}}$
A. Moore, 2003

Learning the Maximum Margin Classifier

Given a guess off \boldsymbol{w} and b we can

- Compute whether all data points in the correct half-planes
- Compute the width of the margin

So now we just need to write a program to search the space of \mathbf{w} 's and b 's to find the widest margin that matches all the datapoints. How?
Gradient descent? Simulated Annealing? Matrix Inversion? EM? Newton's Method?
A. Moore, 2003

Learning the Maximum Margin Classifier

- Compute the margin width Assume R datapoints, each $\left(x_{k} y_{k}\right)$ where $y_{k}=+/-1$

What should our quadratic optimization criterion be?

How many constraints will we have?
What should they be?
A. Moore, 2003

Learning the Maximum Margin Classifier

Given guess of w, b we can Compute whether all data points are in the correct half-planes

- Compute the margin width Assume R datapoints, each $\left(x_{k} y_{k}\right)$ where $y_{k}=+/-1$

What should our quadratic optimization criterion be?
Minimize w.w

How many constraints will we have? R
What should they be?

$$
\begin{aligned}
& w . x_{k}+b>=1 \text { if } y_{k}=1 \\
& w \cdot x_{k}+b<=-1 \text { if } y_{k}=-1
\end{aligned}
$$

A. Moore, 2003

Objectives

- Maximize $2 /|\mathrm{w}|$, subject to the linear constraints
- $\mathrm{x}_{\mathrm{i}} \cdot \mathrm{w}+\mathrm{b}>=+1$, for $y_{\mathrm{i}}=+1$
- $\mathrm{x}_{\mathrm{i}} \cdot \mathrm{w}+\mathrm{b}<=-1$, for $y_{\mathrm{i}}=-1$
- Combined into one set of inequalities $y_{\mathrm{i}}\left(\mathrm{x}_{\mathrm{i}} \cdot \mathrm{w}+\mathrm{b}\right)-1>=0$, for all i .
- How many constraints are there?
- How to solve the constraint optimization problem?
(Lagrangian)

Lagrange Multiplier

- An mathematical optimization technique named after Joseph Louis Lagrange
- A method for finding local minima of a function of several variables subject to one or more constraints
- The method reduces a problem in n variables with k constraints to a solvable problem in $n+k$ variables with no constraints.
- The method introduces a new unknown scalar variable, the Lagrange multiplier, for each constraint and forms a linear combination involving the multipliers as coefficients.
http://en.wikipedia.org/wiki/Lagrange_multipliers

Primal Optimization $\left(\mathrm{L}_{\mathrm{p}}\right)$

- Constraints: $y_{\mathrm{i}}\left(\mathrm{x}_{\mathrm{i}} \cdot \mathrm{w}+\mathrm{b}\right)-1>=0$, for all i . (constraints set C1)
- $1-\mathrm{y}_{\mathrm{i}}\left(\mathrm{x}_{\mathrm{i}} \cdot \mathrm{w}+\mathrm{b}\right)-1<=0$
- Introduce a Lagrange multiplier for each inequalities: a_{i}.

$$
L_{P}=\frac{1}{2}|w|^{2}-\sum_{i=1}^{l} a_{i} y_{i}\left(x_{i} \cdot w+b\right)+\sum_{i=1}^{l} a_{i}
$$

Dual Optimization Problem (L_{D})

- Set the derivative of L_{p} with respect to w and b to 0 .
- $\mathrm{w}=\Sigma a_{\mathrm{i}} \mathrm{y}_{\mathrm{i}} \mathrm{x}_{\mathrm{i}}$.
- $\Sigma \mathrm{a}_{\mathrm{i}} \mathrm{y}_{\mathrm{i}}=0$
- Substitute the equality constraints above into the primal equation to get the dual equation.

$$
L_{D}=\sum_{i} a_{i}-\frac{1}{2} \sum_{i, j} a_{i} a_{j} y_{i} y_{j} x_{i} \cdot x_{j}
$$

L_{p} and L_{D} arise from the same objective function, but with different constraints ($\Sigma \mathrm{a}_{\mathrm{i}} \mathrm{y}_{\mathrm{i}}=0$, and $\mathrm{a}_{\mathrm{i}}>=0$, constraint set $\mathbf{C} 2$); the solution is found by minimizing L_{p} or by maximizing L_{D}.

Primal Problem \Leftrightarrow Dual Problem

- Minimize L_{p} with respect to w, b, and simultaneously require that the derivatives of L_{p} with respect to a_{i} vanish, (Constraints C 1 - original constraints).
- A convex quadratic programming problem.
- Equivalent to maximize L_{D}, subject to the constraints that the gradient of L_{D} with respect to w and b vanish (Constraints C2, new constraints).
- This dual formulation is called the Wolfe dual (Fletcher, 1987).
- It has the property that the maximum of L_{D}, subject to C 2 , occurs at the same values of the w, b, and a, as the minimum of L_{p}, subject to constraints C 1 .

Learning and Support Vectors

- Support vector training therefore amounts to maximizing L_{d} with respect to a_{i}, subject to $\Sigma a_{\mathrm{i}} y_{\mathrm{i}}=$ 0 and $a_{\mathrm{i}}>=0$.
- There is a Lagrange multiplier a_{i} for every training point. Those points for which $a_{i}>0$ are called "support vectors"

Questions

- Why the data points lying on the H 1 and H 2 are support vectors ($\mathrm{a}_{\mathrm{i}}>0$)?
- Why the data points not lying on the H 1 and H2 are not support vectors ($a_{i}=0$)?
- What happen if a non-support vector is removed? Does the solution change?
- What happen if a support vector is removed? Does solution change?

Karush-Kuhn-Tucker (KKT) Condition

- $\mathrm{w}=\Sigma a_{\mathrm{i}} y_{\mathrm{i}} \mathrm{x}_{\mathrm{i}}$.
- $\Sigma a_{\mathrm{i}} \mathrm{y}_{\mathrm{i}}=0$
- $\mathrm{y}_{\mathrm{i}}\left(\mathrm{x}_{\mathrm{i}} \cdot \mathrm{w}+\mathrm{b}\right)-1>=0, \mathrm{i}=1, \ldots, l$
- $a_{\mathrm{i}}>=0$
- $a_{i}\left(\mathbf{y}_{\mathbf{i}}\left(\mathbf{w} \cdot \mathbf{x}_{\mathrm{i}}+\mathrm{b}\right)-\mathbf{1}\right)=\mathbf{0}$
(5)
(5) is called complementary slackness due to the Lagrange theory and can be explained in intuition.

How to Determine w and b

- Use quadratic programming to solve a_{i} and compute w is trivial. (use KKT condition (1))
- How to compute b?
- Use KKT condition (5), for any support vector (point $a_{\mathrm{i}}>0$), $\mathrm{y}_{\mathrm{i}}\left(\mathrm{w} \cdot \mathrm{x}_{\mathrm{i}}+\mathrm{b}\right)-1=0$.
- We compute b in terms of a support vector.

Better: we computer b in terms of all support vectors and take the average.

Test Phase

- We simply determine on which side of the decision boundary (that hyperplane lying half way between H_{1} and H_{2} and parallel to them) a given test pattern x lies and assign the corresponding class label
- Class of x is $\operatorname{sign}(\mathrm{w} . \mathrm{x}+\mathrm{b})$

Non-Separable Case

Can' t satisfy the constraints $y_{i}\left(\mathrm{wx}_{\mathrm{i}}+\mathrm{b}\right)>=1$ for some data points? What can we do?

Learning Maximum Margin with Noise

Given guess of w, b we can Compute sum of distances of points to their correct zones

- Compute the margin width Assume R datapoints, each $\left(x_{k} y_{k}\right)$ where $y_{k}=+/-1$

What should our quadratic optimization criterion be?
Minimize

$$
\frac{1}{2} \mathbf{w} \cdot \mathbf{w}+C \sum_{k=1}^{R} e_{k}
$$

have? R
What should they be?

$$
\begin{aligned}
& w . x_{k}+b>=1-\varepsilon_{k} \text { if } y_{k}=1 \\
& w \cdot x_{k}+b<=-1+\varepsilon_{k} \text { if } y_{k}=-1
\end{aligned}
$$

Relax Constraints - Soft Margin

- Introduce positive slack variables $\xi_{\mathrm{i}}, \mathrm{i}=1, \ldots, l$ to relax constraints. $\left(\xi_{\mathrm{i}}>=0\right)$
- New constraints:
- $\mathrm{x}_{\mathrm{i}} \cdot \mathrm{w}+\mathrm{b}>=+1-\xi_{\mathrm{i}}$ for $\mathrm{y}_{\mathrm{i}}=+1$
- $\mathrm{x}_{\mathrm{i}} \cdot \mathrm{w}+\mathrm{b}<=-1+\xi_{\mathrm{i}}$ for $\mathrm{y}_{\mathrm{i}}=-1$
- Or $y_{i}\left(\mathrm{wx}_{\mathrm{i}}+\mathrm{b}\right)>=1-\xi_{\mathrm{i}}$
- $\xi_{\mathrm{i}}>=0$
- For an classification error to happen, the corresponding ξ_{i} must exceed unity, so $\Sigma \xi_{\mathrm{i}}$ is an upper bound on the number of training errors.

New Objective Function

- Minimize $|\mathrm{w}|^{2 / 2}+\mathrm{C}\left(\Sigma \xi_{\mathrm{j}}\right)^{\mathrm{k}}$.
- C is parameter to be chosen by the user, a larger C corresponding to assigning a higher penalty to errors.
- This is a convex programming problem for any positive integer k . The choice $\mathrm{k}=1$ has the further advantage that neither ξ_{i} and their multipliers appear in the Wolfe dual problem.

Primal Optimization (Lp)

$$
\begin{aligned}
& \left.L_{P}=\frac{1}{2}|w|^{2}+C \sum_{i} \xi_{i}-\sum_{i=1}^{l} a_{i}\left(y_{i}\left(x_{i} \cdot w+b\right)-1+\xi_{i}\right)\right)-\sum_{i=1}^{N} u_{i} \xi_{i} \\
& \frac{\partial L_{p}}{\partial \xi_{i}}=C-a_{i}-u_{i}=0 \\
& \Rightarrow a_{i}<=C
\end{aligned}
$$

u_{i} is the Lagrange multipliers introduced to enforce Non-negativity of ξ_{i}

KKT Conditions

$$
\begin{aligned}
& \text { 1. } \partial_{\mathrm{w}} \mathcal{L}_{P}=0 \rightarrow \quad \mathrm{w}-\sum_{i} \alpha_{i} y_{i} \mathrm{x}_{i}=0 \\
& \text { 2. } \partial_{b} \mathcal{L}_{P}=0 \rightarrow \quad \sum_{i} \alpha_{i} y_{i}=0 \\
& 3 . \partial_{\xi} \mathcal{L}_{P}=0 \rightarrow \\
& C-\alpha_{i}-\mu_{i}=0 \\
& \text { 4.constraint-1 } \\
& y_{i}\left(\mathbf{w}^{T} \mathbf{x}_{i}-b\right)-1+\xi_{i} \geq 0 \\
& \text { 5.constraint-2 } \\
& \xi_{i} \geq 0 \\
& \text { 6.multiplier condition-1 } \quad \alpha_{i} \geq 0 \\
& \text { 7.multiplier condition-2 } \quad \mu_{i} \geq 0 \\
& \text { 8.complementary slackness-1 } \quad \alpha_{i}\left[y_{i}\left(\mathbf{w}^{T} \mathbf{x}_{i}-b\right)-1+\xi_{i}\right]=0 \\
& 9 \text {.complementary slackness-1 } \quad \mu_{i} \xi_{i}=0
\end{aligned}
$$

Max Welling, 2005

Dual Optimization $\left(\mathrm{L}_{\mathrm{D}}\right)$

$\operatorname{maximize} \quad \mathcal{L}_{D}=\sum_{i=1}^{N} \alpha_{i}-\frac{1}{2} \sum_{i j} \alpha_{i} \alpha_{j} y_{i} y_{j} \mathbf{x}_{i}^{T} \mathbf{x}_{j}$
subject to $\quad \sum_{i} \alpha_{i} y_{i}=0$

$$
0 \leq \alpha_{i} \leq C \quad \forall i
$$

We can get LD by substitute w by
What's the only difference from the linearly separable cases?

Values of Multipliers

Solution of w and b

$$
w=\sum_{i=1}^{N s} a_{i} y_{i} x_{i}
$$

Use complementary slackness to compute b

Solution of w and b

$$
w=\sum_{i=1}^{N s} a_{i} y_{i} x_{i}
$$

Use complementary slackness to compute b (choose a support vector ($0<a_{\mathrm{i}}<\mathrm{C}$) to compute b, where $\xi_{\mathrm{i}}=0 . \xi_{\mathrm{i}}=0$ is derived by combining equations 3 and 9.

Non-Linear Classification

SVM Demo

- http://www.youtube.com/watch? v=3liCbRZPrZA

Challenges

- Know how to do mapping
- High computational cost
$\operatorname{maximize} \quad \mathcal{L}_{D}=\sum_{i=1}^{N} \alpha_{i}-\frac{1}{2} \sum_{i j} \alpha_{i} \alpha_{j} y_{i} y_{j} \mathbf{x}_{i}^{T} \mathbf{x}_{j}$
subject to $\quad \sum_{i} \alpha_{i} y_{i}=0$

$$
0 \leq \alpha_{i} \leq C \quad \forall i
$$

Nonlinear Support Vector Machines

- In the L_{D} function, what really matters is dot products: $\mathrm{x}_{\mathrm{i}} \cdot \mathrm{x}_{\mathrm{j}}$.
- Idea: map the data to some other (possibly infinite dimensional) Euclidean space H, using a mapping.

$$
\Phi: R^{d} \mapsto H
$$

Then the training algorithm would only depend on the data through dot products in H, i.e. $\Phi\left(\mathrm{x}_{\mathrm{i}}\right)$. $\Phi\left(\mathrm{x}_{\mathrm{j}}\right)$.

Kernel Trick

- If there were a kernel function K such that $K\left(\mathrm{x}_{\mathrm{i},} \mathrm{x}_{\mathrm{j}}\right)=\Phi\left(\mathrm{x}_{\mathrm{i}}\right)$. $\Phi\left(\mathrm{x}_{\mathrm{j}}\right)$, we would only need to use K in the training algorithm and would never need to explicitly do the mapping Φ.
- One example Gaussian kernel: $\mathrm{K}\left(\mathrm{x}_{\mathrm{i}} ; \mathrm{x}_{\mathrm{j}}\right)=\mathrm{e}^{\wedge}\left(-\left|\mathrm{x}_{\mathrm{i}}-\mathrm{x}_{\mathrm{j}}\right|^{2} / 2 \sigma^{2}\right)$. In this example, H is infinite dimensional.
- So we simply replace $\mathrm{x}_{\mathrm{i}} \cdot \mathrm{X}_{\mathrm{j}}$ with $\mathrm{K}\left(\mathrm{x}_{\mathrm{i}}, \mathrm{x}_{\mathrm{j}}\right)$ in the training algorithm, the algorithm will happily produce a support vector machine which lives in an infinite dimensional space, and furthermore do so in roughly the same amount of time it would take to train on the un-mapped data.

A Simple Kernel Example

- Is $K\left(\mathrm{x}_{\mathrm{i}}, \mathrm{x}_{\mathrm{j}}\right)=\left(\mathrm{x}_{\mathrm{i}} \cdot \mathrm{x}_{\mathrm{j}}\right)^{2} \mathrm{a}$ kernel? $\mathrm{x}_{\mathrm{i}}, \mathrm{x}_{\mathrm{j}}$ live in R^{2} space.

$$
\Phi(\mathbf{x})=\left(\begin{array}{c}
x_{1}^{2} \\
\sqrt{2} x_{1} x_{2} \\
x_{2}^{2}
\end{array}\right)
$$

- Try to find a Φ from R^{2} to H , such that $(\mathrm{x} . \mathrm{y})^{2}=\Phi(\mathrm{x}) \Phi(\mathrm{y})$.
- Here are two possible mappings Φ (map R ${ }^{2}$

$$
\Phi(\mathbf{x})=\left(\begin{array}{c}
x_{1}^{2} \\
x_{1} x_{2} \\
x_{1} x_{2} \\
x_{2}^{2}
\end{array}\right)
$$ to R^{3} and R^{4} spaces)

What' s the effect of a mapping?

(a) no linear separating hyperplane in input space X

(c) Corresponding non-linear separating surface in input space X

How to Use the Machine?

- We can't get w if we do not do explicit mapping.
- Once again we use kernel trick.

$$
f(x)=\left(\sum_{i=1}^{N s} a_{i} y_{i} \Phi\left(s_{i}\right)\right) \Phi(x)+b=\sum_{i=1}^{N s} a_{i} y_{i} K\left(s_{i}, x\right)+b
$$

What's the problem from a computational point of view?

Speedup SVM Prediction

- Remove some redundant support vectors.
- Burges C.J.C. Simplified support vector decision rules. ICML, 1996
- Osuna E and Girosi F. Reducing the runtime complexity of support vector machines. International Conference on Pattern Recognition, 1998.

Kernel Function and Hilbert Space

- Hilbert space is a generalization of Euclidean space.
- It is a linear space, with an inner product define.
- Its inner product can be any inner product, not just scalar dot.

What Conditions Make a Function a Kernel?

- Mercer' s condition

$$
\begin{aligned}
& K(x, y)=\sum_{i} \Phi(x)_{i} \Phi(y)_{i} \Leftrightarrow \int K(x, y) g(x) g(y) d x d y \geq 0 \\
& \text { where } \int g(x)^{2} d x \text { is finite. } g(\mathrm{x}) \text { is any function. }
\end{aligned}
$$

It is hard to check Mercer's condition because it must hold For every g with finite L2 norm.
What happens if one uses a kernel which does not satisfy
Mercer's s condition? Some time QP has no solution. Sometime, there is a solution, but the geometrical interpretation is lacking.

Common Kernels

(1) $K(x, y)=(x \cdot y+1)^{p}$.
p is degree. $\mathrm{p}=1$,
linear kernel.
(2) Gaussian radial basis kernel $\quad K(x, y)=e^{-|x-y|^{2} / 2 \sigma^{2}}$
(3) Hyperbolic Tanh kernel $\quad K(x, y)=\tanh (k x . y-\delta)$

Note: RBF kernel, the weights $\left(\mathrm{a}_{\mathrm{i}}\right)$ and centers $\left(\mathrm{S}_{\mathrm{i}}\right)$ are automatically Learned.
Tanh kernel is equivalent to two-layer neural network, where Number of hidden units is number of support vectors. a_{i} corresponds To the weights of the second layer.

Connection between NN and SVM

Multi-Class SVM

- Most widely used method: one versus all
- Also direct multi-classification using SVM. (K. Crammer and Y. Singer. On the Algorithmic Implementation of Multi-class SVMs, JMLR, 2001)

Global Solutions and Uniqueness

- For SVM optimization, every local solution is global due to the property to the convex objective function.
- The solution is guaranteed to be unique.
- SVM training always finds a global solution is in contrast to the case of neural networks, where many local minima usually exist.

Method of Solution

- The support vector optimization problem can be solved analytically only when the number of training data is very small, or for the separable case when it is known beforehand which of the training data become support vectors.
- For the general analytic case, the worst case computational complexity is of order $\mathrm{N}_{\mathrm{s}}{ }^{3}$ (inversion of Hessian), where N_{s} is the number of support vectors.

Method of Solution

- In most real world cases, the quadratic optimization problem must be solved numerically.
- For small problems, any general purpose optimization package that solves linearly constrained convex quadratic programs will do. (a good survey: More and Wright, 1993)
- For large problems, divide and conquer technique is usually used, e.g. Sequential Minimal Optimization algorithm (J. Platt, 1998, http://research.microsoft.com/usersjplatt/ smo.html)

Time Complexity of Testing

- $\mathrm{O}\left(\mathrm{MN}_{\mathrm{s}}\right) . \mathrm{M}$ is the number of operations required to evaluate the kernel. For RBF kernel, M is $\mathrm{O}\left(\mathrm{d}_{\mathrm{L}}\right)$. N_{s} is the number of support vectors.

A Bound from Leave-One-Out

- $\mathrm{E}[\mathrm{P}($ error $)]=\mathrm{N}_{\mathrm{s}} /$ number of training samples, where N_{s} is the number of support vectors
- What does this tells us?

Limitations and Extensions

- Choice of kernel. Once the kernel is fixed, SVM classifiers have only one user-chosen parameter (the error penalty) and kernel parameters
- Speed in test phase (Burges 96, Burges and Scholkopf 97, speed up 50 times)
- Challenge: Training for very large datasets (millions of data points)

SVM Tools

- SVM-light: http://svmlight.joachims.org/
- LIBSVM:
http://www.csie.ntu.edu.tw/~cjlin/libsvm/
- Gist: http://bioinformatics.ubc.ca/gist/
- More:
http://www.kernel-machines.org/
software.html

Acknowledgements

- Chris Burges's excellent tutorial. A Tutorial on Support Vector Machines for Pattern Recognition. Data Mining and Knowledge Discovery, 1998.
- Andrew Moore’ s SVM Slides.

