
Statistical Machine Learning
Methods for Bioinformatics

III. Neural Network Theory

Jianlin Cheng, PhD
Department of Computer Science

University of Missouri
2012

Free for Academic Use. Copyright @ Jianlin Cheng & original sources of some materials.

Classification Problem

Legs weight size …. Feature m

4 100
80 0.1

Category / Label

Mammal
Bug

Input Output

Question: How to automatically predict output given input?
Idea: Learn from known examples and generalize to unknown ones.

Data Driven Machine Learning
Approach

Data with
Labels

Key idea: Learn from known data and Generalize to unseen data

Input: words of news
Output: politics, sports, entertainment,
…

Model: Map
Input to Output

Training
Data

Test Data

Training

Test

Training: Build a model (classifier)
Test: Test the model

Prediction

New
Data Split

Outline
•  Introduction
•  Linear regression
•  Linear Discriminant function (classification)
•  One layer neural network / perceptron
•  Multi-layer network
•  Recurrent neural network
•  Prevent overfitting
•  Speedup learning

Machine Learning

•  Supervised learning (training with labeled data),
un-supervised learning (clustering un-labeled
data), and semi-supervised learning (use both
labeled and unlabeled data)

•  Supervised learning: classification and regression
•  Classification: output is discrete value
•  Regression: output is real value

Learning Example: Recognize
Handwriting

Classification: recognize each number
Clustering: cluster the same numbers together
Regression: predict the index of Dow-Jones

Neural Network

•  Neural Network can do both supervised
learning and un-supervised learning

•  Neural Network can do both regression and
classification

•  Neural Network has both statistical and
artificial intelligence roots

Roots of Neural Network

•  Artificial intelligence root (neuron science)
•  Statistical root (linear regression,

generalized linear regression, discriminant
analysis. This is our focus.)

A Typical Cortical Neuron

Collect chemical signals
Axon: generate
Potentials (Fire/not Fire)

Synapse: control
release chemical
transmitters.

Junction
between
neurons

Dentritic tree
1011 neurons

A Neural Model

Input

weight

Adapted from http://www.doc.ic.ac.uk/~nd/surprise_96/journal/vol4/cs11/report.html

Activation
Activation function

Statistics Root: Linear Regression
Example

Adapted from A. Moore, 2003

X: input or predictor
Y: output or response
Goal: learn a linear function E[y|x] = wx + b.

Fish length vs. weight?

Linear Regression

Definition of a linear model:
•  y = wx + b + noise.
•  noise ~ N (0, σ2), assume σ is a constant.
•  y ~ N(wx + b, σ2)
•  Estimate expected value of y given x (E[y|x]

= wx +b) .
•  Given a set of data (x1, y1), (x2, y2), …, (xn,

yn), to find the optimal parameters w and b.

Objective Function

•  Least square error:
•  Maximum Likelihood:
•  Minimizing square

error is equivalent to
maximizing likelihood

∏
=

N

i
ii bwxyP

1

),,|(

∑
=

−−
N

i
ii bwxy

1

2)(

∏
=

N

i
ii bwxyP

1

),,|(
2

2

2
)(

1
22

1 σ

πσ

bwxyN

i

ii

e
−−

−

=
∏

∏
=

−
N

i
ii bwxyP

1

)),,|(log(

Maximize Likelihood

Minimize negative log-likelihood:

)
2

)()2log(()
2
1log(2

2

1

22
)(

1
2

2

2

σ
πσ

πσ
σ bwxye ii

N

i

bwxyN

i

ii −−
−−−=− ∑∏

=

−−
−

=

)
2

)()2(log(2

2

1

2

σ
πσ

bwxy ii
N

i

−−
+∑

=

=

=

=

Note: σ is a constant.

1-Variable Linear Regression

∑
=

−−
N

i
ii bwxy

1

2)(

0)(2)(*)(2
1 1

2 =++−=−−−=
∂

∂
∑ ∑
= =

N

i

N

i
iiiiiii bxwxxyxbwxy

W
E

0)(2)1(*)(2
1 1

=++−=−−−=
∂

∂
∑ ∑
= =

N

i

N

i
iiii bwxybwxy

b
E

Minimize E =
Error

w

N

wxy
b

N

i
ii∑

=

−
= 1

)(

∑

∑

=

=

−

−
= N

i
i

N

i
ii

xxNx

yxNyx
w

1

2

1

Linear Regression Demo

http://www.calpoly.edu/~srein/StatDemo/All.html

Multivariate Linear Regression

•  How about multiple predictors: (x1, x2, …,
xd).

•  y = w0 + w1x1 + w2x2 + … + wdxd + ε

•  For multiple data points, each data point is
represented as (yi, xi), xi consists of d
predictors (xi1, xi2, …, xid).

•  yi = w0 + w1xi1 + w2xi2 + … + wdxid + ε

A Motivating Example
•  Each day you get lunch at the cafeteria.

–  Your diet consists of fish, chips, and beer.
–  You get several portions of each

•  The cashier only tells you the total price of the meal
–  After several days, you should be able to figure out the price of

each portion.
•  Each meal price gives a linear constraint on the prices of the

portions:

beerbeerchipschipsfishfish wxwxwxprice ++=

G. Hinton, 2006

Matrix Representation
n data points, d dimension

ε+

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

×

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

=

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

dndn

d

d

n w

w
w

xx

xx
xx

y

y
y

...
...1

........
...1
...1

...
1

0

1

221

111

2

1

n*1 n*(d+1) (d+1)*1

Y = XW + ε Matrix Representation:

Multivariate Linear Regression

•  Goal: minimize square error = (Y-XW)T(Y-
XW) = YTY -2XTWY + WTXTXW

•  Derivative: -2XTY + 2XTXW = 0
•  W = (XTX)-1XTY
•  Thus, we can solve linear regression using

matrix inversion, transpose, and
multiplication.

Difficulty and Generalization

•  Numerical computation issue. (a lot data
points. Matrix inversion is impossible.)

•  Singular matrix (determinant is zero) : no
inversion

•  How to handle non-linear data?
•  Turns out neural network and its iterative

learning algorithm can address this problem.

Graphical Representation:
One Layer Neural Network for Regression

f

o Target: y

Input Unit 1 x1
xd ……

w0 w1 wd

Output Unit

a =Σwixi Activation

Activation function f is used
to convert a to output. Here
it is a linear function. o = a.

Gradient Descent Algorithm

•  For a data x = (x1,x2,…xd), error E = (y – o)2 =
(y – w0x0 - w1x1 - … - wdxd)2

•  Partial derivative: ii
ii

w xoyxoy
w
ooy

w
EE

i
)(2))((2)(2| −−=−−=

∂

∂
−=

∂

∂
=∇

0<
∂

∂

w
E

0>
∂

∂

w
E

Error

w

Minima

Update rule:

i
t
i

t
i xoyww)()()1(−+=+ η

Famous Delta Rule

Algorithm of One-Layer Regression
Neural Network

•  Initialize weights w (small random numbers)
•  Repeat
 Present a data point x = (x1,x2,…,xd) to the network

and compute output o.
 if y > o, add ηxi to wi.

 if y < o, add -ηxi to wi.
•  Until Σ(yk-ok)2 is zero or below a threshold or

reaches the predefined number of iterations.

Comments: online learning: update weight for every x. batch learning:
update weight every batch of x (i.e. Σηxi).

Graphical Representation:
One Layer Neural Network for Regression

out

O Target: y

Input Unit 1 x1
xd ……

w0 w1
wd

Output Unit

a =Σwixi Activation

Output

O = f(Σwixi), f is activation
 function.

What about Hyperbolic Tanh
Function for Output Unit

•  Can we use activation function
other than linear function?

•  For instance, if we want to
limit the output to be in [-1,
+1], we can use hyperbolic
Tanh function:

•  The only thing to change is to
use the new gradient.

xx

xx

ee
ee
−

−

+

−

Two-Category Classification

•  Two classes: C1 and C2.
•  Input feature vector: x.
•  Define a discriminant function y(x) such

that x is assigned to C1 if y(x) > 0 and to
class C2 if y(x) < 0.

•  Linear discriminant function: y(x) = wTx +
w0 = wTx, where x = (1, x).

•  w: weight vector, w0: bias.

A Linear Decision Boundary in 2-D
Input Space

x1

x2

y(x) = wTx + w0 = 0

w

y(x) = wTx = 0
l = |wTx| / ||w|| = w0 / ||w||

w: orientation of decision boundary
w0: defines the position of the plan
in terms of its perpendicular distance
from the origin.

Graphical Representation: Perceptron, One-
Layer Classification Neural Network

out

y=g(wTx)
wTx > 0: +1, class 1
wTx < 0: -1, class 2

Input Unit 1 x1
xd ……

w0 w1
wd

wTx = Σwixi Activation

Activation /
Transfer function (threshold function)

Perceptron Criterion

•  Minimize classification error
•  Input data (vector): x1, x2, …, xN and

corresponding target value t1, t2, …, tN.
•  Goal: for all x in C1 (t = 1), wTx > 0, for all x in

C2 (t = -1), wTx < 0. Or for all x: wTxt > 0.
•  Error: Eperc (w) = . M is the set of

misclassified data points.
∑
∈

−
Mx

nnT

n

txw

Gradient Descent

0<
∂

∂

w
E

0>
∂

∂

w
E

Error

W

Minima

w = w -
w
E
∂

∂ × η = w + η xntn

For each misclassified data point, adjust weight as follows:

Perceptron Algorithm
•  Initialize weight w
•  Repeat
 For each data point (xn, tn)
 Classify each data point using current w.
 If wTxntn > 0 (correct), do nothing
 If wTxntn < 0 (wrong), wnew = w + ηxntn

 w = wnew

•  Until w is not changed (all the data will be
separated correctly, if data is linearly separable) or
error is below a threshold.

Rosenblatt, 1962

Perceptron Convergence Theorem

•  For any data set which is linearly separable,
the algorithm is guaranteed to find a
solution in a finite number of steps
(Rosenblatt, 1962; Block 1962; Nilsson,
1965; Minsky and Papert 1969; Duda and
Hart, 1973; Hand, 1981; Arbib, 1987; Hertz
et al., 1991)

Multi-Class Linear Discriminant
Function

•  c classes. Use one discriminant function
yk(x) = wk

Tx + wk0 for each class Ck.
•  A new data point x is assigned to class Ck if

yk(x) > yj(x) for all j ≠ k.

One-Layer Multi-Class Perceptron

……

……

y1
yc

x0 = 1 x1
xd

w10 w11 w1d

wc0

wc1

wcd

How to learn it?

Muti-Threshold Perceptron
Algorithm

•  Initialize weight w
•  Repeat
 Present data point x to the network, if

classification is correct, do nothing.
 if x is wrongly classified to Ci instead of true class

Cj, adjust weights connected to Ci and Cj as
follows.

 Add –ηxk to wik. Add ηxk to wjk
•  Until misclassification is zero or below a

threshold.
Note: may also Add –ηxk to wlk for any l, yl > yj.

Limitation of the Perceptron

•  Can’t not separate non-linear data
completely.

•  Or can’t not fit non-linear data well.
•  Two directions to attack the problem: (1)

extend to multi-layer neural network (2)
map data into high dimension (SVM
approach)

Exclusive OR Problem

(0,0)

C1

C1

C2

C2

(1,0)

(0,1) (1,1)
Perceptron (or one-layer
neural network) can not
learn a function to separate
the two classes perfectly.

Logistic Regression

•  Estimate posterior distribution: P(C1|x)
•  Dose – response estimation: in bioassay, the

relation between dose level and death rate
P(death | x).

•  We can not use 0/1 hard classification.
•  We can not use unconstrained linear

regression because P(death | x) must be in
[0,1]?

Logistic Regression and One Layer
Neural Network With Sigmoid

Function.
wxe−+1

1

ze−+1
1

P(death | x) =

(Sigmoid function)

……

1 x1 xd

Activation z = Σwixi

y
Target: t (0 or 1)

Activation
Function:
sigmoid

How to Adjust Weights?

•  Minimize error E=(t-y)2. For simplicity, we derive
the formula for one data point. For multiple data
points, just add the gradients together.

i
ii

xyyyt
w
z

z
y

y
E

w
E)1()(2 −−−=

∂

∂

∂

∂

∂

∂
=

∂

∂

Notice:)1()
1
11(

1
1)

1
1(

yy
eez

e
z
y

zz

z
−=

+
−

+
=

∂
+

∂
=

∂

∂
−−

−

Error Function and Learning

•  Least Square
•  Maximum likelihood: output y is the probability of

being in C1 (t=1). 1- y is the probability of being in
C2. So what is probability of P(t|x) = yt(1-y)1-t.

•  Maximum likelihood is equivalent to minimize
negative log likelihood:

 E = -log P(t|x) = -tlogy - (1-t)log(1-y). (cross
entropy)

How to Adjust Weights?

•  Minimize error E= -tlogy - (1-t)log(1-y). For
simplicity, we derive the formula for one data
point. For multiple data points, just add the
gradients together.

ii
ii

xtyxyy
yy
ty

w
z

z
y

y
E

w
E)()1(

)1(
−=−

−

−
=

∂

∂

∂

∂

∂

∂
=

∂

∂

)1(1
1)1(

1
1

yy
ty

y
t

y
t

y
t

y
t

y
E

−

−
=

−

−
−−=−

−

−
−−=

∂

∂

i
t
i

t
i xytww)()1(−+=+ ηUpdate rule:

Multi-Class Logistic Regression
•  Transfer (or activation) function is normalized

exponentials (or soft max)

∑
=

=
d

j
jiji xwa

0

……

……

y1
yc

x0 x1 xd

w10 w11 w1d

wc0

wc1

w1d

∑
=

= c

j

a

a

i
j

i

e

ey

1

Activation to Node Oi

Activation Function

How to learn this network? Once again, gradient descent.

Questions?

•  Is logistic regression a linear regression?
•  Can logistic regression handle non-linearly

separable data?
•  How to introduce non-linearity?

Support Vector Machine Approach

x1

x2

C1 C2

Map data point into high dimension, e.g.
adding some non-linear features.

How about we augument feature
into three dimension
(x1, x2, x1

2+x2
2).

All data points in class C2 have a
larger value for the third feature
Than data points in C1. Now
data is linearly separable.

x1
2+x2

2 = 10

Neural Network Approach
•  Multi-Layer Perceptrons
•  In addition to input nodes and output nodes, some

hidden nodes between input / output nodes are
introduced.

•  Use hidden units to learn internal features to
represent data. Hidden nodes can learn internal
representation of data that are not explicit in the
input features.

•  Transfer function of hidden units are non-linear
function

Multi-Layer Perceptron
•  Connections go from lower layer to higher layer.

(usually from input layer to hidden layer, to output layer)
•  Connection between input/hidden nodes, input/output

nodes, hidden/hidden nodes, hidden/output nodes are
arbitrary as long as there is no loop (must be feed-
forward).

•  However, for simplicity, we usually only allow
connection from input nodes to hidden nodes and from
hidden nodes to output nodes. The connections with a
layer are disallowed.

•  Two-layer neural network (one hidden and one
output) with non-linear activation function is a
universal function approximator (see Baldi and
Brunak 2001 or Bishop 96 for the proof), i.e. it
can approximate any numeric function with
arbitrary precision given a set of appropriate
weights and hidden units.

•  Thus, we usually use two-layer (or three-layer if
you count the input as one layer) neural network.
Increasing the number of layers is occasionally
helpful.

Multi-Layer Perceptron

Two-Layer Neural Network

∑
=

M

j
jkj zw

0

∑
=

d

i
iji xw

0

…

…

…

y1 yc

x1 xi
xd

yk

z1 zj
zM

wji w11 w1i

wkj

Output
Activation function: f (linear,sigmoid, softmax)
Activation of unit ak:

Activation function: g (linear, tanh, sigmoid)

Activation of unit aj:

∑ ∑
= =

×=
M

j

d

i
ijikjk xwgwfy

0 0
))((

Z0=1

1

x0

Adjust Weights by Training

•  How to adjust weights?
•  Adjust weights using known examples

(training data) (x1,x2,x3,…,xd,t).
•  Try to adjust weights so that the difference

between the output of the neural network y
and t (target) becomes smaller and smaller.

•  Goal is to minimize Error (difference) as we
did for one layer neural network

Adjust Weights using Gradient
Descent (Back-Propagation)

Data: (x1,x2,x3,…,xn) target t.
Known:

Unknown weights w:
 w11, w12,…..

Randomly initialize weights
Repeat
 for each example, compute output y

 calculate error E = (y-t)2

 compute the derivative of E over w: dw=
 wnew = wprev – η * dw

Until error doesn’t decrease or max num of iterations

Error

W

Note: η is learning rate or step size.

Minima

w
E
∂

∂

Insights
•  We know how to compute the derivative of one

layer neural network? How to change weights
between input layer and hidden layer?

•  Should we compute the derivative of each w
separately or we can reuse intermediate results?
We will have an efficient back-propagation
algorithm.

•  We will derive learning for one data example. For
multiple examples, we can simply add the
derivatives from them for a weight parameter
together.

Neural Network Learning: Two
Processes

•  Forward propagation: present an example
(data) into neural network. Compute
activation into units and output from units.

•  Backward propagation: propagate error
back from output layer to the input layer
and compute derivatives (or gradients).

Forward Propagation

∑
=

M

j
jkj zw

1

∑
=

d

i
iji xw

1

…

…

…

y1 yc

x1 xi xd

yk

z1 zj
zM

wji w11 w1i

wkj

Output
Activation function: f (linear,sigmoid, softmax)

Activation of unit ak:

Activation function: g (linear, tanh, sigmoid)

Activation of unit aj:

zj

yk

Time complexity?
O(dM + MC) = O(W)

Backward Propagation

∑
=

M

j
jkj zw

1

∑
=

d

i
iji xw

1

∑
=

−=
C

k
kk tyE

1

2)(
2
1

…

…

…

y1 yc

x1 xi
xd

yk

z1 zj
zM

wji w11 w1i

wkj

f

ak:

g

aj:

Time complexity?
O(CM+Md) = O(W)

kk
k

ty
y
E

−=
∂

∂

kkkk
k

k

kk

afty
a
y

y
E

a
E

δ=−=
∂

∂

∂

∂
=

∂

∂)(')(

jk
kj

k

kkj

z
w
a

a
E

w
E

δ=
∂

∂

∂

∂
=

∂

∂

j

C

k
jkjk

c

k j

j

j

k

k

k

kj

agw
a
z

z
a

a
y

y
E

a
E

δδ ==
∂

∂

∂

∂

∂

∂

∂

∂
=

∂

∂
∑∑
== 11

)('

ij
j

jji

x
wji
a

a
E

w
E

δ=
∂

∂

∂

∂
=

∂

∂

If no back-propagation, time
complexity is: (MdC+CM)

Example 2)(
2
1 tyE −=

)(ty
a
y

y
E

a
E

kk

−=
∂

∂

∂

∂
=

∂

∂
=δ

j
j

z
w
E

δ=
∂

∂

∑
=

M

i
iji xw

1
…

…

x1 xi xd

y

z1 zj zM

wji w11 w1i

wj

f linear function

ak:

g is sigmoid:

aj:

)1()()(' jjjjjj zzwtyagw −−== δδ

ijjjij
ji

xzzwtyx
w
E)1()(−−==

∂
∂

δ

Algorithm

•  Initialize weights w
•  Repeat
 For each data point x, do the following:
 Forward propagation: compute outputs and activations
 Backward propagation: compute errors for each output units

and hidden units. Compute gradient for each weight.
 Update weight w = w - η (∂E / ∂w)

•  Until a number of iterations or errors drops below a

threshold.

Implementation Issue
•  What should we store?
•  An input vector x of d dimensions
•  A M*d matrix {wji} for weights between input and hidden

units
•  An activation vector of M dimensions for hidden units
•  An output vector of M dimensions for hidden units
•  A C*M matrix {wkj} for weights between hidden and

output units
•  An activation vector of C dimensions for output units
•  An output vector of C dimensions for output units
•  An error vector of C dimensions for output units
•  An error vector of M dimensions for hidden units

Recurrent Network

…

…

…

y1 yc

x1 xi
xd

yk

z1 zj
zM

wji w11 w1i

wkj

w

Forward:
At time 1: present X1, 0
At time 2: present X2, y1
……

Backward:
Time t: back-propagate
Time t-1: back-propagate with
Output errors and errors from previous step

Recurrent Neural Network

1.  Recurrent network is essentially a series of feed-forward
neural networks sharing the same weights

2. Recurrent network is good for time series data and sequence
data such as biological sequences.

Overfitting
•  The training data contains information about the

regularities in the mapping from input to output.
But it also contains noise
–  The target values may be unreliable.
–  There is sampling error. There will be accidental

regularities just because of the particular training cases
that were chosen.

•  When we fit the model, it cannot tell which
regularities are real and which are caused by
sampling error.
–  So it fits both kinds of regularity.
–  If the model is very flexible it can model the sampling

error really well. This is a disaster.

G. Hinton, 2006

Overfitting

Good fitting

Example of Overfitting and Good Fitting

Overfitting function can not generalize well to unseen data.

Preventing Overfitting

•  Use a model that has the right capacity:
–  enough to model the true regularities
–  not enough to also model the spurious regularities

(assuming they are weaker).
•  Standard ways to limit the capacity of a neural

net:
– Limit the number of hidden units.
– Limit the size of the weights.
– Stop the learning before it has time to overfit.

G. Hinton, 2006

Limiting the Size of the Weights

•  Weight-decay involves
adding an extra term to
the cost function that
penalizes the squared
weights.
–  Keeps weights small

unless they have big error
derivatives.

The image cannot be displayed. Your computer may not have enough memory to open the image, or the image may have been
corrupted. Restart your computer, and then open the file again. If the red x still appears, you may have to delete the image
and then insert it again.

The image cannot be displayed. Your computer may not have enough memory to open the image, or the image may have been
corrupted. Restart your computer, and then open the file again. If the red x still appears, you may have to delete the image
and then insert it again.

i
i

i

i
ii

i
i

w
Ew

w
Cwhen

w
w
E

w
C

wEC

∂

∂
−==

∂

∂

+
∂

∂
=

∂

∂

∑+=

λ

λ

λ

1

2
2

,0

w

C

G. Hinton, 2006

The Effect of Weight-Decay
•  It prevents the network from using weights that it

does not need.
–  This can often improve generalization a lot.
–  It helps to stop it from fitting the sampling error.
–  It makes a smoother model in which the output changes

more slowly as the input changes.

•  If the network has two very similar inputs it
prefers to put half the weight on each rather than
all the weight on one.

w/2 w/2 w 0

G. Hinton, 2006

Deciding How Much to Restrict the
Capacity

•  How do we decide which limit to use and how
strong to make the limit?
–  If we use the test data we get an unfair prediction

of the error rate we would get on new test data.
– Suppose we compared a set of models that gave

random results, the best one on a particular dataset
would do better than chance. But it wont do better
than chance on another test set.

•  So use a separate validation set to do model
selection.

G. Hinton, 2006

Using a Validation Set
•  Divide the total dataset into three subsets:

– Training data is used for learning the parameters of
the model.

– Validation data is not used of learning but is used
for deciding what type of model and what amount
of regularization works best.

– Test data is used to get a final, unbiased estimate
of how well the network works. We expect this
estimate to be worse than on the validation data.

•  We could then re-divide the total dataset to get
another unbiased estimate of the true error rate.

G. Hinton, 2006

Preventing Overfitting by Early
Stopping

•  If we have lots of data and a big model, its very expensive
to keep re-training it with different amounts of weight
decay.

•  It is much cheaper to start with very small weights and let
them grow until the performance on the validation set
starts getting worse (but don’t get fooled by noise!)

•  The capacity of the model is limited because the weights
have not had time to grow big.

G. Hinton, 2006

Why Early Stopping Works
•  When the weights are very

small, every hidden unit is
in its linear range.
–  So a net with a large layer

of hidden units is linear.
–  It has no more capacity than

a linear net in which the
inputs are directly
connected to the outputs!

•  As the weights grow, the
hidden units start using
their non-linear ranges so
the capacity grows.

outputs

inputs

G. Hinton, 2006

Combining Networks
•  When the amount of training data is limited, we

need to avoid overfitting.
–  Averaging the predictions of many different networks is

a good way to do this.
–  It works best if the networks are as different as

possible.
–  Combining networks reduces variance

•  If the data is really a mixture of several different
“regimes” it is helpful to identify these regimes
and use a separate, simple model for each regime.
–  We want to use the desired outputs to help cluster cases

into regimes. Just clustering the inputs is not as
efficient.

G. Hinton, 2006

How the Combined Predictor
Compares with the Individual

Predictors
•  On any one test case, some individual predictors will

be better than the combined predictor.
–  But different individuals will be better on different cases.

•  If the individual predictors disagree a lot, the
combined predictor is typically better than all of the
individual predictors when we average over test
cases.
–  So how do we make the individual predictors disagree?

(without making them much worse individually).

G. Hinton, 2006

Ways to Make Predictors Differ
•  Rely on the learning algorithm getting stuck in a

different local optimum on each run.
–  A dubious hack unworthy of a true computer scientist (but

definitely worth a try).
•  Use lots of different kinds of models:

–  Different architectures
–  Different learning algorithms.

•  Use different training data for each model:
–  Bagging: Resample (with replacement) from the training

set: a,b,c,d,e -> a c c d d
–  Boosting: Fit models one at a time. Re-weight each training

case by how badly it is predicted by the models already
fitted.

•  This makes efficient use of computer time because it does not
bother to “back-fit” models that were fitted earlier.

G. Hinton, 2006

How to Speedup Learning?
The Error Surface for a Linear Neuron

•  The error surface lies in a space with a horizontal axis
for each weight and one vertical axis for the error.
–  It is a quadratic bowl.

•  i.e. the height can be expressed as a function of the weights without
using powers higher than 2. Quadratics have constant curvature
(because the second derivative must be a constant)

–  Vertical cross-sections are parabolas.
–  Horizontal cross-sections are ellipses.

E w1

w2 w

G. Hinton, 2006

Convergence Speed

•  The direction of steepest
descent does not point at
the minimum unless the
ellipse is a circle.
–  The gradient is big in the

direction in which we
only want to travel a
small distance.

–  The gradient is small in the
direction in which we want
to travel a large distance.

 This equation is sick. The
RHS needs to be multiplied
by a term of dimension
w^2 to make the
dimensions balance.

i
i w

Ew
∂

∂
−=Δ ε

G. Hinton, 2006

How the Learning Goes Wrong

•  If the learning rate is big,
it sloshes to and fro across
the ravine. If the rate is too
big, this oscillation
diverges.

•  How can we move quickly
in directions with small
gradients without getting
divergent oscillations in
directions with big
gradients?

E

w

G. Hinton, 2006

Five Ways to Speed up Learning
•  Use an adaptive global learning rate

–  Increase the rate slowly if its not diverging
–  Decrease the rate quickly if it starts diverging

•  Use separate adaptive learning rate on each connection
–  Adjust using consistency of gradient on that weight axis

•  Use momentum
–  Instead of using the gradient to change the position of the weight
“particle”, use it to change the velocity.

•  Use a stochastic estimate of the gradient from a few cases
–  This works very well on large, redundant datasets.

•  Don’t go in the direction of steepest descent.
–  The gradient does not point at the minimum.

•  Can we preprocess the data or do something to the gradient so that we
move directly towards the minimum?

G. Hinton, 2006

The Momentum Method
 Imagine a ball on the error

surface with velocity v.
–  It starts off by following the

gradient, but once it has
velocity, it no longer does
steepest descent.

•  It damps oscillations by
combining gradients with
opposite signs.

•  It builds up speed in directions
with a gentle but consistent
gradient.

•  On an inclined plane it reaches
a terminal velocity.

⎟
⎠

⎞
⎜
⎝

⎛
∂

∂
−

−
=∞

∂

∂
−−Δ=

∂

∂
−−=

=Δ

∂

∂
−−=

w
Ev

t
w
Etw

t
w
Etv

tvtw

t
w
Etvtv

ε
α

εα

εα

εα

1
1)(

)()1(

)()1(

)()(

)()1()(

G. Hinton, 2006

How to Initialize weights?

•  Use small random
numbers. For instance
small numbers
between [-0.2, 0.2].

•  Some numbers are
positive and some are
negative.

•  Why are the initial
weights should be
small?

wxe−+1
1

Saturated

Neural Network Software

•  Weka (Java): http://www.cs.waikato.ac.nz/
ml/weka/

•  NNClass and NNRank (C++): http://

www.eecs.ucf.edu/~jcheng/cheng_software.html
 J. Cheng, Z. Wang, G. Pollastri. A Neural Network

Approach to Ordinal Regression. IJCNN, 2008

NNClass Demo

•  Abalone data:
http://archive.ics.uci.edu/ml/datasets/Abalone

Abalone (from Spanish Abulón) are a group of shellfish (mollusks) in the
family Haliotidae and the Haliotis genus. They are marine snails

