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Classification Problem 

Legs weight size …. Feature m 

4  100 
80  0.1 

Category / Label 

Mammal 
Bug 

Input Output 

Question: How to automatically predict output given input? 
Idea: Learn from known examples and generalize to unknown ones. 



Data Driven Machine Learning 
Approach 

Data with 
Labels 

Key idea: Learn from known data and Generalize to unseen data  

Input: words of news 
Output: politics, sports, entertainment, 
… 

Model: Map 
Input to Output 

 

Training 
Data 

Test Data 

Training 

Test 

Training: Build a model (classifier) 
Test: Test the model  

Prediction 

New 
Data Split 



Outline 
•  Introduction 
•  Linear regression 
•  Linear Discriminant function (classification) 
•  One layer neural network / perceptron 
•  Multi-layer network 
•  Recurrent neural network 
•  Prevent overfitting 
•  Speedup learning 



Machine Learning 

•  Supervised learning (training with labeled data), 
un-supervised learning (clustering un-labeled 
data), and semi-supervised learning (use both 
labeled and unlabeled data) 

•  Supervised learning: classification and regression 
•  Classification: output is discrete value 
•  Regression: output is real value 



Learning Example: Recognize 
Handwriting 

Classification: recognize each number 
Clustering: cluster the same numbers together 
Regression: predict the index of Dow-Jones 



Neural Network 

•  Neural Network can do both supervised 
learning and un-supervised learning 

•  Neural Network can do both regression and 
classification 

•  Neural Network has both statistical and 
artificial intelligence roots 



Roots of Neural Network 

•  Artificial intelligence root (neuron science) 
•  Statistical root (linear regression, 

generalized linear regression, discriminant 
analysis. This is our focus.) 



A Typical Cortical Neuron 

Collect chemical signals 
Axon: generate  
Potentials (Fire/not Fire) 

Synapse: control 
release chemical 
transmitters. 

Junction 
between  
neurons 

Dentritic tree 
1011 neurons 



A Neural Model 

Input 

weight 

Adapted from http://www.doc.ic.ac.uk/~nd/surprise_96/journal/vol4/cs11/report.html 

Activation 
Activation function 



Statistics Root: Linear Regression 
Example 

Adapted from A. Moore, 2003 

X: input or predictor 
Y: output or response 
Goal: learn a linear function E[y|x] = wx + b.  

Fish length vs. weight? 



Linear Regression 

Definition of a linear model:  
•  y = wx + b + noise.  
•  noise ~ N (0, σ2), assume σ is a constant. 
•  y ~ N(wx + b, σ2) 
•  Estimate expected value of y given x (E[y|x] 

= wx +b) .  
•  Given a set of data (x1, y1), (x2, y2), …, (xn, 

yn), to find the optimal parameters w and b.  



Objective Function 

•  Least square error: 
•  Maximum Likelihood: 
•   Minimizing square 

error is equivalent to 
maximizing likelihood 

∏
=

N

i
ii bwxyP

1

),,|(

∑
=

−−
N

i
ii bwxy

1

2)(



∏
=

N

i
ii bwxyP

1

),,|(
2

2

2
)(

1
22

1 σ

πσ

bwxyN

i

ii

e
−−

−

=
∏

∏
=

−
N

i
ii bwxyP

1

)),,|(log(

Maximize Likelihood 

Minimize negative log-likelihood:  
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Note: σ is a constant. 



1-Variable Linear Regression 
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Linear Regression Demo 

http://www.calpoly.edu/~srein/StatDemo/All.html 



Multivariate Linear Regression 

•  How about multiple predictors: (x1, x2, …, 
xd).  

•  y = w0 + w1x1 +  w2x2 + … + wdxd + ε 

•  For multiple data points, each data point is 
represented as (yi, xi), xi consists of d 
predictors (xi1, xi2, …, xid). 

•  yi = w0 + w1xi1 +  w2xi2 + … + wdxid + ε 



A Motivating Example 
•  Each day you get lunch at the cafeteria. 

–  Your diet consists of fish, chips, and beer. 
–  You get several portions of each 

•  The cashier only tells you the total price of the meal 
–  After several days, you should be able to figure out the price of 

each portion. 
•  Each meal price gives a linear constraint on the prices of the 

portions: 
 

beerbeerchipschipsfishfish wxwxwxprice ++=

G. Hinton, 2006 



Matrix Representation 
n data points, d dimension 
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Y    =    XW + ε Matrix Representation:  



Multivariate Linear Regression 

•  Goal: minimize square error = (Y-XW)T(Y-
XW) = YTY -2XTWY + WTXTXW 

•  Derivative:  -2XTY + 2XTXW = 0 
•  W = (XTX)-1XTY 
•  Thus, we can solve linear regression using 

matrix inversion, transpose, and 
multiplication.  



Difficulty and Generalization 

•  Numerical computation issue. (a lot data 
points. Matrix inversion is impossible.) 

•  Singular matrix (determinant is zero) : no 
inversion 

•  How to handle non-linear data? 
•  Turns out neural network and its iterative 

learning algorithm can address this problem.  



Graphical Representation: 
One Layer Neural Network for Regression 

f 

o Target: y 

Input Unit  1 x1 
xd …… 

w0 w1 wd 

Output Unit  

a =Σwixi Activation 

Activation function f is used 
to convert a to output. Here 
it is a linear function. o = a.  



Gradient Descent Algorithm 

•  For a data x = (x1,x2,…xd), error E = (y – o)2 = 
(y – w0x0 - w1x1 - … - wdxd)2 

•  Partial derivative:  ii
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Algorithm of One-Layer Regression 
Neural Network 

•  Initialize weights w (small random numbers) 
•  Repeat 
   Present a data point x = (x1,x2,…,xd) to the network 

and compute output o. 
   if y > o, add ηxi to wi. 

   if y < o, add -ηxi to wi.   
•  Until Σ(yk-ok)2 is zero or below a threshold or 

reaches the predefined number of iterations.  

Comments: online learning: update weight for every x. batch learning: 
update weight every batch of x  (i.e. Σηxi ).  



Graphical Representation: 
One Layer Neural Network for Regression 

out 

O Target: y 

Input Unit  1 x1 
xd …… 

w0 w1 
wd 

Output Unit  

a =Σwixi Activation 

Output 

O = f(Σwixi),  f is activation 
                             function. 



What about Hyperbolic Tanh 
Function for Output Unit 

•  Can we use activation function 
other than linear function?  

•  For instance, if we want to 
limit the output to be in [-1, 
+1], we can use hyperbolic 
Tanh function: 

•  The only thing to change is to 
use the new gradient. 
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Two-Category Classification 

•  Two classes: C1 and C2.  
•  Input feature vector: x.  
•  Define a discriminant function y(x) such 

that x is assigned to C1 if y(x) > 0 and to 
class C2 if y(x) < 0. 

•  Linear discriminant function: y(x) = wTx + 
w0 = wTx, where x = (1, x).  

•  w: weight vector, w0: bias.  



A Linear Decision Boundary in 2-D 
Input Space 

x1 

x2 

y(x) = wTx + w0 = 0 

w 

y(x) = wTx = 0 
l = |wTx| / ||w|| = w0 / ||w||  

w: orientation of decision boundary 
w0: defines the position of the plan 
in terms of its perpendicular distance 
from the origin.  



Graphical Representation: Perceptron, One-
Layer Classification Neural Network 

out 

y=g(wTx) 
wTx > 0: +1, class 1 
wTx < 0: -1, class 2 

Input Unit  1 x1 
xd …… 

w0 w1 
wd 

wTx = Σwixi Activation 

Activation / 
Transfer function (threshold function) 



Perceptron Criterion 

•  Minimize classification error 
•  Input data (vector): x1, x2, …, xN and 

corresponding target value t1, t2, …, tN. 
•  Goal: for all x in C1 (t = 1), wTx > 0, for all x in 

C2 (t = -1), wTx < 0. Or for all x: wTxt > 0.  
•  Error: Eperc (w) =                     .     M is the set of 

misclassified data points. 
∑
∈

−
Mx

nnT

n

txw



Gradient Descent 
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w = w -  
w
E
∂

∂ × η  = w + η xntn  

For each misclassified data point, adjust weight as follows:  



Perceptron Algorithm 
•  Initialize weight w 
•  Repeat 
   For each data point (xn, tn) 
   Classify each data point using current w. 
   If wTxntn > 0 (correct), do nothing 
   If wTxntn < 0 (wrong), wnew = w + ηxntn 

     w = wnew 

•  Until w is not changed (all the data will be 
separated correctly, if data is linearly separable) or 
error is below a threshold.  

Rosenblatt, 1962 



Perceptron Convergence Theorem 

•  For any data set which is linearly separable, 
the algorithm is guaranteed to find a 
solution in a finite number of steps 
(Rosenblatt, 1962; Block 1962; Nilsson, 
1965; Minsky and Papert 1969; Duda and 
Hart, 1973; Hand, 1981; Arbib, 1987; Hertz 
et al., 1991) 



Multi-Class Linear Discriminant 
Function 

•  c classes. Use one discriminant function 
yk(x) = wk

Tx + wk0 for each class Ck. 
•  A new data point x is assigned to class Ck if 

yk(x) > yj(x) for all j ≠ k.  



One-Layer Multi-Class Perceptron 

…… 

…… 

y1 
yc 

x0 = 1 x1 
xd 

w10 w11 w1d 

wc0 

wc1 

wcd 

How to learn it? 



Muti-Threshold Perceptron 
Algorithm 

•  Initialize weight w 
•  Repeat 
    Present data point x to the network, if 

classification is correct, do nothing. 
    if x is wrongly classified to Ci instead of true class 

Cj, adjust weights connected to Ci and Cj as 
follows.  

   Add –ηxk to wik. Add ηxk to wjk 
•  Until misclassification is zero or below a 

threshold.  
Note: may also Add –ηxk to wlk for any l, yl > yj.  



Limitation of the Perceptron 

•  Can’t not separate non-linear data 
completely.  

•  Or can’t not fit non-linear data well. 
•  Two directions to attack the problem: (1) 

extend to multi-layer neural network (2) 
map data into high dimension (SVM 
approach) 



Exclusive OR Problem 

(0,0) 

C1 

C1 

C2 

C2 

(1,0) 

(0,1) (1,1) 
Perceptron (or one-layer 
neural network) can not 
learn a function to separate 
the two classes perfectly. 



Logistic Regression  

•  Estimate posterior distribution: P(C1|x) 
•  Dose – response estimation: in bioassay, the 

relation between dose level and death rate 
P(death | x).  

•  We can not use 0/1 hard classification.  
•  We can not use unconstrained linear 

regression because P(death | x) must be in 
[0,1]? 



Logistic Regression and One Layer 
Neural Network With Sigmoid 

Function.  
wxe−+1

1

ze−+1
1

P( death | x) =   

(Sigmoid function) 

…… 

1 x1 xd 

Activation z = Σwixi 

y 
Target: t (0 or 1) 

Activation 
Function: 
sigmoid  



How to Adjust Weights? 

•  Minimize error E=(t-y)2. For simplicity, we derive 
the formula for one data point. For multiple data 
points, just add the gradients together.  
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Error Function and Learning 

•  Least Square 
•  Maximum likelihood: output y is the probability of 

being in C1 (t=1). 1- y is the probability of being in 
C2. So what is probability of P(t|x) =  yt(1-y)1-t. 

•  Maximum likelihood is equivalent to minimize 
negative log likelihood:  

    E = -log P(t|x) = -tlogy - (1-t)log(1-y).  (cross 
entropy) 



How to Adjust Weights? 

•  Minimize error E= -tlogy - (1-t)log(1-y). For 
simplicity, we derive the formula for one data 
point. For multiple data points, just add the 
gradients together.  
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Multi-Class Logistic Regression 
•  Transfer (or activation) function is normalized 

exponentials (or soft max) 
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Activation Function 

How to learn this network? Once again, gradient descent. 



Questions? 

•  Is logistic regression a linear regression? 
•  Can logistic regression handle non-linearly 

separable data? 
•  How to introduce non-linearity? 



Support Vector Machine Approach 

x1 

x2 

C1 C2 

Map data point into high dimension, e.g. 
adding some non-linear features. 

How about we augument feature  
into three dimension  
(x1, x2, x1

2+x2
2). 

All data points in class C2 have a 
larger value for the third feature 
Than data points in C1. Now 
data is linearly separable.  

x1
2+x2

2 = 10 



Neural Network Approach 
•  Multi-Layer Perceptrons  
•  In addition to input nodes and output nodes, some 

hidden nodes between input / output nodes are 
introduced. 

•  Use hidden units to learn internal features to 
represent data. Hidden nodes can learn internal 
representation of data that are not explicit in the 
input features.  

•  Transfer function of hidden units are non-linear 
function 

 



Multi-Layer Perceptron 
•  Connections go from lower layer to higher layer.  

(usually from input layer to hidden layer, to output layer) 
•  Connection between input/hidden nodes, input/output 

nodes, hidden/hidden nodes, hidden/output nodes are 
arbitrary as long as there is no loop (must be feed-
forward). 

•  However, for simplicity, we usually only allow 
connection from input nodes to hidden nodes and from 
hidden nodes to output nodes.  The connections with a 
layer are disallowed.  



•  Two-layer neural network (one hidden and one 
output) with non-linear activation function is a 
universal function approximator (see Baldi and 
Brunak 2001 or Bishop 96 for the proof), i.e. it 
can approximate any numeric function with 
arbitrary precision given a set of appropriate 
weights and hidden units.  

•  Thus, we usually use two-layer (or three-layer if 
you count the input as one layer) neural network. 
Increasing the number of layers is occasionally 
helpful.  

Multi-Layer Perceptron 



Two-Layer Neural Network 
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Activation function: f (linear,sigmoid, softmax) 
Activation of unit ak:  

Activation function: g (linear, tanh, sigmoid) 
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Adjust Weights by Training 

•  How to adjust weights? 
•  Adjust weights using known examples 

(training data) (x1,x2,x3,…,xd,t).  
•  Try to adjust weights so that the difference 

between the output of the neural network y 
and t (target) becomes smaller and smaller. 

•  Goal is to minimize Error (difference) as we 
did for one layer neural network 



Adjust Weights using Gradient 
Descent (Back-Propagation) 

Data: (x1,x2,x3,…,xn)   target t. 
Known: 

Unknown weights w: 
     w11, w12,….. 

Randomly initialize weights 
Repeat 
      for each example, compute output y 

 calculate error E = (y-t)2 

 compute the derivative of E over w: dw= 
 wnew = wprev – η * dw 

Until error doesn’t decrease or max num of iterations 

Error 

W 

Note: η is learning rate or step size. 

Minima 

w
E
∂

∂



Insights 
•  We know how to compute the derivative of one 

layer neural network? How to change weights 
between input layer and hidden layer? 

•  Should we compute the derivative of each w 
separately or we can reuse intermediate results? 
We will have an efficient back-propagation 
algorithm.  

•  We will derive learning for one data example. For 
multiple examples, we can simply add the 
derivatives from them for a weight parameter 
together.  



Neural Network Learning: Two 
Processes 

•  Forward propagation: present an example 
(data) into neural network. Compute 
activation into units and output from units.  

•  Backward propagation: propagate error 
back from output layer to the input layer 
and compute derivatives (or gradients).  



Forward Propagation 
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Activation function: f (linear,sigmoid, softmax) 

Activation of unit ak:  
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Time complexity? 
O(dM + MC) = O(W) 



Backward Propagation 
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Algorithm 

•  Initialize weights w 
•  Repeat 
    For each data point x, do the following: 
    Forward propagation: compute outputs and activations 
    Backward propagation: compute errors for each output units 

and hidden units. Compute gradient for each weight.  
    Update weight w = w - η (∂E / ∂w) 
 
•  Until a number of iterations or errors drops below a 

threshold. 



Implementation Issue 
•  What should we store? 
•  An input vector x of d dimensions 
•  A M*d matrix {wji} for weights between input and hidden 

units 
•  An activation vector of M dimensions for hidden units 
•  An output vector of M dimensions for hidden units 
•  A C*M matrix {wkj} for weights between hidden and 

output units 
•  An activation vector of C dimensions for output units 
•  An output vector of C dimensions for output units 
•  An error vector of C dimensions for output units 
•  An error vector of M dimensions for hidden units 



Recurrent Network 

… 

… 

… 

y1 yc 

x1 xi 
xd 

yk 

z1 zj 
zM 

wji w11 w1i 

wkj 

w 

Forward:  
At time 1: present X1, 0 
At time 2: present X2, y1 
…… 

Backward:  
Time t: back-propagate 
Time t-1: back-propagate with  
Output errors and errors from previous step 



Recurrent Neural Network 

1.  Recurrent network is essentially a series of feed-forward 
neural networks sharing the same weights 
 
2. Recurrent network is good for time series data and sequence 
data such as biological sequences. 
 
 
 
 
 



Overfitting  
•  The training data contains information about the 

regularities in the mapping from input to output. 
But it also contains noise 
–  The target values may be unreliable. 
–  There is sampling error. There will be accidental 

regularities just because of the particular training cases 
that were chosen. 

•  When we fit the model, it cannot tell which 
regularities are real and which are caused by 
sampling error.  
–  So it fits both kinds of regularity. 
–  If the model is very flexible it can model the sampling 

error really well. This is a disaster. 

G. Hinton, 2006 



Overfitting 

Good fitting 

Example of Overfitting and Good Fitting 

Overfitting function can not generalize well to unseen data. 



Preventing Overfitting 

•  Use a model that has the right capacity: 
–  enough to model the true regularities 
–  not enough to also model the spurious regularities 

(assuming they are weaker). 
•  Standard ways to limit the capacity of a neural 

net: 
– Limit the number of hidden units. 
– Limit the size of the weights. 
– Stop the learning before it has time to overfit. 

G. Hinton, 2006 



Limiting the Size of the Weights 

•  Weight-decay involves 
adding an extra term to 
the cost function that 
penalizes the squared 
weights. 
–  Keeps weights small 

unless they have big error 
derivatives. 
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The Effect of Weight-Decay 
•  It prevents the network from using weights that it 

does not need. 
–  This can often improve generalization a lot.  
–  It helps to stop it from fitting the sampling error.  
–  It makes a smoother model in which the output changes 

more slowly as the input changes.  

•  If the network has two very similar inputs it 
prefers to put half the weight on each rather than 
all the weight on one. 
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Deciding How Much to Restrict the 
Capacity 

•  How do we decide which limit to use and how 
strong to make the limit? 
–  If we use the test data we get an unfair prediction 

of the error rate we would get on new test data.  
– Suppose we compared a set of models that gave 

random results, the best one on a particular dataset 
would do better than chance.  But it wont do better 
than chance on another test set.  

•  So use a separate validation set to do model 
selection. 

G. Hinton, 2006 



Using a Validation Set 
•  Divide the total dataset into three subsets: 

– Training data is used for learning the parameters of 
the model. 

– Validation data is not used of learning but is used 
for deciding what type of model and what amount 
of regularization works best. 

– Test data is used to get a final, unbiased estimate 
of how well the network works. We expect this 
estimate to be worse than on the validation data. 

•  We could then re-divide the total dataset to get 
another unbiased estimate of the true error rate. 

G. Hinton, 2006 



Preventing Overfitting by Early 
Stopping 

•  If we have lots of data and a big model, its very expensive 
to keep re-training it with different amounts of weight 
decay. 

•  It is much cheaper to start with very small weights and let 
them grow until the performance on the validation set 
starts getting worse (but don’t get fooled by noise!) 

•  The capacity of the model is limited because the weights 
have not had time to grow big. 

G. Hinton, 2006 



Why Early Stopping Works 
•  When the weights are very 

small, every hidden unit is 
in its linear range. 
–  So a net with a large layer 

of hidden units is linear. 
–  It has no more capacity than 

a linear net in which the 
inputs are directly 
connected to the outputs! 

•  As the weights grow, the 
hidden units start using 
their non-linear ranges so 
the capacity grows. 
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Combining Networks 
•  When the amount of training data is limited, we 

need to avoid overfitting.  
–  Averaging the predictions of many different networks is 

a good way to do this. 
–  It works best if the networks are as different as 

possible. 
–  Combining networks reduces variance 

•  If the data is really a mixture of several different 
“regimes” it is helpful to identify these regimes 
and use a separate, simple model for each regime. 
–  We want to use the desired outputs to help cluster cases 

into regimes. Just clustering the inputs is not as 
efficient. 

G. Hinton, 2006 



How the Combined Predictor 
Compares with the Individual 

Predictors 
•  On any one test case, some individual predictors will 

be better than the combined predictor.  
–  But different individuals will be better on different cases.  

•  If the individual predictors disagree a lot, the 
combined predictor is typically better than all of the 
individual predictors when we average over test 
cases. 
–  So how do we make the individual predictors disagree? 

(without making them much worse individually). 

G. Hinton, 2006 



Ways to Make Predictors Differ 
•  Rely on the learning algorithm getting stuck in a 

different local optimum on each run. 
–  A dubious hack unworthy of a true computer scientist (but 

definitely worth a try). 
•  Use lots of different kinds of models: 

–  Different architectures 
–  Different learning algorithms. 

•  Use different training data for each model: 
–  Bagging: Resample (with replacement) from the training 

set:  a,b,c,d,e  -> a c c d d 
–  Boosting: Fit models one at a time. Re-weight each training 

case by how badly it is predicted by the models already 
fitted.  

•  This makes efficient use of computer time because it does not 
bother to “back-fit” models that were fitted earlier. 

G. Hinton, 2006 



How to Speedup Learning? 
The Error Surface for a Linear Neuron 

•  The error surface lies in a space with a horizontal axis 
for each weight and one vertical axis for the error.  
–  It is a quadratic bowl. 

•  i.e. the height can be expressed as a function of the weights without 
using powers higher than 2. Quadratics have constant curvature 
(because the second derivative must be a constant) 

–  Vertical cross-sections are parabolas.  
–  Horizontal cross-sections are ellipses. 
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Convergence Speed 

•  The direction of steepest 
descent does not point at 
the minimum unless the 
ellipse is a circle. 
–  The gradient is big in the 

direction in which we 
only want to travel a 
small distance. 

–  The gradient is small in the 
direction in which we want 
to travel a large distance. 

    This equation is sick. The 
RHS needs to be multiplied 
by a term of dimension 
w^2 to make the 
dimensions balance. 
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How the Learning Goes Wrong 

•  If the learning rate is big, 
it sloshes to and fro across 
the ravine. If the rate is too 
big, this oscillation 
diverges. 

•  How can we move quickly 
in directions with small 
gradients without getting 
divergent oscillations in 
directions with big 
gradients? 
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Five Ways to Speed up Learning 
•  Use an adaptive global learning rate 

–  Increase the rate slowly if its not diverging 
–  Decrease the rate quickly if it starts diverging 

•  Use separate adaptive learning rate on each connection 
–  Adjust using consistency of gradient on that weight axis 

•  Use momentum 
–  Instead of using the gradient to change the position of the weight 
“particle”, use it to change the velocity.  

•  Use a stochastic estimate of the gradient from a few cases 
–  This works very well on large, redundant datasets. 

•  Don’t go in the direction of steepest descent. 
–  The gradient does not point at the minimum. 

•  Can we preprocess the data or do something to the gradient so that we 
move directly towards the minimum?  

G. Hinton, 2006 



The Momentum Method 
    Imagine a ball on the error 

surface with velocity v. 
–  It starts off by following the 

gradient, but once it has 
velocity, it no longer does 
steepest descent.  

•  It damps oscillations by 
combining gradients with 
opposite signs. 

•  It builds up speed in directions 
with a gentle but consistent 
gradient.  

•  On an inclined plane it reaches 
a terminal velocity. 
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How to Initialize weights? 

•  Use small random 
numbers. For instance 
small numbers 
between [-0.2, 0.2]. 

•  Some numbers are 
positive and some are 
negative.  

•   Why are the initial 
weights should be 
small? 
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Neural Network Software 

•  Weka (Java): http://www.cs.waikato.ac.nz/
ml/weka/ 

 
•  NNClass and NNRank (C++): http://

www.eecs.ucf.edu/~jcheng/cheng_software.html 
     J. Cheng, Z. Wang,  G. Pollastri. A Neural Network 

Approach to Ordinal Regression. IJCNN, 2008 

 



NNClass Demo 

•  Abalone data: 
http://archive.ics.uci.edu/ml/datasets/Abalone 

Abalone (from Spanish Abulón) are a group of shellfish (mollusks) in the 
family Haliotidae and the Haliotis genus. They are marine snails 


