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ABSTRACT

Motivation:Recognizing proteins that have similar tertiary structure is

the key step of template-based protein structure prediction methods.

Traditionally, a variety of alignment methods are used to identify

similar folds, based on sequence similarity and sequence-structure

compatibility. Although these methods are complementary, their

integration has not been thoroughly exploited. Statistical machine

learning methods provide tools for integrating multiple features, but

so far these methods have been used primarily for protein and fold

classification, rather than addressing the retrieval problem of fold

recognition-finding a proper template for a given query protein.

Results: Here we present a two-stage machine learning, information

retrieval, approach to fold recognition. First, we use alignmentmethods

to derive pairwise similarity features for query-template protein pairs.

We also use global profile–profile alignments in combination with

predicted secondary structure, relative solvent accessibility, contact

map and beta-strand pairing to extract pairwise structural compatibility

features. Second, we apply support vector machines to these features

to predict the structural relevance (i.e. in the same fold or not) of the

query-template pairs. For each query, the continuous relevance scores

are used to rank the templates. The FOLDpro approach is modular,

scalable and effective. Compared with 11 other fold recognition

methods, FOLDpro yields the best results in almost all standard

categories on a comprehensive benchmark dataset. Using predictions

of the top-ranked template, the sensitivity is �85, 56, and 27% at the

family, superfamily and fold levels respectively. Using the 5 top-ranked

templates, the sensitivity increases to 90, 70, and 48%.

Availability:TheFOLDpro server is availablewith the SCRATCHsuite

through http://www.igb.uci.edu/servers/psss.html.

Contact: pfbaldi@ics.uci.edu

Supplementary information: Supplementary data are available at

http://mine5.ics.uci.edu:1026/gain.html

1 INTRODUCTION

The key step of template-based protein structure prediction

approaches (comparative modeling and fold recognition) is to

recognize proteins that have similar tertiary structures. This task

becomes very challenging when there is little sequence similarity

between the query and the template protein. Several alignment

methods have been used to try to identify fold similarity, using

sequence information, structural information or both. Instead of

developing a new specialized alignment method for fold recognition

(Shi et al., 2001; Xu et al., 2003; Zhou and Zhou, 2004), or integ-

rating existing fold recognition servers (Lundstrm et al., 2001;

Fischer, 2003; Ginalski et al., 2003a), here we propose a machine

learning information retrieval approach that leverages features

extracted using existing, general-purpose, alignment tools as well

as protein structure prediction program and combines them using

support vector machines (SVMs) to rank all the templates.

1.1 Classical approaches to fold recognition

Alignment methods for fold recognition include sequence–

sequence, sequence–profile (or profile–sequence), profile–profile

and sequence–structure methods.

Sequence–sequence alignment methods (Needleman and

Wunsch, 1970; Smith and Waterman, 1981; Dayhoff et al.,
1983; Pearson and Lipman, 1988; Altschul et al., 1990; Henikoff

and Henikoff, 1992; Vingron and Waterman, 1994) are effective at

detecting homologs with significant sequence identity (>40%).

Sequence–profile (or profile–sequence) alignment methods

(Baldi et al., 1994; Krogh et al., 1994; Hughey and Krogh,

1996; Altschul et al., 1997; Bailey and Gribskov, 1997; Karplus

et al., 1998; Eddy, 1998; Park et al., 1998; Koretke et al., 2001;

Gough et al., 2001) are more sensitive at detecting distant homologs

with lower sequence identity (>20%). Profiles can correspond to

simple multiple alignments, to position specific scoring matrices

(PSSMs), or to hidden Markov models (HMMs).

Profile–profile alignment approaches (Thompson et al., 1994;

Rychlewski et al., 2000; Notredame et al., 2000; Yona and

Levitt, 2002; Madera and Gough, 2002; Mitelman et al., 2003;

Ginalski et al., 2003b; Sadreyev and Grishin, 2003; Edgar and

Sjolander, 2003, 2004; Ohlson et al., 2004; Wallner et al., 2004;

Wang and Dunbrack, 2004; Marti-Renom et al., 2004; Söding,

2005) are even more sensitive at detecting distant homologs and

compatible structures, and often achieve even better performance

than sequence–structure alignment methods that leverage template

structural information (Rychlewski et al., 2000).

Sequence–structure alignment methods (or threading) (Bowie

et al., 1991; Jones et al., 1992; Godzik and Skolnick, 1992;

Bryant and Lawrence, 1993; Abagyan et al., 1994; Murzin and

Bateman, 1997; Xu et al., 1998; Jones, 1999; Panchenko et al.,
2000; David et al., 2000; Shi et al., 2001; Skolnick and Kihara,

2001; Xu et al., 2003; Kim et al., 2003) align query sequences with

template structures and compute compatibility scores according to�To whom correspondence should be addressed.
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structural environment fitness and contact potentials. These

methods are particularly useful for detecting proteins with similar

folds but no recognizable evolutionary relationship.

The separation between sequence-based and structure-based

methods, however, is becoming blurred as new methods are

developed that combine both kinds of information together.

Combining both sequence and structure information has been

shown to improve both fold recognition (Elofsson et al., 1996;

Jaroszewski et al., 1998; Al-Lazikani et al., 1998; Fischer, 2000;

Kelley et al., 2000; Panchenko et al., 2000; Shan et al., 2001; Tang

et al., 2003; Pettitt et al., 2005) and alignment quality (Thompson

et al., 1994; Al-Lazikani et al., 1998; Domingues et al., 2000;

Notredame et al., 2000; Griffiths-Jones and Bateman, 2002;

Tang et al., 2003; O’Sullivan et al., 2004). Even the sequence-

derived predicted secondary structure can be used to increase the

sensitivity of fold recognition (Rost and Sander, 1997; Jones, 1999;

Ginalski et al., 2003b; Xu et al., 2003; Zhou and Zhou, 2004).

In fold recognition, different alignment tools are often used

independently to search protein databases for similar structures.

Previous research (Jaroszewski et al., 1998; Lindahl and

Elofsson, 2000; Shan et al., 2001; Ohsen et al., 2003; Wallner

et al., 2004) has shown that these alignment methods are comple-

mentary and can find different correct templates. But combining

these methods is difficult (Lindahl and Elofsson, 2000). Meta or jury

approaches (Lundstrm et al., 2001; Fischer, 2003; Ginalski et al.,
2003a; Juan et al., 2003; Wallner et al., 2004) collect the predicted

models from external fold recognition predictors and derive

predictions based on a small set of returned candidates. This pop-

ular, hierarchical approach increases the reach of fold recognition.

However, it relies on the availability of external predictors and

cannot recover true positive templates discarded prematurely by

individual predictors.

1.2 A machine learning information retrieval

approach to fold recognition

Statistical machine learning methods provide powerful means for

integrating disparate features in pattern recognition. So far, how-

ever, machine learning integration of features has been used in this

area primarily for coarse homology detection, such as protein

structure/fold classification (Jaakkola et al., 2000; Leslie et al.,
2002). Classifying proteins into a few categories or even dozens

of families, superfamilies and folds, however, does not provide the

specific templates required for template-based structure modeling.

Furthermore, current classification methods are not likely to scale

up to the thousands of families, superfamilies and folds already

present in current protein classification databases, such as SCOP

(Murzin et al., 1995). Fold recognition is different from protein

classification—it is fundamentally a retrieval problem, very

much like finding a document or a web page (Rocchio, 1966;

Page et al., 1998). Given a query protein, the objective of fold

recognition is rather to rank all possible templates according to

their structural relevance, like Google and other search engines

rank web pages associated with a user’s query.

Machine learning methods (such as binary classifiers) have been

used also in threading approaches (Jones, 1999; Xu et al., 2003) to

combine multiple scores produced by threading into a single scores

to rank the templates. Here we generalize this idea and derive a

broad machine learning framework for the fold recognition/retrieval

problem. The framework integrates a variety of similarity features

and feature extraction tools, including standard alignment tools.

However, unlike meta approaches, it does not require any pre-

existing fold recognition programs or servers.

Consistently with the major trend in machine learning towards

kernel methods (Schölkopf and Smola, 2002), we first focus on the

computation of a variety of similarity measures between query-

template pairs. Instead of extracting features and analyzing indi-

vidual sequences, we focus exclusively on pairs of sequences and

use a variety of complementary alignment tools to align the query

protein with the template proteins, rather than to search the data-

base of templates. The alignment scores for query-template pairs are

used as similarity measures. Furthermore, based on alignments

(e.g. profile–profile) between query and template, we further extract

pairwise structural compatibility features by checking the predicted

secondary structure, solvent accessibility, contact map and beta-

strand pairings of the query protein against the tertiary structure

of the template protein. Second, these alignment and structural

similarity scores as well as other sequence and structural features

derived using three standard similarity measures (cosine, correlation

and Gaussian kernel) are fed into SVMs (Vapnik, 1998) to learn a

relevance function to evaluate whether the query and template

belong to the same fold. Finally, the continuous output scores

produced by the SVMs are used to rank the templates with respect

to the query. The top-ranked templates can be used to model the

structure of the query.

2 METHODS

2.1 Feature extraction

We extract five categories of pairwise features (similarity scores) for each

query–template pair associated with sequence or family information,

sequence alignment, sequence–profile (or profile–sequence) alignment,

profile–profile alignment and structure (Table 1).

Sequence/family information features. To compare the sequences of query

and template proteins, we compute their single amino acid (monomer)

and ordered pair of amino acids (dimer) compositions. The composition

vectors x and y of the query and template are compared and transformed

into six similarity scores using the cosine (x · y=jxjjyj), correlation

ðð
P

i ðxi � �xxÞðyi � �yyÞ=ðp
P

i ðxi��xxÞ2 P
i ðyi��yyÞ2ÞÞ, and Gaussian kernel

(e�jjx�yjj2 ) respectively. We apply the same techniques to the monomer

and dimer residue composition vectors of the family of sequences associated

with the query and the template to extract another set of six similarity

measures, to measure the family composition similarity. The sequences

for both query and template families are derived from multiple sequence

alignments generated by searching the NCBI non-redundant sequence data-

base (NR release 1.21, 28-Apr-2003) using PSI-BLAST(Altschul et al.,
1997). The e-value (�e option) threshold for inclusion in the profile is

set to 0.001; the cut-off threshold (�h option) for building iterative profiles

is set to e � 10; and the number of iteration (�j option) is set to 3. Thus the

sequence/family information feature subset includes 12 (6 + 6) pairwise

features in total.

Sequence–sequence alignment features. Two sequence alignment tools,

PALIGN (Ohlson et al., 2004) and CLUSTALW (Thompson et al., 1994),

are used to extract pairwise features associated with sequence alignment

scores. PALIGN uses local alignment methods and produces a score and an

e-value. The score is divided by the length of the query to remove any length

bias. CLUSTALW generates a global sequence alignment score between

the query and the template. This score is also normalized by the length of

the query sequence. Thus the sequence alignment feature subset includes

three pairwise features.

Machine learning for protein fold retrieval

1457



Sequence–profile (or profile–sequence) alignment features. We use

three different profile–sequence alignment tools [PSI-BLAST, HMMER-

hhmsearch (Eddy, 1998) and IMPALA (Schaffer et al., 1999)] to extract

profile–sequence alignment features between the query profile and the

template sequence. The profiles (or multiple alignments) for queries are

generated by searching the NR database using PSI-BLAST, as described

above. Identical sequences in the multiple alignments are removed. No

sophisticated weighting scheme is used. The multiple alignments are

used by all profile alignment tools directly, or as the basis for building

customized profiles. For instance, the HMM models in HMMER are built

from the multiple alignments using the hmmbuild and hmmcalibrate tools

of HMMER. Note that, instead of using these tools to search sequence

databases, we use them to align individual query profiles against individual

template sequences to extract pairwise features. The alignment score nor-

malized by the query length, the logarithm of the e-value and the alignment

length normalized by the query length from the most significant PSI-BLAST

and IMPALA local alignment are used as features. The alignment scores,

normalized by the length of the query sequence, and the logarithm of the

e-value produced by hmmsearch alignments are used as features too. Thus

the profile-sequence alignment tools generate eight pairwise features.

For sequence–profile alignments, we use RPS-BLAST in the PSI-BLAST

package and hmmpfam in the HMMER package to align the query sequence

with the template profiles. The template profiles are generated in the same

way as the query profiles. In this way, RPS-BLAST generates three features

similar to PSI-BLAST. The logarithm of the e-value produced by hmmfam is

also used as one feature. Thus the subset of profile–sequence (or sequence–

profile) alignment features includes 12 (8 + 4) pairwise features in total.

Profile–profile alignment features. We use five profile–profile alignment

tools including CLUSTALW, COACH of LOBSTER (Edgar and Sjolander,

2004), COMPASS (Sadreyev and Grishin, 2003), HHSearch (Söding,

2005) and PRC (Profile Compiled by M. Madera, http://supfam.org/PRC)

to align query and template profiles. The global alignments produced by

CLUSTALW and LOBSTER and the most significant local alignments

produced by COMPASS, PRC and HHSearch are used to extract the pairwise

features. Specifically, CLUSTALW aligns query multiple alignments with

template multiple alignments. COACH aligns query HMMs with template

HMMs built from the multiple alignments produced by LOBSTER.

HHSearch also aligns query HMMs with template HMMs generated from

the multiple alignments using the hhmake function of HHSearch. The align-

ment scores produced by CLUSTALW and HHSearch are normalized by

query length and used as pairwise features. The alignment scores produced

by LOBSTER are not used directly as features because their dependence on

template length would introduce a bias toward long templates.

PRC, an HMM profile–profile alignment tool, is used with two different

kinds of profiles: HMM models built by HMMER and chk profiles built by

PSI-BLAST. In each case, PRC produces three scores (co-emission, simple

and reverse), which are normalized by query length. COMPASS, which uses

internally a log-odds ratio score and a sophisticated sequence weighting

scheme, is used to align query multiple alignments with template multiple

alignments. The Smith–Waterman local alignment score normalized by

query length and the logarithm of the e-value from the COMPASS align-

ments are used also as pairwise features. Thus the subset of profile–profile

alignment features includes 10 pairwise features in total.

Structural features. Based on the global profile–profile alignment

between query and template obtained with LOBSTER, we use predicted

1D and 2D structural features including secondary structure (3-class: alpha,

beta, loop), relative solvent accessibility (2-class: exposed or buried at 25%

threshold), contact probability map at 8 and 12 Å, and beta-sheet residue

pairing probability map to evaluate the compatibility between query and

template structures. These structural features for query proteins are predicted

using the SCRATCH suite (Pollastri et al., 2001a, b; Pollastri and Baldi,

2002; Cheng et al., 2005; Cheng and Baldi, 2005; http://www.igb.uci.edu/

servers/psss.html).

The predicted secondary structure (SS) and relative solvent accessibility

(RSA) of the query residues are compared with the nearly exact SS and

RSA of the aligned residues in the template structure. The fractions of

correct matches for both SS [as in Jones (1999), Xu et al. (2003)] and

RSA are used as two pairwise features. The SS and RSA composition

(helix, strand, coil, exposed and buried) are transformed into four similarity

scores by cosine, correlation, Gaussian kernel and dot product. So this

1D structural feature subset has six features in total.

For the aligned residues of the template which have sequence separation

>5 and are in contact at 8 Å threshold (resp. 12 Å), we compute the average

contact probability of their counterparts in the predicted 8 Å (resp. 12 Å)

contact probability map of the query. The underlying assumption is that the

counterparts of the contact residues in the template should have high contact

probability in the query contact map if the query and template share similar

structure. Similarly, for each paired beta-strand residues in the template

structures, we compute the average pairing probability of their beta-strand

counterparts in the predicted beta-strand paring probability map of the query,

assuming that two proteins will share similar beta-sheet topology if they

belong to the same fold.

Moreover, we compute the contact order (sum of sequence separation of

contacts) and contact number (number of contacts) for each aligned residue

in both query and templates. This information is easy to derive for the

template sequences since their tertiary structure is known. For the query

sequence, we let the contact order for residue i to be
P

ji�jj>5 Cijji � jj, where

Cij is the predicted contact probability for residues i and j. The contact

number for residue i in the query is defined as the sum of the contact

probabilities
P

ji�jj>5 Cij. The contact order and contact number vectors

of the aligned residues are not used directly as features. Instead, they are

compared and transformed into pairwise similarity scores using the cosine

and correlation functions. For both the 8 and 12 Å contact maps, eight

pairwise features of contact order and contact number are extracted. So

the 2D structural feature subset has 11 features in total. Thus the entire

1D and 2D structural feature subset has 17 features in total.

Table 1. Features used in fold recognition. cos/corr/Gauss denote cosine,

correlation, and Gaussian kernel functions

Category Feature Method Num

Seq and Family Info. Seq monomer compo cos/corr/Gauss 3

Seq dimer compo cos/corr/Gauss 3

Fam monomer compo cos/corr/Gauss 3

Fam dimer compo cos/corr/Gauss 3

Seq–Seq Align. Local alignment PALIGN 2

Global alignment CLUSTALW 1

Seq–Prof Align. Prof versus seq PSI-BLAST 3

Prof versus seq IMPALA 3

Prof versus seq HHMER 2

Seq versus prof RPS-BLAST 3

Seq versus prof HMMER 1

Prof–Prof Align. Multiple alignment CLUSTALW 1

PSSM COMPASS 2

HMM prof PRC 6

HMM prof HHSearch 1

Structural Info. SS and RSA match ratio 2

SS and RSA compo cos/corr/Gauss 4

Contact probability average 2

Residue contact order cos/corr 4

Residue contact num cos/corr 4

Beta-sheet pair prob. average 1

Total - - 54

SS and RSA represent secondary structure and relative solvent accessibility respectively.
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The entire feature set contains 54 pairwise features measuring query-

template similarity (Table 1). Initially we used a larger set of 74 features

(data not shown) that also included non-pairwise features, such as the pro-

portion of helices and strands in each chain. Information gain analysis

(see Results) and experiments led us to remove the 20 least informative

or most biased features to optimize performance. All the alignment tools

for extracting pairwise features are run with default parameters, except the

e-value thresholds (-e option) of PSI-BLAST, RPS-BLAST and IMPALA

which are set to larger values (100, 50 and 20 respectively), to ensure that

alignments between sequences with very little similarity are generated in

most cases. If no features are generated by these tools, the corresponding

similarity features are set to 0.

2.2 Fold recognition with support vector machines

Each feature vector associated with a pair of proteins in a given training

set correspond to a positive or negative example, depending on whether the

two proteins are in the same fold or not. These feature vectors in turn can be

used to train a binary classifier. Here we train SVMs and learn an optimal

decision function f(x) to classify an input feature vector x into two categories

(f(x) > 0: same fold; f(x) < 0: different fold). The decision function f ðxÞ ¼
P

xi2S aiyiKðx‚xiÞ þ b is a weighted linear combination of the similarities

K(xi, x) between the input feature vector x and the feature vectors xi in the

training dataset S. Here K is a user-defined kernel function that measures the

similarity between the feature vectors xi and x corresponding in general to

four proteins. ai is the weight assigned to the training feature vector xi and

yi is the corresponding label (+1:positive, �1:negative). All protein pairs in

the same fold are labeled as positive examples, and the remaining ones as

negative examples. We use SVM-light (Joachims, 1999) to learn the SVM

parameters. The continuous value f(x) is indicative of how likely the cor-

responding sequences are in the same fold, and therefore it is used to evaluate

the structural relevance and rank all the templates for a given query. We

tested polynomial, tanh and Gaussian radial basis kernels (RBF: e�gjjx�yjj2 ).

We report the results obtained with the RBF kernel which worked best for

this task, with g ¼ 0.015. Preliminary tests indicated that the results are

robust with respect to g. All other SVM parameters are set to their default

values. A thorough parameter optimization may help further improve the

accuracy.

2.3 Training and benchmarking

To compare the performance of our method with other well-established

methods, we use the large benchmark dataset (Lindahl and Elofsson,

2000) derived from the SCOP (Murzin et al., 1995) database. The Lindahl’s

dataset includes 976 proteins. The pairwise sequence identity is �40%. We

extract a feature vector for all 976 · 975 distinct pairs. In this dataset,

555 sequences have at least one match at the family level, 434 sequences

have at least one match at the superfamily level and 321 sequences have at

least one match at the fold level.

We split all protein pairs evenly into 10 subsets for 10-fold cross valida-

tion purposes. All the query–template pairs associated with the same query

protein are put into the same subset. Nine subsets are used for training and

the remaining subset is used for validation. The pairs in the training dataset

that use queries in the test dataset as templates are removed. The procedure is

repeated 10 times and the sensitivity/specificity results are computed across

the 10 experiments. Training takes about 3 days for a single data-split on a

single node with dual Pentium processors, hence 3 days for the entire 10-fold

cross-validation experiment using 10 nodes in a cluster. Using the same

evaluation procedure as in Lindahl and Elofsson (2000), Shi et al. (2001) and

Zhou and Zhou (2004), we evaluate the sensitivity by taking the top 1 or the

top 5 templates in the ranking associated with each test query. Furthermore,

as in Lindahl and Elofsson (2000) and Shi et al. (2001), we also evaluate the

performance of our method for all positive matches using specificity-

sensitivity plots.

3 RESULTS

Table 2 lists the 20 top features ranked using the information

gain measure (Yang and Pedersen, 1997) (complete table for the

54 features is available as Supplementary Materials). The table

shows that profile–profile alignment features are the most inform-

ative. For instance, the alignment features of HHSearch, COMPASS

and PRC are ranked first, second and third respectively. Thus

profile–profile alignment methods have the strongest discriminative

power in fold recognition, consistently with previous studies

(Rychlewski et al., 2000; Wallner et al., 2004; Ohlson et al.,
2004). Profile–sequence (or sequence–profile) alignment features

and some structural features based on the LOBSTER alignment

between queries and templates have also strong discriminative

power according to the information gain measure. For instance,

the e-values of HMMer pfam and HMMer search are ranked

fifth and seventh respectively. Our results, confirm also the import-

ance of predicted structural features. The dot product of secondary

structure and solvent accessibility composition vectors, and the

secondary structure match ratio, rank sixth and eighth respectively.

Other profile–sequence (or sequence–profile) alignment features

such as PSI-BLAST, IMPALA, BLAST and structural features such

as the cosine of the residue contact number lead also to significant

information gains. On the other hand, compared with other local

profile–profile alignment scores, the CLUSTALW global profile–

profile alignment score carries a lesser weight. This suggest that

CLUSTALW is optimized for alignment, but not for direct fold

recognition, which is consistent with previous results (Marti-

Renom et al., 2004). Since the pairwise sequence identity in the

dataset is <40%, sequence alignment and sequence/family informa-

tion features have a lesser, albeit still noticeable, impact.

We evaluate the performance of our FOLDpro method against 11

other fold recognition methods. The 11 other methods are PSI-

BLAST, HMMER, SAM-T98 (Karplus et al., 1998), BLASTLINK,

Table 2. The 20 top-ranked features using information gain

Feature Information gain

HHSearch score 0.0375

COMPASS e-value 0.0370

PRC reverse score on chk profile 0.0354

PRC reverse score on HMM profile 0.0341

HMMer pfam e-value 0.0287

Dot product of SS and RSA vectors 0.0266

HMMer search e-value 0.0264

SS match ratio 0.0263

Correlation of SS and RSA vectors 0.0263

PRC simple score on HMM profile 0.0248

Cosine of SS and RSA vectors 0.0246

Gaussian kernel on SS and RSA vectors 0.0237

COMPASS score 0.0235

PRC coemis score on HMM profile 0.022

PSI-BLAST e-value 0.0205

IMPALA e-value 0.0181

RPS-BLAST e-value 0.0180

SA match ratio 0.0154

Cosine of residue contact num (8 Å) 0.0150

HMMer search score 0.0142
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SSEARCH, SSHMM (Hargbo and Elofsson, 1999), THREADER

(Jones et al., 1992), FUGUE (Shi et al., 2001), RAPTOR (Xu et al.,
2003), SPARKS (Zhou and Zhou, 2004) and SP3 (Zhou and Zhou,

2005). SPARKS, for instance, was one of the top predictors during

the sixth edition of the CASP evaluation (Moult et al., 2005).

The results for PSI-BLAST, HMMER, SAM-T98, BLASTLINK,

SSEARCH, SSHMM and THREADER are taken from Lindahl

and Elofsson (2000). The results for the other methods are taken

from the corresponding articles. One caveat is that the sequence

databases used to generate the profiles are being updated continu-

ously, and so are some of the methods. Thus the comparative

analysis is only meant to provide a broad, rough assessment of

performance rather than a precise and stable ranking.

Table 3 shows the sensitivity of FOLDpro and the other methods

at the family, superfamily and fold levels, for the top 1 and

top 5 predictions respectively. Here sensitivity is defined by the

percentage of query proteins (with at least one possible hit) having

at least one correct template ranked first, or within the top 5 (Lindahl

and Elofsson, 2000). It shows that in almost all situations the per-

formance of FOLDpro is better than that of other well-established

methods such as SPARKS, SP3, FUGUE and RAPTOR.

Specifically, at the family level, the sensitivity of FOLDpro for

the top 1 or 5 predictions is 85.0 and 89.9%, about 2–4% higher than

FUGUE, SPARKS and SP3, and significantly higher than all other

methods. At the superfamily level, the sensitivity of FOLDpro for

the top 1 or 5 predictions is 55.5 and 70.0%, slighlty higher than

SPARKS and SP3 and significantly higher than all other methods.

At the fold level, the sensitivity of FOLDpro for the top 1 pre-

dictions is 26.5%, about 2% lower than SP3, 1–3% higher than

RAPTOR and SPARKS, and significantly higher than all other

methods. For the top 5 predictions, at the fold level, the sensitivity

of FOLDpro is 48.3%, about 0.6–3% higher than RAPTOR,

SPARKS and SP3, and significantly higher than all other methods.

The performance of FOLDpro is significantly better than pure

sequence- or profile-based approaches, such as PSI-BLAST,

HMMER, SAM-T98 and BLASTLINK. It is also significantly bet-

ter than threading approaches, such as THREADER, in all three

categories. For example, compared with PSI-BLAST, FOLDpro is

Table 3. The sensitivity of 12 methods on the Lindahl’s benchmark dataset at

the family, superfamily, and fold levels

Family (%) Superfamily (%) Fold (%)

Method Top 1 Top 5 Top 1 Top 5 Top 1 Top 5

PSI-BLAST 71.2 72.3 27.4 27.9 4.0 4.7

HMMER 67.7 73.5 20.7 31.3 4.4 14.6

SAM-T98 70.1 75.4 28.3 38.9 3.4 18.7

BLASTLINK 74.6 78.9 29.3 40.6 6.9 16.5

SSEARCH 68.6 75.5 20.7 32.5 5.6 15.6

SSHMM 63.1 71.7 18.4 31.6 6.9 24.0

THREADER 49.2 58.9 10.8 24.7 14.6 37.7

FUGUE 82.2 85.8 41.9 53.2 12.5 26.8

RAPTOR 75.2 77.8 39.3 50.0 25.4 45.1

SPARKS 81.6 88.1 52.5 69.1 24.3 47.7

SP3 81.6 86.8 55.3 67.7 28.7� 47.4

FOLDpro 85.0� 89.9� 55.5� 70.0� 26.5 48.3�

*denotes the best results.
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Fig. 1. Specificity–sensitivity plot at the family level.
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about 14, 28 and 23% more sensitive at recognizing members of the

same family, superfamily and fold, respectively, using the top

1 predictions; using the top 5 predictions, these improvements

are 18, 42 and 44% respectively.

As in Lindahl and Elofsson (2000), we also compare the per-

formance of FOLDpro using specificity–sensitivity plots (Fig. 1–3),

to better assess the trade-offs between specificity and sensitivity,

using the Lindahl’s dataset. We compute the sensitivity and speci-

ficity of FOLDpro for different thresholds applied to the SVM

scores. Specificity is defined as the percentage of predicted positives

(above threshold) that are true positives (in the same family, super-

family or fold). Sensitivity is defined as the percentage of true

positives that are predicted as positives (above threshold). The

advantage of the specificity–sensitivity plots is that they measure

the ability of a method to reliably identify all positive matches in the

dataset beyond the top hits. Sensitivity–specificity results for 7 of

the 11 methods above were kindly provided by Dr Elofsson (http://

www.sbc.su.se/~arne/protein-id/).

In the family category (Fig. 1), FOLDpro consistently outper-

forms all other methods by >10% for almost all specificity values.

However, like SAM-T98, the sensitivity of FOLDpro drops rapidly

when the specificity is close to 1. This suggests that some false

positives may be receiving very high scores. However, after manu-

ally inspecting the dozen of ‘false positives’ with high scores, some

of them turn out to be true positives that were misclassified in the

original dataset. For instance, the pair (1XZL,3TGL) belongs to the

same superfamily and fold (alpha/beta-Hydroplases) in the latest

SCOP 1.69 release, while 1XZL was wrongly classified into another

fold (Flavodoxin-like) in the Lindahl’s dataset based on the old

SCOP 1.37 release. This shows that FOLDpro is capable of cor-

recting some human annotation errors and that ‘false positives’ with

high scores must be verified carefully. Although these wrongly

classified pairs with high scores lead one to slightly under-estimate

the performance of FOLDpro, we did not attempt to correct them

in the evaluation, because of their small effect and to maintain

consistency with previous evaluations.

At the superfamily level (Fig. 2), FOLDpro has more than twice

the sensitivity of the second best method for almost all specificity

levels. For instance, at 50% specificity, the sensitivity of FOLDpro

is 30%, �20% higher than the second best method, PSI-BLAST.

At the fold level (Fig. 3), fold recognition remains challenging for

all methods. However, FOLDpro’s performance is significantly

better than all other methods, including the second best method

THREADER, a threading method specifically designed for

this purpose. For instance, at 5% specificity, FOLDpro achieves

sensitivity of 28%, �23% higher than THREADER, while the

sensitivity of all other methods is close to 0.

The specificity–sensitivity plots show that FOLDpro significantly

outperforms a variety of different methods in all categories, indic-

ating that the integration of complementary alignment tools and

sequence and structural information can improve fold recognition

across the board.

4 DISCUSSION

We have presented a general information retrieval framework for

the fold recognition problem that leverages similarity methods at

two fundamental levels. Rather than directly classifying individual

proteins, we first consider pairs of proteins and derive a set of

pairwise features (feature vector) consisting of many different sim-

ilarity scores (e.g. profile–profile alignment scores). We then apply

supervised classification methods (e.g. SVM) to these feature

vectors to learn a relevance function to measure whether or not

the query–template pairs are structurally relevant (same versus

different fold). For a given query, the continuous relevance values

are used to rank the templates.

The learning process involves measuring the similarity between

pairs of feature vectors associated with four proteins, which differs

from the two-protein comparison of traditional classification

approaches. From the standpoint of using structural information

in fold recognition, our approach differs also from traditional

threading approaches, which use structural information to produce

alignments and compute statistical contact potentials to evaluate

sequence–structure fitness. In contrast, our approach employs

sequence-based profile–profile alignment tools to align a query

against the possible templates, without using structural information.

Then, based on these alignments, it checks the predicted secondary

structure, solvent accessibility, contact probability map and beta-

sheet pairings of the query against the template structures to evalu-

ate fitness.

The approach used in FOLDpro has several advantages in terms

of integration, scalability, simplicity, reliability and performance.

First the approach readily integrates complementary streams of

information, from alignment to structure, and additional features

can easily be added. It is worth pointing out this integrative

approach is slower than some individual alignment methods such

as PSI-BLAST. However, it can scan a fold library with about

10 000 templates in a few hours, for an average-size query protein,

on a server with two Pentium processors. Second, most features can

readily be derived using publicly available tools. This is simpler

than trying to develop a new, specialized, alignment tool for fold

recognition as in SPARKS, SP3, FUGUE and RAPTOR, which

usually requires a lot of expertise. Third, our approach can be

included in a meta server but, unlike a meta-server, it is self-

contained and does not rely on external fold-recognition servers.

Unlike meta servers, this approach produces a full ranking of all

the templates and does not discard any templates early on during

the recognition process. Finally, the approach delivers state-

of-the-art performance on current benchmarking datasets. And

while fold recognition remains a challenging problem, the approach

provides clear avenues of exploration to improve the performance,

such as adding new features to the feature vector, enlarging the

training set, using different machine learning tools to learn the

relevance function and leveraging ensembles.
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