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What’s is Machine Learning? 
•  As a broad subfield of artificial intelligence, 

machine learning is concerned with the 
design and development of algorithms and 
techniques that allow computers to “learn”.  

•  The major focus is to extract information 
from data automatically, by computational 
and statistical methods. Closely related to 
data mining, statistics, and theoretical 
computer science.  



Why Machine Learning? 

Bill Gates: If you design a machine that can 
learn, it is worth 10 Microsoft. (e.g., 
Google, Apple) 



Applications of Machine Learning 

•  Natural language processing, syntactic 
pattern recognition, search engine 

•  Bioinformatics, cheminformatics, medical 
diagnosis 

•  Detecting credit card fraud, stock market 
analysis, speech and handwriting 
recognition, object recognition 

•  Game playing and robotics 



Common Algorithms Types 

•  Statistical Modeling (HMM, Bayesian 
networks) 

•  Supervised Learning (classification) 
•  Unsupervised Learning (clustering) 



Why Bioinformatics? 

   For the first time, we computer / information 
scientists can make direct impact on health and 
medical sciences. Working with biologists, we 
will revolutionize the research of life science, 
decode the secrete of the life, and cure diseases 
threatening human being.  



An Example in Time Magazine 

•  Show images about personalized genome, 
medicine, beyond in the Time’s  2012 
August issue.  



Don’t Quit Because It is Hard 

•  Interviewer: Do you view yourself a 
billionaire, CEO, or the president of 
Microsoft? 

•  Bill Gates: I view myself a software 
engineer. Business is not complicated, but 
science is complicated.  

•  JFK: we want to go to moon, not because it 
is easy, but because it is hard.  



Machine Learning Methods for 
Bioinformatics 

1.  Hidden Markov Model and its Application in 
Bioinformatics (e.g. sequence and profile 
alignment) 

2.  Neural Network and its Application in 
Bioinformatics (e.g. secondary structure 
prediction) 

3.  Support Vector Machine and its Application in 
Bioinformatics (e.g. protein fold recognition) 

4.  EM Algorithm, Gibbs Sampling, and Bayesian 
Networks and their Applications in 
Bioinformatics (e.g. gene regulatory network) 

 



Possible Projects 
•  Multiple sequence alignment using HMM 
•  Profile-profile alignment using HMM 
•  Protein secondary structure prediction using NN 
•  Protein fold recognition using support vector 

machine 
•  Reconstruct gene regulatory networks using 

Bayesian networks 
•  Or your own projects upon my approval 
Work alone or in a group up to 3 persons. 20% 

participation, 50% presentation and 30% report.  



Real World Process 

Source 

Signal 

Discrete signals: characters, nucleotides,… 

Continuous signals: speech samples, music 
temperature measurements, music,… 

Stationary source: its statistical properties 
does not vary. (random number generator?) 
Nonstationary source: the signal properties 
vary over time. (example? Human?) 
 

Signal can be pure (from a single source) 
or be corrupted from other sources (e.g  
Noise) 



Fundamental Problem: Characterizing 
Real-World Signals in Terms of Signal 

Models 
•  A signal model can provide basis for a theoretical 

description of a signal processing system which 
can be used to process signals to improve 
outputs. (remove noise from speech signals). 

•  Signal models let us learn a great deal about the 
signal source without having the source available. 
(simulate source and learn via simulation. MIT 
paper generator, painting generator – art?). 

•  Signal models work pretty well in practical system 
– prediction systems, recognition systems, 
identification systems. Example?).  



Types of Signal Models 
•  Deterministic models: exploit known properties of 

signals. (sine wave, sum of exponentials, sun light). Easy, 
only need to estimate parameters (amplitude, frequency, 
…) 

•  Statistical models: try to characterize only the statistical 
properties of models (Gaussian processes, Poisson 
processes, Markov processes, Hidden Markov process…) 

•  Assumption of statistical models: signals can be well 
characterized as a parametric random process, and the 
parameters of the stochastic processes can be estimated in 
a well defined manner.  



History of HMM 

•  Introduced in the late 1960s and early 1970s (L.E. 
Baum and others) 

•  Widely used in speech recognition in 1980s. 
(Baker, Jelinek, Rabiner and others) 

•  Widely used in biological sequence analysis in 
1990s till now (Churchill, Haussler, Krog, Baldi, 
Durbin, Eddy, Kaplus, Karlin, Burges, Hughey, 
Snonhammer, Sjolander, Edgar, Soeding, and 
many others) 



Discrete Markov Process 
•  Consider a system described at any time as 

being in one of a set of N distinct states, S1, 
S2, …, SN.  

S1 S3 

S2 

S5 S4 

a11 

a22 

a33 

a44 
a55 

a21 
a32 

a34 a51 
a41 

a35 a54 

a45 

At regularly spaced discrete times, the system undergoes a change of 
state according to a set of probabilities. 



An Example – Weather Model 

Sunny Rainy 

Cloudy 



Definition of Variables 
•  Time instants associated with state changes as t = 1, 

2, ….,T 
•  Observation: O = o1o2…oT 
•  Actual state at time t as qt. 
•  A full probabilistic description of the system requires 

the specification of the current state, as well as all the 
predecessor states. 

•  The first order Makov chain (truncation): 
     P[qt = Sj | qt-1 = Si, qt-2 = Sk, …] = P[qt = Sj | qt-1 = Si]. 
•  Further simplification: state transition is independent of time.     

aij = P[qt = Sj | qt-1 = Si], 1 <= i, j <= N, subject to constraints:  
     aij >= 0 and 1

1
=∑

=

N

j
ija



Observable Markov Model 
•  The stochastic process is called an observable 

model if the output of the process is the set of states 
at each instant of time, which each state corresponds 
to a physical (observable) event.  

Example: Markov Model of Whether 

State 1: rain / snow 
State 2: cloudy 
State 3: sunny 

Matrix A of state transition probabilities: 

0.4 0.3 0.3 

0.2 0.6 0.2 

0.1 0.1 0.8 

A = {aij} =  i 

j 

1 

2 3 



Observable Markov Model 
Example: Markov Model of Whether 

State 1: rain / snow 
State 2: cloudy 
State 3: sunny 

Matrix A of state transition probabilities: 

0.4 0.3 0.3 

0.2 0.6 0.2 

0.1 0.1 0.8 

A = {aij} =  i 

j 

Question:  
Given the weather on day 1 (t=1) is sunny (state 3), what is the  
probability of for the next 7 days will be “sun – sun – rain – rain 
– sun – cloudy – sun?  

1     2         3 
1 
 
2 
 
3 



Formalization 

•  Define the observation sequence O = {S3, 
S3, S3, S1, S1, S3, S2, S3} corresponding to t 
= 1, 2, .., 8.  

•  P (O | M) = P[S3, S3, S1, S1, S3, S2, S3 | Model, S3] 
                     = P[S3|S3] * P[S3|S3] * P[S1|S3] *   
                        P[S1|S1] * P[S3|S1] * P[S2|S3] * P[S3|S2] 
                     = 0.8 * 0.8 * 0.1 * 0.4 * 0.3 * 0.1 * 0.2 
                     = 1.536 * 10-4 



Web as a Markov Model 

3

6

8

2
5

4
9

1
1
0 

Which web page is most likely to be visited? (most popular?) 
Which web pages are least likely to be visited?  
 

7



Web as a Markov Model 

3

7
6

8

2
5

4
9

1
1
0 

Which one (A or B) is more likely to be visited? 
How about A and C?  

A 

B 

C 



Random Walk – Markov Model 

3

7
6

8

2
5

4
9

1
1
0 

Which one (A or B) is more likely to be visited? 
How about A or C?  

A 

B 

C 

What two things are important to the popularity of a page? 



Random Walk – Markov Model 

3

7
6

8

2
5

4
9

1
1
0 

A 

B 

C 

Randomly select an out-link to visit next page 
The probability of taking an out-link is equally  
distributed among all links 

Robot 



Page Rank Calculation 

0.1 
0.1 
0.1 
0.1 
0.1 
0.1 
0.1 
0.1 
0.1 
0.1 
 
 

Rank Vector 
1	   2	   3	   4	   5	   6	   7	   8	   9	   10	  

1	  1	   	  	   	  	   	  	   	  	   	  	   	  	   	  	   	  	   	  	  

2	  	  1	   1	   	  	   	  	   	  	   	  	   	  	   	  	   	  	   	  	  

3	  	  	   	  1/2	   1	   	  	   	  	   	  	   	  	   	  	   	  	   	  	  

4	  	  	   	  1/2	   	  	   1	   	  	   	  	   	  	   	  	   	  	   	  	  

5	  	  	   	  	   	  1	   	  1	   1	   	  1	   	  	   	  	   	  1/3	   	  	  

6	  	  	   	  	   	  	   	  	   	  	   1	   	  	   	  	   	  	   	  	  

7	  	  	   	  	   	  	   	  	   	  1/2	   	  	   1	   	  	   	  	   	  	  

8	  	  	   	  	   	  	   	  	   	  1/2	   	  	   	  	   1	   	  1/3	   	  	  

9	  	  	   	  	   	  	   	  	   	  	   	  	   	  	   	  	   1	   	  	  

10	  	  	   	  	   	  	   	  	   	  	   	  	   	  	   	  	   	  1/3	   1	  

Web Link Matrix 

Each row is in-links of a page 

X = 

0.1 
0.2 
0.15 
0.15 
0.433 
0.1 
0.15 
0.183 
0.1 
0.133 
 
 Repeat until it converges. 



Hidden Markov Models 

•  Observation is a probabilistic function of 
the state. 

•  Doubly embedded process: Underlying 
stochastic process that is not observable 
(hidden), but only be observed through 
another set of stochastic processes that 
produce the sequence of observations. 
(happy / not happy & facial expression) 



Coin Tossing Models 

•  A person is tossing multiple coins in other 
room. He tells you the result of each coin 
flip.  

•  A sequence of hidden coin tossing 
experiments is performed, with observation 
sequence consisting of a series of heads and 
tails.  

O = O1O2O3…OT = HHTTTHTTH…H 



How to Build a HMM to Model to 
Explain the Observed Sequence? 

•  What do the states in the model correspond 
to? 

•  How many states should be in the model? 



Observable Markov Model for Coin Tossing 
•  Assume a single biased coin is tossed. 
•  States: Head and Tail. 
•  The Markov model is observable, the only 

issue for complete specification of the model 
is to decide the best value of bias (the 
probability of head). 

Head 
1 

Tail 
2 

P(H) 

1-P(H) 

P(H) 

1-P(H) 

O = H H T T H T H H T T H 
S = 1   1  2 2  1 2  1  1  2 2  1 

1 parameter 



One State HMM Model  

Coin 

Head  P(H) 
Tail 1 – P(H) 

State 

Observation 

Unknown parameter is bias: P(H). Degenerate HMM 

O = H H T T H T H H T T H 
S = 1   1  1 1  1 1  1  1  1 1  1 1 parameter 



Two-State HMM 
•  2 states corresponding to two different, biased coins being 

tossed. 
•  Each state is characterized by a probability distribution of 

heads and tails. 
•  Transition between states are characterized by a state 

transition matrix. 

 

1 2 

a11 a22 

1 – a11 

1 – a22 

O = H H T T H T H H T T H 
S =  2  1  1 2  2 2  1  2  2 1 2 

P(H) = P1 
P(T) = 1 – P1 

P(H) = P2 
P(T) = 1 – P2 

4 Parameters 



Three-State HMM 

1 2 

3 

O = H H T T H T H H T T H 
S  = 3  1  2 3  3 1  1 2   3 1 3 

P(H) 
P(T) 

1        2         3 
P1     P2       P3 
1-P1 1-P2    1-P3 

a11 

a12 

a21 

a31 
a13 

a33 

a23 

a32 

a22 

9  parameters 



Model Selection 

•  Which model best match the observations? P(O|M) 
•  1-State HMM and Markov Model has one parameter.  
•  2-State HMM has four parameters. 
•  3-State HMM has nine parameters. 
•  Practical considerations impose strong limitation on 

model size. (validation, prediction performance) 
•  Constrained by underlying physical process.  



A Casino Example 

•  Play head / tail up game in Las Vegas on a 
slot machine 

•  Get head up will win 
•  Two coins: fair one and a biased one that 

has the higher probability to have tail up 
•  Can we gamble better using modeling?  



N-State M-Symbol HMM 
•  N Urns. Each Urn has a number of colored 

balls. M distinct colors of the balls.  

… 

Urn 1 Urn 2 Urn N 
P(red) = b1(1) 
P(blue) = b1(2) 
P(green) = b1(3) 
… 
P(Yellow) = b1(M) 

P(red) = b2(1) 
P(blue) = b2(2) 
P(green) = b2(3) 
… 
P(Yellow) = b2(M) 

P(red) = bN(1) 
P(blue) = bN(2) 
P(green) = bN(3) 
… 
P(Yellow) = bN(M) 

O = {green, green, blue, red, yellow, red, …., blue} 



Elements of HMM 
•  N, the number of states in the model. S = {S1, S2, …, SN}, and 

the state at time t as qt.  
•  M, the number of distinct observation symbols per state, i.e., 

the discrete alphabet size. The observation symbols 
corresponds to the physical output of the system. V = {v1, v2, 
…, VM} 

•   A, the state transition probability matrix. A = {aij}. aij = P[qt+1 
= j | qt = i}, 1 <= i, j <= N. For the special case where any state 
can reach any other state in a single step (aij>0) for all i, j.  

•  The observation symbol (emission) probability distribution in 
state j, B={bj(k)}, where bj(k) = P[vk at t | qt = sj], 1<= j <= N, 
1<= k <= M.  

•  The initial state distribution π = {πi} where πi = P[q1=Si], 1<= i 
<=N.  

•  Complete specification: N, M, A, B, and π. λ = {A, B, π} 



Given appropriate values of N, M, A, B, and π, HMM can 
be used as a generator to give an observation 
sequence: O = O1 O2 … OT.  Each Ot is one of 
symbols from V, and T is the number of observations 
in the sequence as follows: 

1.  Choose an initial state q1 = Si according to π.  
2.  Set t = 1 
3.  Choose Ot = vk according to the symbol probability 

distribution in state Si, i.e., bi(k). 
4.  Transit to a new state qt+1 = Sj according to the state 

transition probability distribution for state Si, i.e., aij. 
5.  If t < T, set t = t + 1 and return to step 3; otherwise 

terminate the procedure.   (Stop here) 

Use HMM to Generate Observations 



Three Main Problems of HMM 

1.  Given the observation O =O1O2…OT and a 
model λ = (A, B, π), how to efficiently compute 
P(O|λ)? 

2.  Given the observation O = O1O2…OT and the 
model λ, how to we choose a corresponding 
state sequence (path) Q = q1q2…qT which is 
optimal in some meaningful sense? (best explain 
the observations) 

3.  How do we adjust the model parameters λ to 
maximize P(O|λ)? 



Insights 
•  Problem 1: Evaluation and scoring (choose the 

model which best matches the observations) 
•  Problem 2: Decoding. Uncover the hidden states. 

We usually use an optimality criterion to solve this 
problem as best as possible. 

•  Problem 3: Learning. We attempt to optimize the 
model parameters so as to best describe how a given 
observation sequence comes out. The observation 
sequence used to adjust the model parameters is 
called a training sequence. Key to create best models 
for real phenomena.  



Word Recognition Example 
•  For each word of in a word vocabulary, we design a N-state 

HMM.  
•  The speech signal (observations) of a given word is a time 

sequence of coded spectral vectors (spectral code, or 
phoneme). (M unique spectral vectors). Each observation is the 
index of the spectral vector closest to the original speech 
signal. 

•  Task 1: Build individual word models by using solution to 
Problem 3 to estimate model parameters for each model. 

•  Task 2: Understand the physical meaning of model states 
using the solution to problem 2 to segment each of word 
training sequences into states and then study the properties of 
the spectral vectors that lead to the observation in each state. 
Refine model. 

•  Task 3: Use solution to Problem 1 to score each word model 
based upon the given test observation sequence and select the 
word whose score is highest.  



Solution to Problem 1 (scoring) 
•  Problem: calculate the probability of the observation 

sequence, O=O1O2…OT, given the model λ, i.e., P(O|
λ). 

•  Brute force: enumerate every possible state sequence 
of length T.  Consider one such fixed state sequence 
Q = q1q2…qT.  

    P(O|Q,λ) =                    , assuming statistical 
independence of observations. We get,  

    P(O|Q, λ) = bq1(O1) * bq2(O2) … bqT(OT).  

),|(
1

λt
T

t
t qOP∏

=



•  P(Q|λ) = πq1aq1q2aq2q3…aqT-1qT 
•  Joint probability: P(O,Q|λ) = P(O|Q,λ)P(Q|λ).  
•  The probability of O (given the model) 
P(O|λ) =  )|(),|( λλ QPQOP

allQ
∑

)()...()(
12211

21

1 21
...

Tqqqqqqq
qqq
q ObaObaOb

TTT

T

−∑= π

Time complexity: O(T * NT) 
 



Forward-Backward Algorithm 

Definition: Forward variable at(i) = P(O1,O2…Ot, 
qt=Si|λ), i.e., the joint probability of the partial 
observation O1O2…Ot and state Si at time t. 

Algorithm (inductive or recursive): 
1.  Initialization: a1(i)  = πibi(O1), 1 <= i <= N 
2.  Induction: at+1(j) =                           , 1<= t <= 

T-1, 1 <= j <= N.  
3.  Termination: P(O| λ) =  

)())(( 1
1

+
=
∑ tjij

N

i
t Obaia

)(
1

ia
N

i
T∑

=



Insights 
•  Step 1: initialize the forward probabilities as 

the joint probability of state Si and initial 
observation O1.  

•  Step 2 (induction):  

…
 

S1 
 S2 

SN 
t 

at(i) 
t+1 

at+1(j) 

Sj 

a1j 
a2j 

aNj 



Lattice View 

State 

1 
2 
. 
. 
. 
 
 
 
 
 
N 
 

Time t 
1          2          3                                                 T 



Matrix View (Implementation) 
 
π1b1(o1) 

State 
(i) 

Time (t) 
1       2   …                                                                        T 

1 
 
2 
 
 
 
 
 
 
N 

at(i): the probability of observing 
O1…Ot and staying in state i. 

Fill the matrix column by column. What other bioinformatics 
algorithm does this algorithm look like?  

∑
=

N

i
i Obai

1
2121 )()(α



Time Complexity 

•  The computation is performed for all states 
j, for a given time t; the computation is then 
iterated for t=1,2,…T-1. Finally the desired 
is the sum of the terminal forward variable 
aT(i). This is the case since aT(i) = 
P(O1O2…OT, qT = Si|λ).  

•  Time complexity: N2T.  



Insights 

•  Key: there is only N states at each time slot 
in the lattice, all the possible state sequences 
will merge into these N nodes, no matter 
how long the observation sequence.  

•  Similar to Dynamic Programming (DP 
trick). 



Backward Algorithm 

•  Definition: backward variable βt(i) = P(Ot+1Ot+2…
OT|qt=Si,λ). 

•  Initialization: βT(i) = 1, 1 <= i <= N.  (P(OT+1|
qT=Si, λ) = 1. OT+1, a dummy).  

•  Induction:  
    t = T-1, T-2, …, 1, 1 <= j <= N.  
The initialization step 1 arbitrarily defines βT(i)  to be 

1 for all i.  

)()()( 11 jObi ttjijt ++∑= βαβ



Backward Algorithm 

…
 

S1 
 S2 

SN 
t 
β t(i) 

t+1 
βt+1(j) 

ai1 
ai2 

aiN 

Time Complexity: N2T 



Solution to Problem 2 (decoding) 

•  Find the “optimal” states associated with the 
given observation sequence. There are different 
optimization criterion.  

•  One optimality criterion is to choose the states 
qt which are individually most likely. This 
optimality criterion maximizes the expected 
number of correct individual states.  

•  Definition: γt(i) = P(qt=Si|O, λ), i.e., the 
probability of being in state Si at time t, given 
the observation sequence O, and the model λ.  



Gamma Variable is Expressed by 
Forward and Backward Variables 

∑
=

== N

i
tt

tttt
t

ii

ii
OP

iii

1
)()(

)()(
)|(
)()()(

βα

βα
λ

βα
γ

The normalization factor P(O|λ) makes γt(i) a probability 
measure so that its sum over all states is 1.  



Solve the Individually Most Likely State qt  

)](max[arg
1

itq

Ni

t
γ

≤≤

=

1 <= t <= T 
This maximizes the expected number of correct states by choosing 
the most likely state for each time t. A simple join of individually 
most likely states won’t yield an optimal path.  
Problem with resulting state sequence (path) : low probability (aij is 
low) or even not valid (aij = 0).  
Reason: determines the most likely state at every instant, without 
regard to the probability of occurrence of sequences of states.  

Algorithm: for each column (t) of gamma matrix, select  element 
with maximum value 



Find the Best State Sequence (Viterbi 
Algorithm) 

•  Dynamic programming 
•  Definition:                
    the best score (highest probability) along a single 

path at time t, which accounts for the first t 
observations and ends in state Si.  

•  Induction:                                        
•  To retrieve the state sequence, we need to keep 

track of the chosen state for each t and j. We use a 
array (matrix) ψt(j) to record them.                                       

]|...,...[max)( 2121...21

λδ ttqqqt oooiqqqPi
t

==

)(])(max[)( 11 ++ = tjij
i

tt Obij αδδ



Viterbi Algorithm 

•  Initialization:  
    δ1(i)=πibi(O1),    1 <= i <= N 
    Ψ1(i) = 0.  
•  Recursion 
 
 
•  Termination 

•  Path (state) backtracking 
 

€ 

δt+1( j) =max[δt (i)α ij
1≤ i≤N

]bj (Ot+1),1≤ t ≤ T −1,1≤ j ≤ N

€ 

ψt+1( j) = argmax
1≤ i≤N

[δt (i)α ij ],1≤ t ≤ T −1,1≤ j ≤ N .

)]([max
1

* ip TNi
δ

≤≤
= )]([maxarg

1

* iq T
Ni

T δ
≤≤

=

1,...,2,1),( *
11

* −−== ++ TTtqq ttt ψ



Induction 

…
 

S1 
 S2 

SN 
t 

δt(i) 
t+1 
δt+1(j) 

Sj 

a1j 
a2j 

aNj 

Choose the transition step yielding the maximum probability. 

Si aij 



Matrix View (Implementation) 
 
π1b1(o1) 

State 
(i) 

Time (t) 
1       2   …                                                                        T 

1 
 
2 
 
 
 
 
 
 
N 

at(i): the probability of observing 
O1…Ot and staying in state i. 

Fill the matrix column by column. What other bioinformatics 
algorithm does this algorithm look like? (sequence alignment) 



Insights 

•  Viterbi algorithm is similar (except for the backtracking 
step) in implementation to the forward calculation. 

•  The major difference is the maximization over previous 
states instead of the summing procedure used in the 
forward algorithm. 

•  The same lattice / matrix structure efficiently 
implements the Viterbi algorithm.  

•  Viterbi algorithm is similar as global sequence 
alignment algorithm. (both use dynamic programming) 



Solution to Problem 3: Learning 
•  Goal: adjust the model parameters λ=(A,B,π) to 

maximize the probability (P(O|λ) ) of the 
observation sequence given the model. (called 
maximum likelihood) 

•  Bad news: No optimal way of estimating the model 
parameters to find global maxima. 

•  Good news: We can locally maximize P(O|λ) using 
iterative procedure such as Baum-Welch algorithm, 
EM algorithm, and gradient techniques.  



P(O|λ) 

λ 

Local Maxima 

Global Maxima 

Local Maxima 



Baum-Welch Algorithm 
•  Definition: ξt(i,j), the probability of being in 

state Si at time t and state Sj at time t+1, 
given the model and observation sequence, 
i.e. ξt(i,j) = P(qt=Si, qt+1=Sj|O,λ) 

Si Sj …
 

…
 

t-1 t t+1 t+2 
at(i) βt+1(j) 

aijbj(ot+1) 



From the definitions of the forward and backward 
variables, we can write ξt(i,j) in the form:  

)|(
)()()(

),( 11

λ

βα
ξ

OP
jObai

ji ttjijt
t

++=

∑∑
= =

++

++= N

i

N

j
ttjijt

ttjijt

jObai

jObai

1 1
11

11

)()()(

)()()(

βα

βα

The numerator term is just P(qt=Si, qt+1=Sj|O,λ) and 
the division by P(O|λ) gives the desired probability measure. 



Important Quantities 
•  γt(i) is the probability of being in state Si at time t, given 

the observation and the model, hence we can relate γt(i) 
to ξt(i,j) by summing over j, giving 
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= expected number of transitions from Si. 

= expected number of transitions from Si to Sj. 



Re-estimation of HMM parameters 
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A set of reasonable re-estimation formulas for π, A, and B are: 

∑

∑

=

=== T

t
t

T

VOtst
t

j

j
kt

1

..,1

)(

)(

γ

γ

= expected frequency (number of times) in state Si at time (t=1) = γ1(i) 

Expected number of transitions from state Si to state Sj 

Expected number of transitions from state Si. 

bj(k) = 
expected number of times in state j and observing symbol vk  

expected number of times in state j  



Baum-Welch Algorithm 

•  Initialize model λ = (A,B,π)  
•  Repeat 
E-step: Use forward/backward algorithm to expected 

frequencies, given the current model λ and O. 
M-step: Use expected frequencies compute the new 

model λ. 
If (λ = λ), stops, otherwise, set λ = λ and go to repeat. 
 The final result of this estimation procedure is called a maximum 

likelihood estimate of the HMM. (local maxima) 



Local Optimal Guaranteed 

If we define the current model as λ=(A,B,π) 
and use it to compute the new model 
λ=(A,B,π), it has been proven by Baum et 
al. that either 1) initial model λ defines a 
critical point, in which case λ = λ; or 2) λ is 
more likely than λ in the sense that P(O| λ) 
> P(O| λ), i.e., we have found a new model 
λ from which the observation sequence is 
more likely to have been produced.  



P(O|λ) 

λ 

Local Maxima 

Global Maxima 

Local Maxima 

Hill Climbing 

Likelihood monotonically crease per iteration until it converges to local 
maxima. 



P(O|λ) 

Likelihood monotonically increases per iteration until it converges to local 
maxima. It usually converges very fast in several iterations.  

Iteration 



Another Way to Interpret the Re-
estimation Formulas 

The re-estimation formulas can be derived by maximizing 
(using standard constrained optimization techniques) 
Baum’s auxiliary function (auxiliary variable Q): 
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It has been proven that the maximization of the auxiliary function 
leads to increased likelihood, i.e.  

The selection Q is problem-specific. 



Relation to EM algorithm 

•  E (expectation) step is the computation of 
the auxiliary function Q(λ, λ) (averaging). 

•  M (maximization) step is the maximization 
over λ. 

•  Thus Baum-Welch re-estimation is 
essentially identical to the EM steps for this 
particular problem.  



Insights 
•  The stochastic constraints of the HMM 

parameters, namely  
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are automatically satisfied at each iteration.  By looking at  
the parameter estimation problem as constrained optimization 
of P(O| λ) subject to the above constraints, the techniques of 
of Lagrange Multipliers can be used to find the values of  
πi, aij, and bj(k) which maximize P (use P to denote P(O| λ).  
The same results as Baum-Welch’s formula’s will be reached. 
Comments: since the entire problem can be set up as an  
optimization problem, standard gradient techniques can be used  
to solve for “optimal” value too. 



Types of HMM 
Ergodic model has property that every state can be reached from 

every other state.  
Left-right model: model has the properties that as time 

increases the state index increases (or stay the same), i.e., the 
states proceeds from left to right. (model signals whose 
properties change over time (speech or biological sequence). 

    Property 1: aij = 0, i > j. 
    Property 2: π1 = 1, πi = 0 (i≠1).  
    Optional constraints: aij = 0, j > i + Δ, make sure large change 

of state indices are not allowed.  
    For the last state in a left-right model, aNN = 1, aNi = 0, i < N. 



One Example of Left-Right HMM 
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Imposition of constraints of the left-right model essentially has 
no effect on the re-estimation procedure because any HMM 
parameter set to zero initially, will remain at zero.  



HMM for Continuous Signals 

•  In order to use a continuous observation 
density, some restrictions have to be placed 
on the form of the model probability density 
function (pdf) to insure the parameters of 
the pdf can be re-estimated in a consistent 
way. Use a finite mixture of Gaussian 
distributions are used.  (see the Rabiner’s 
paper for more details). 



Implementation Issue 1: Scaling 
•  To compute at(i) and bt(i), Multiplication of a large number 

of terms (probability), value heads to 0 quickly, which 
exceed the precision range of any machine. 

•  The basic procedure is to multiply them by a scaling 
coefficient that is independent of i (i.e., it depends only on 
t).  Logarithm cannot be used because of summation. But 
we can use   

                  
   Ct will be stored for the time points when the scaling is 

performed. Ct is used for both at(i) and bt(i). The scaling 
factor will be canceled out for parameter estimation.  

•  For Viterbi algorithm, use logarithm is ok.  
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Implementation Issue 2: Multiple 
Observation Sequence 

•  Denote a set of K observation sequences as 
O = [O(1),O(2),…,O(k)]. Assume the observed 
sequences are independent. 

•  The re-estimation of formulas for multiple 
sequences are modified by adding together 
the individual frequencies for each 
sequence. 



•  Adjust the parameter 
of model λ to 
maximize:  
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πi is not re-estimated since π1 = 1, πi = 0, i ≠ 1 for left-
right HMM.  



Initial Estimate of HMM Parameters 

•  Random or uniform initialization of π and A is 
appropriate. 

•  For emission probability matrix B, good estimate 
is helpful in discrete HMM, and essential in 
continuous HMM. Initially segment sequences 
into states and then compute empirical emission 
probability. 

•  Initialization (or using prior) is important when 
    there is no sufficient data (pseudo counts, 

Dirichilet Prior). 


