Statistical Machine Learning Methods for Bioinformatics II. Hidden Markov Model for Biological Sequences

Jianlin Cheng, PhD
Department of Computer Science \& Informatics Institute

University of Missouri 2012

Application of HMM in Biological Sequence Analysis

- Gene prediction
- Protein sequence modeling (learning, profile)
- Protein sequence alignment (decoding)
- Protein database search (scoring, e.g. fold recognition)
- Protein structure prediction

Motif and Gene Structure

Intergenic region
Intron

actcgtcggggcgtacgtacgtaacgtacgtaacttgaggtacaaaattcggagcactgttgagcgacaagtactgctatacataggttacgtacaaa

Binding site (or motif)

HMM has been used for modeling binding site and gene structure prediction.

GENSCAN

(genes.mit.edu/GENSCAN.html)
Simplified State Transition Diagram of GenScan.

Model Protein Family (Profile HMM)

- Create a statistical model (HMM) for a group of related protein sequences (e.g protein family)
- Identify core (conserved) elements of homologous sequences
- Positional evolutionary information (e.g. insertion and deletion)

Example: Hemoglobin Transports Oxygen

Why do We Build a Profile (Model)?

- Understand the conservation (core function and structure elements) and variation
- Sequence generation
- Multiple sequence alignments
- Profile-sequence alignment (more sensitive than sequence-sequence alignment)
- Family / fold recognition
- Profile-profile alignment

Protein Family

seq1 VRRNNMGMPLIESSSYHDALFTLGYAGDRISQMLGMRLLAQGRLSEMAGADALDV seq2 NIYIDSNGIAHIYANNLHDLFLAEGYYEASQRLFEIELFGLAMGNLSSWVGAKALSS seq3 SAETYRDAWGIPHLRADTPHELARAQGTARDRAWQLEVERHRAQGTSASFLGPEALSW seq4 DRLGVVTIDAANQLDAMRALGYAQERYFEMDLMRRAPAGELSELFGAKAVDL
seq1 ---VRRNNMGMPLIESSSYHDALFTLGY--AGDRISQMLGMRLLAQGRLSEMAGADALDV seq2 --NIYIDSNGIAHIYANNLHDLFLAEGYYEASQRLFEIELFG-LAMGNLSSWVGAKALSS seq3 SAETYRDAWGIPHLRADTPHELARAQGT--ARDRAWQLEVERHRAQGTSASFLGPEALSW seq4 ------DRLGVVTIDAANQLDAMRALGY--AQERYFEMDLMRRAPAGELSELFGAKAVDL

Imagine these sequences evolve from a single ancestral sequence and undergo evolutionary mutations. How to use a HMM to model?

Key to Build a HMM is to Set Up States

- Think about the positions of the ancestral sequence is undergoing mutation events to generate new sequences in difference species. A position can be modeled by a dice.
- Match (match or mutate): the position is kept with or without variations / mutations.
- Delete: the position is deleted
- Insert: amino acids are inserted between two positions.

Hidden Markov Model

Each match state has an emission distribution of 20 amino acids; one match state for a position.

Hidden Markov Model

Each match state has an emission distribution of 20 amino acids. Deletion state is a mute state (emitting a dummy)

Hidden Markov Model

Each match state has an emission distribution of 20 amino acids. Each insertion state has an emission distribution of 20 amino acids. Variants of architecture exist. (see Eddy, bioinformatics, 1997)

Hidden Markov Model

How many states? (M positions: length of model) M (match) +M (deletion) $+(\mathrm{M}+1)$ (insertion) $+2=3 \mathrm{M}+3$

Hidden Markov Model

How many transitions? (M positions: length of model) Deletion: 3M-1, Match: 3M-1, Insertion: 3(M+1) - 1, B/E: 3
Total $=9 \mathrm{M}+3$.

Hidden Markov Model

How many emissions? (M positions: length of model) $\mathrm{M} * 20($ match $)+(\mathrm{M}+1) * 20($ insertion $)=40 \mathrm{M}+20$

Initialization of HMM

- How to decide model length (the number of match states)?
- How to initialize transition probabilities?
- How to initialize emission probabilities?

How to Decide Model Length?

- Learn: Use a range of model length (centered at the average sequence length). If transition probability from a match $\left(\mathrm{M}_{\mathrm{i}}\right)$ state to a delete state $\left(D_{i+1}\right)>0.5$, remove the M_{i+1}. If transition probability from a match $\left(\mathrm{M}_{\mathrm{i}}\right)$ state to an insertion state $\left(\mathrm{I}_{\mathrm{i}+1}\right)>0.5$, add a match state.
- Get from multiple alignment: assign a match state to any column with $<50 \%$ gaps.

How to Initialize Parameters?

- Uniform initialization of transition probabilities is ok in most cases.
- Uniform initialization of emission probability of insert state is ok in many cases.
- Uniform initialization of emission probability of match state is bad. (lead to bad local minima)
- Using amino acid distribution to initialize the emission probabilities is better. (need regularization / smoothing to avoid zero)

Initialize from Multiple Alignments

```
seq1 ---VRRNNMGMPLIESSSYHDALFTLGY--AGDRISQMLGMRLLAQGRLSEMAGADALDV
seq2 --NIYIDSNGIAHIYANNLHDLFLAEGYYEASQRLFEIELFG-LAMGNLSSWVGAKALSS
seq3 SAETYRDAWGIPHLRADTPHELARAQGT--ARDRAWQLEVERHRAQGTSASFLGPEALSW
seq4 ------DRLGVVTIDAANQLDAMRALGY--AQERYFEMDLMRRAPAGELSELFGAKAVDL
```

First, assign match / main states, delete states, insert states from MSA Get the path of each sequence
Count the amino acid frequencies emitted from match or insert states, which are converted into probabilities for each state (need smoothing/ regularization / pseudo-count).
Count the number of state transitions and use them to initialize transition probabilities.

Estimate Parameters (Learning)

- We want to find a set of parameters to maximize the probability of the observed sequences in the family: maximum likelihood: P (sequences \mid model $)=$ P (sequence $1 \mid$ model $) * \ldots$ * P (sequence $\mathrm{n} \mid$ model).
- Baum-Welch's algorithm (or EM algorithm) (see my previous lectures about HMM theory)

Demo of HMMER (learning)

3. HMMER: biosequence analysis using profile hidden Markov mode
File Edit View History Bookmarks Iools Help
HMMER biosequence analysis using profile hidden Markov models

- \downarrow [G•Google

HMMER:

Overview
Documentation
Download
Contributions
old versions
Support
Reporting bugs
Acknowledgements
Commercial versions:
Accelrys
Southwest Parallel
The Pfam Consortium:
Janelia Farm
Cambridge
Stockholm
Paris
South Korea

Hardware support
IBM
Silicon Graphics
Hewlett/Packard Sun Microsystems Intel
Paracel
Past funding: ннмI

Overview

Profile hidden Markov models (profile HMMs) can be used to do sensitive database searching using statistical descriptions of a sequence family's consensus. HMMER is a freely distributable implementation of profile HMM software for protein sequence analysis.

The current version is HMMER 2.3.2 (3 Oct 2003), containing minor bugfixes and updates for the May 2003 release of HMMER 2.3.

Documentation

Text files associated with the HMMER 2.3 .2 release: [README] [Installation] [Release notes] [License summary] [GNU General Public License]
The HMMER User's Guide: [PDF, 94 pages]
The theory behind profile HMMs: R. Durbin, S. Eddy, A. Krogh, and G. Mitchison, Biological sequence analysis: probabilistic models of proteins and nucleic acids, Cambridge University Press, 1998 . Other publications from the Eddy group.

Download

The current source code version: hmmer-2.3.2.tar.gz.
For precompiled binaries, see the table below. All distributions below come with full source code, the User's Guide (PDF format), UNIX man pages, and other documentation. Once you download, uncompress (gunzip), and un-tar (tar xf), see the file INSTALL for quick installation instructions.

HMMER should compile cleanly on any UNIX platform, including Mac OS/X. It should also compile on Microsoft Windows platforms, but you would have to work around the GNU configure script and UNIX makefiles Porting to other non UNIX operating systems such as VAX/VMS should not be difficult. The code is standard ANSI/POSIX C.

All binary distros are compiled with posix threads support for multiprocessors (--enable-threads), and support for 64 -bit filesystems (--enable-lfs). Details on the host machine, os, configuration options, compiler, and compiler options are provided below each link. PVM support for clusters (--enable-pvm) is only compiled into the GNU/Linux distribution; build from source code if you want PVM support for other platforms.

If you are compiling on a host that we don't have a binary distro for, and you want to contribute a binary distro for us to post here, please see these notes on how to do it.

AMD Opteron/Linux

Download: hmmer-2.3.2.bin.amd-opteron-64-suse-linux.tar.gz
Opteron $242,2 \times 1.6 \mathrm{GHz}$; SUSE Linux; GCC 3.3.3; --enable-threads --enable-ffs
[Contributed by Martin Gollery, University of Nevada, Reno.]
RPMs built with the Portland Group C compiler are also available from Joe Landman and Scalable Informatics, LLC

Done
$4 y$ start?
armbinio 国 Mcrosot Power...

Visualization of Features and Structure in

 HMM

Myoglobin protein family. How to interpret it?

Demo of HMMEditor

-

J. Dai and J. Cheng. HMMEditor: a visual editing tool for profile hidden Markov model. BMC Genomics, in press, 2007.
Tool: http://casp.rnet.missouri.edu/hmmeditor// (data in /mlbioinfo/, 1MSB)
Paper: http://www.biomedcentral.com/qc/1471-2164/9/S1/S8

Protein Family Profile HMM Databases

- Pfam database (Sonnhammer et al., 1997, 1998) (domain database) (http:// pfam.wustl.edu/)
- PROSITE profiles database (Bairoch et al., 1997) (motif database)

What Can We Do With the HMM?

- Recognition and classification. Widely used for database search: does a new sequence belong to the family? (database search)
- Idea: The sequences belonging to the family (or generated from HMM) should receive higher probability than the sequence not belong to the family (unrelated sequences).

Two Ways to Search

- Build a HMM for each family in the database. Search a query sequence against the database of HMMs. (Pfam)
- Build a HMM for a query family, and search HMM against of a database of sequences

Compute P(Sequence | HMM)

- Forward algorithm to compute P (sequence model)
- We work on: $-\log (\mathrm{P}($ sequence $\mid \mathrm{M})$: distance from the sequence to the model. (negative log likelihood score)
- Unfortunately, $-\log (\mathrm{P}($ sequence $\mid \mathrm{M})$ is length dependent. So what can we do?

Normalize the Score into Z-score

- Search the profile against a large database such as Swiss-Prot
- Plot $-\log (\mathrm{P}$ (seuqence|model), NLL scores, against sequence length.

Figure 9. Scatter plot of NLL-score versus length for sequences in SWISS-PROT using the Kinase HMM.
NLL score is linear to sequence length.
NLL scores of the same family is lower than un-related sequences We need normalization.

Figure 9. Scatter plot of NLL-score versus length for sequences in SWISS-PROT using the Kinase HMM.

NULL model of unrelated sequences:

Length	Mean (u)	$\operatorname{Std}(\sigma)$
100	500	5
101	550	6

Extreme Value Distribution (Karlin and Altschul)
 http://www.people.virginia.edu/~wrp/csh102/Altschul/Altschul-3.html

\log-odds score $=\log (\mathrm{P}($ seq $\mid \lambda) / \mathrm{P}($ seq \mid null $))$
$P(S \geq x)=1 \cdot \exp p-\left(-m n e^{-i-x}\right)$

P-value

E-value

K and lamda are statistical parameters. m, n model and sequence length.

HMMer search demo (casp.rnet.missouri.edu/ mlbioinfo)

Project I: Soybean Protein Classification

- 2000 Transcription Factors (proteins) in Arabidopsis
- These sequences are clustered into 64 families by biologists (known)
- 4000 new proteins in Soybean?
- How to assign them into those families?
- Do you need to use a multiple sequence alignment tool?
http://casp.rnet.missouri.edu/mlbioinfo/soybean_data/

Iterative Data Search (SAM)

- Use BLAST to search a query sequence database to gather an initial MSA
- Repeat

Build an HMM from MSA (training)
Search the HMM against sequence database to get more related sequences
Create a new MSA from all related sequences

- Until a predefined number of iterations or no new sequences are found.
(Idea is very similar as PSI-BLAST)

Process or Function Prediction

- Check if a sequence is in the same family (or superfamily) as the protein family (superfamily) used to build the profile HMM.
- If they are in the same family, they will share the similar protein structure (fold), possibly protein function.
- The known structure can be used to model the structure of the proteins without known structure.
- The known function can be used to predict function.

Insight II: Evaluating a Sequence Against a HMM is Sequence-Profile Alignment

- Align a query sequence against a HMM of the target sequence to get the most likely path (Viterbi algorithm) (or vice versa)
- Match the path of the query sequence with the path of the target sequence, we get their alignment.
- Represented work: SAM or HMMER.

Pairwise Alignment via HMM

Seq 1: ATGR KE
Path: $M_{1} I_{1} I_{1} M_{2} D_{3} \quad M_{4} I_{4}$

Seq 2: V C K E R P
Path: $\begin{array}{lllll}M_{1} & I_{1} & M_{2} & M_{3} & M_{4}\end{array}$

\downarrow

Path: $\mathrm{M}_{1} \quad \mathrm{M}_{2} \quad \mathrm{M}_{3} \quad \mathrm{M}_{4}$
Seq 1: A TG R - K E
Seq 2: V C - K E R P

HMM for Multiple Sequence Alignment

- Build a HMM for a group of sequences
- Align each sequence against HMM using Viterbi algorithm to find the most likely path. (dynamic programming)
- Match the main/match states of these paths together.
- Add gaps for delete states
- For insertion between two positions, use the longest insertion of a sequence as template. Add gaps to other sequence if necessary. (see Krogh' s paper)

Demo for Multiple Sequence Alignment Using HMMEditor

How About Evaluating the Similarity between HMMs?

- Can we evaluate the similarity of two HMMs?
- Can we align two profile HMMs? (profileprofile alignment). Compare HMM with HMM.

HMM-HMM Comparison Profile-Profile Alignment

J. Soeding, Bioinformatics, 2005

COACH Approach

- Given two families of sequences, build a multiple alignment (MSA) for each one of them.
- Build HMM from one MSA
- Align another MSA against the HMM. (match each column of amino acids against states in the HMM)

How to Do Local Alignment

- COACH approach

With respect to sequence: add an insertion state right after the start state and right before the end state.
With respect to HMM: start state can jump to any match state and any match state can jump to end state.

Sequence Weighting

- Henikoff-Henikoff: sum of position-based weight. For each position, each type of amino acid is assigned weight 1 . The weight is of each amino acid is 1 / frequency of the amino acid at the position. The weight of a sequence is the sum of positional weights. (gap is not counted. A position with more than 50% gaps may be removed from counting.) An easy, useful algorithm
- Tree algorithm: construct a phylogenetic tree. Start from root, weight 1 flows down. At any branch, the weight is cut to half.

Pseudo-Count

- PSI-BLAST pseudo-count
(Altschul et al., 1997)
For each position of PSSM, score is $\log \left(\mathrm{Q}_{\mathrm{i}} /\right.$ $\left.P_{i}\right) . Q_{i}$ is the estimated probability of residue i to be found in the column. P_{i} is the background probability.
Small sample size require prior knowledge of residue i to better estimate Q_{i}. Best method is Dirichlet Mixtures. A very good and simple method is a data-dependent pseudocount method. This method uses the prior knowledge of amino acid relationships embodied in the substitution matrix S_{ij} to generate residue pseudocount frequencies g_{i}. (f_{j} is the frequency of residue j). α is set to $\mathrm{Nc}-1$ (Nc is the number of columns). β is set

$$
\begin{aligned}
& g_{\mathrm{i}}=\sum_{j} \frac{f_{\mathrm{j}}}{P_{\mathrm{j}}} q_{\mathrm{ij}} \\
& s_{\mathrm{ij}}=\left[\ln \left(q_{\mathrm{ij}} / P_{\mathrm{i}} P_{\mathrm{j}}\right)\right] / \lambda_{\mathrm{u}:} \\
& q_{\mathrm{ij}}=P_{\mathrm{i}} P_{\mathrm{j}} e^{\lambda_{\mathrm{u}} s_{\mathrm{ij}}} \\
& Q_{\mathrm{i}}=\frac{\alpha f_{\mathrm{i}}+\beta g_{\mathrm{i}}}{\alpha+\beta}
\end{aligned}
$$

Null Model

- Background null model (log-odds)
- Reverse null model (SAM)
- Sum of log-odds score of local alignment obeys extreme-value distribution (same as PSI-BLAST): good for estimating the significance of sequence-HMM match.
- Sum of log-odds score of global alignment is length dependent.

HMM Software and Code

- HMMER: http://hmmer.wustl.edu
- SAM: http://www.cse.ucsc.edu/research/combio/sam.html
- HHSearch: http://toolkit.tuebingen.mpg.de
- PRC-HMM: http://supfam.mrc-lmb.cam.ac.uk/PRC/
- COACH: http://www.drive5.com/lobster/
- HMM-HMM comparison: http://www.brics.dk/ ~cstorm/hmmcomp/
- MUSCLE: http://www.drive5.com/muscle/

Project 2: Multiple Sequence Alignment Using HMM

- Dataset: BaliBASE: http://www-bio3d-igbmc.u-strasbg.fr/balibase/
- Generate multiple alignment using Clustalw (http://www.ch.embnet.org/software/ClustalW.html) for a family of sequences
- Construct a HMM for a family of sequences (initialization, number of states)
- Estimate the parameters of HMM using the sequences
- Analyze the emission probability of states (visualization)
- Analyze the transition probability between states (visualization)
- Compute the probability of each sequence
- Generate multiple sequence alignments and compare it with the initial multiple alignment
- Implement your own HMM or use open source code.

Reference: A. Krogh et al, JMB, 1994 and open source HMM. J. D. Thompson, F. Plewniak and O. Poch. Bioinformatics, 1999

