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Opening Statements

• These slides are just a quick introduction to the 
Bayesian networks and their applications in 
bioinformatics due to the time limit. 

• For the in-depth treatment of Bayesian networks, 
students are advised to read the books and papers 
listed at the course web site  and the Kevin 
Murphy’s introduction. 

• Thanks to Kevin Murphy’s excellent introduction 
tutorial: http://www.cs.ubc.ca/~murphyk/Bayes/bnintro.html



Definition of Graphical Model

• Probabilistic graphical models are graphs in 
which nodes represent random variables, 
and the (lack of) arcs represent conditional 
independence.

• It provides a compact representation of joint 
probability distribution



Markov Random Fields

• Undirected graphical models (also called 
Markov networks)

• Two sets of nodes A and B are 
conditionally independent give a third set C 
if all paths between A and B are separated 
by a node C. 

• Popular with the physics and vision 
communities. 



A BC

A  ┴ B  | C



Bayesian Networks

• Directed graphical models (also called 
Belief Networks)

• Popular with AI and statistics communities.

• A model with both directed and undirected 
arcs is called a chain graph



Comparison of Directed and 
Undirected Graphical Models

• Independence relationship of directed graph 
is more complicated.

• A -> B can encode causal relationship

• Directed models can encode deterministic 
relationship, and are easier to learn (fit to 
data). 



Advantages of BN

• Compact & intuitive representation

• Captures causal relationships

• Efficient model learning (parameters and 
structure)

• Deals with noisy data

• Integration of prior knowledge

• Effective inference algorithms

N. Friedman, 2005



Conditional Probability Distribution

• Discrete variable: CPT, conditional 
probability table

Cloudy

Sprinklet Rain

WetGrass

P(C=F)     P(C=T)
0.5            0.5

C      P(S=F)    P(S=T)
F      0.5           0.5
T      0.9          0.1

C    P(R=F)  P(R=T)
F    0.8         0.2
T    0.2         0.8

S   R     P(W=F)  P(W=T)
F   F     1.0          0.0
T  F      0.1         0.9
F  T      0.1         0.9
T   T     0.01       0.99



The Simplest Conditional 
Independence in BN

• A node is independent of its ancestors given its 
parents, where the ancestor / parent relationship is 
with respect to some fixed topological ordering of 
the nodes

• The joint probability is the product of the 
conditional probability

• For previous examples: P(C, S, R, W) = P(C) * 
P(S|C) * P(R|C,S) * P(W|C, S, R) = P(C) * P(S|C) 
* P(R|C) * P(W|S,R). 



Compact Representation of Joint 
Probability

• In general, if we had n binary nodes, the full 
joint would require O(2n) space to represent, 
assuming each node has two possible 
values. But the factored form would require 
O(n2k) space to represent, where k is the 
maximum fan-in of a node. 

• Fewer parameters makes learning easier. 



Inference

• Probabilistic inference is one of the most 
common tasks we wish to solve using BN. 

• Question: Suppose we observe the fact that 
the grass is wet. There are two possible 
causes for this: either it is raining, or the 
sprinkler is on. Which is more likely?

• We can use Bayes’s rule to compute the 
posterior probability of each explanation. 



P(W=1) is a normalizing constant, equal to the probability (likelihood)
of the data. So we see it is more likely that the grass is wet because
it is raining. 



Explaining Away

• S and R are the two causes competing to explain 
the observed data. 

• So if w is not observed, S and R are marginally 
independent. 

• If w is observed, S and R become conditionally 
dependent. P(S=1|W=1, R=1) = 0.1945  < 
P(S=1|W=1)

• This is called “explaining away”. In statistics, it is 
known as Berkson’s paradox, or “selection bias”. 



Top-Down and 
Bottom-Up Reasoning

• Bottom up: In the water sprinkler example, 
we had evidence of an effect (wet grass), 
and inferred the most likely cause.

• Top down: We can compute the probability 
that the grass will be wet given that it is 
cloudy. (how causes generate effects). 



Conditional Independence in BN

• Bayes Ball algorithm (due to Ross Shachter)

• Two (sets of) nodes A and B are conditionally 
independent (d-separated) given a set of C if 
and only if there is no way for a ball to get 
from A to B in a graph, where the allowable 
movements of ball are shown in the following 
figures. 



In the first column, when we have two arrows converging on
a node X. If X is hidden, its parents are marginally independent.
But if X is observed, the parents become dependent, and
the ball pass through. Why?



Comments

If the previous graph is 
undirected, the child would 
always separate the parents; 
hence when converting a 
directed graph to an undirected 
graph, we must add links 
between “unmarried” parents 
who share a common child (i.e., 
“moralize” the graph) to prevent 
us reading off incorrect 
independence statements. 

A B

C



Example

A B

C

D

Is A independent B given D?

A B

C

D

Is A independent of B given C



Bayes Nets with Discrete and 
Continuous Nodes

• It is possible to create Bayesian networks with 
continuous valued nodes. The most common 
distribution for such variable is the Gaussian.

• For discrete nodes with continuous parents, we 
can use logistic / softmax distribution. 

• Using multinomial, conditional Gaussians, and 
softmax distribution, we can have a rich toolbox 
for making complex models. 

• For a good review: A Unifying Review of Linear 
Gaussian Models, S. Roweis & Z. Ghahramani. 
Neural Computation, 1999. 



Dynamic Bayesian Networks

• DBNs are directed graphical models of 
stochastic processes. 

• Examples: hidden Markov models and 
linear dynamical systems.



Hidden Markov Model (A New View)

q1 q2 q3 q4 …

x1 x2 x3 x4

We have “unrolled” the model for 4 “time slices”  -- the structure
and parameters are assumed to repeat as the model is unrolled 
further. Hence to specify a DBN, we need to define the intra-slice
topology (within a slice), the inter-slice topology (between two
slices). 





Linear Dynamic Systems (LDSs) 
and Kalman Filters

• A linear dynamical system (LDS) has the 
same topology as an HMM, but all nodes 
are assumed to have linear-Gaussian 
distributions, i.e., x(t+1) = A*x(t) + w(t), w 
~ N(0, Q), x(0) ~ N (init_x, init_v), y(t) = 
C*x(t) + v(t), v ~ N(0, R)



The Kalman filter has been proposed as a model for how the 
Brain integrates visual cues over time to infer the state of the
World, although the reality is obviously more complicated. 
Kalman filter is also used in tacking of objects. 





Efficient Inference Algorithms
• A simple summation of joint probability 

distribution (JPD) over all variables can 
answer all possible inference queries by 
marginalization, but takes exponential time. 

• For a Bayes net, we can sometime use the 
factored representation of the JPD to do 
marginalization efficiently. The key idea is to 
“push sums” as far as possible when 
summing out irrelevant terms. 



Variable Elimination: Water Sprinkler Network



• The principle of distributing sums over 
products can be generalized greatly to apply to 
any commutative summing. This forms the 
basis of many common algorithms, such as 
Viterbi decoding and the Fast Fourier 
Transform.

• The amount of work we perform when 
computing a marginal is bounded by the size 
of the largest term that we encounter. 
Choosing a summation (elimination) ordering 
to minimize this is NP-hard, although greedy 
algorithms work well in practice.  



Dynamic Programming and Local 
Message Passing

• To compute several marginals at the same time, 
we can use DP to avoid redundant computation 
that would be involved if we used variable 
elimination repeatedly. 

• If the underlying undirected graph of the BN is 
acyclic (i.e. a tree), we can use a local message 
passing algorithm due to Perl. It is a generalization 
of the well-known forwards-backwards algorithm 
for HMMs (chains). 



Local Message Passing 
• If the BN has undirected cycles (as in the water sprinkler 

example), local message passing algorithms run the risk of 
double counting (e.g. the information from S and R 
flowing into W is not independent, because it came from a 
common cause, C). 

• The most common approach is therefore to convert the BN 
into a tree, by clustering nodes together, to form what is 
called a junction tree, then running a local message 
passing algorithm on the tree.

• The running time of the DP algorithm is exponential in the 
size of the largest cluster (these clusters correspond to the 
intermediate terms created by variable elimination). The 
size is called the induced width of the graph. Minimizing 
this is NP hard. 



Approximation Algorithms

• Exact inference is still very slow in some 
practical problems such as multivariate 
time-series or image analysis due to large 
induced width. 

• Major approximation techniques: 
Variational methods, Sampling (Monte 
Carlo) methods, loopy belief propagation



Learning  of BN

• The graph topology of BN

• The parameters of each CPD

• Learning structure is much harder than 
learning parameters

• Learning  when some of nodes are hidden 
or we have missing data, is much harder 
than when everything is observed. 



Known Structure, Full Observability

• Maximize log-likelihood 
of training data D is sum 
of terms, one for each 
node: 

• Maximize the contribution 
of the log-likelihood of 
each node independently. 
For discrete variables, we 
just simply count the 
observations. 



Known Structure, Partial Observability

• When some nodes are hidden, we can use 
EM algorithm to find a locally optimal 
Maximum Likelihood Estimate of the 
parameters

• For instance, Welch-Baum algorithm for 
HMM learning. (see slides of HMM theory)



More Complicated Learning

• Unknown structure, full observability (model 
selection, search the best model is NP hard. Number 
of DAGs on N variables is super-exponential in N)

• Unknown structure, partial observability (Search + 
EM algorithm)

• Further reading on learning:
(1) W. L. Buntine, Operations for Learning with 
Graphical Models, J. AI Research, 1994
(2) D. Heckerman, A tutorial on learning with 
Bayesian networks, 1996. 



General Application Examples

• Microsoft Answer Wizard of Office 95, 97 and 
over 30 technical support troubleshooters

• Vista system by Eric Horvitz, a decision-theoretic 
system that has been used at NASA mission 
control center in Houston for several years. 
(provide advices on the likelihood of alternative 
failures of the space shuttle’s propulsion systems)

• Quick medical reference model:  model the 
relationship between diseases and symptoms.



Infer the posterior probability P( disease | symptom )



Discovery of Regulatory Mechanism 
/ Network of Genes

• A long term goal of Systems Biology is to 
discover the causal processes among genes, 
proteins, and other molecules in cells

• Can this be done (in part) by using data from high 
throughput experiments, such as microarrays?

• Clustering can group genes with similar 
expression patterns, but does not reveal structural 
relations between genes

• Bayesian Network (BN) is a probabilistic 
framework capable of learning complex relations 
between genes



Learning BN from Gene Expression 
Data

Measured expression level of
each gene (discretized)

Random variables
Affecting on another

Data + Prior Information

Learn parameters (conditional probabilities) from data
Learn structure (casual relation) from data
Make inference given a learned BN model

N. Friedman, 2005



Gene Bayesian Network 

Gene E Gene B 

Gene D Gene A

Gene C

Qualitative Part:
Directed acyclic Graph (DAG)
• Nodes – random variables
•Edges – direct (causal)
influence

E     B   |   P(A|E,B)
|   1         0

0      1   |   0.9     0.1
1 0   |   0.2     0.8
1      1   |   0.9     0.1
0      0   |   0.01    0.99

Quantitative part
•Local conditional 
probability



Challenges of Gene Bayesian Network

• Massive number of variables (genes)

• Small number of samples (dozens)

• Sparse networks (only a small number of 
genes directly affect one another)

• Two crucial aspects: computational 
complexity and statistical significance of 
relations in learned models

N. Friedman, 2005



Solutions

• Sparse candidate algorithm (by Nir Friedman): 
Choose a small candidate set for direct influence 
for each gene. Find optimal BN constrained on 
candidates. Iteratively improve candidate set. 

• Bootstrap confidence estimate:  use re-sampling 
to generate perturbations of training data. Use the 
number of times a relation (or feature) is repeated 
among networks learned from these datasets to 
estimate confidence of Bayesian network features.



Data: 76 samples of 250 cell-cycle related genes in yeast genome
Discretized into 3 expression levels. Run 100 bootstrap using sparse learning algorithm.
Compute the confidence of features (relations). Most high confident relations make bio-senses.

N. Friedman, 2005



Important References: BN in 
Bioinformatics

• N. Friedman. Inferring cellular networks 
using probabilistic graphical models, 
Science, v303 p799, 6 Feb 2004. 

• E. Segal et al.. Module networks: identifying 
regulatory modules and their condition-
specific regulators from gene expression 
data. Nature Genetics, 2003. 


