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ABSTRACT Hidden Markov model (HMM) techniques
are used to model families of biological sequences. A smooth
and convergent algorithm is introduced to iteratively adapt the
transition and emission parameters of the models from the
examples in a given family. The HMM approach is applied to
three protein families: globins, immunoglobulins, and kinases.
In all cases, the models derived capture the important statistical
characteristics of the family and can be used for a number of
tasks, including multiple alignments, motif detection, and
classification. For K sequences of average length N, this
approach yields an effective multiple-alignment algorithm
which requires O(KN2) operations, linear in the number of
sequences.

Comparative analysis of primary sequence information is a
major tool in the elucidation of the molecular mechanisms of
replication and evolution of organisms and the structure and
function of proteins. For the simple case of pairwise se-
quence comparison, good algorithms exist (see refs. 1 and 2
for recent reviews) that can align two sequences of length N
in roughly O(N2) steps. Most of these algorithms are based
on dynamic programming (3), with location-independent sub-
stitution and gap penalties. Unfortunately, when dynamic
programming is applied to a family of K sequences its
behavior scales like O(NK), exponentially in the number of
sequences (4).
A number of algorithms have been devised to try to tackle

the multiple alignment problem (see refs. 5-7 for some of the
most recent ones). Most protein sequence relationships ex-
hibiting >50%o identical residues can be aligned by several of
these algorithms. Many of the most interesting protein fam-
ilies, however, exhibit conservation far below 50%o identity.
To date, alignment methods have not been developed that
can correctly identify all the motifs that define each protein
family (2).

Here, we apply a different approach, based on hidden
Markov models (HMMs), to the problem of modeling and
aligning a family by using primary structure information only.
Initial results were presented (8). Markov models and the
related expectation-maximization (EM) (9) algorithm in sta-
tistics have already been applied to biocomputational prob-
lems (10-13). Krogh et al. (14) were the first to demonstrate
the power of a similar method on the globin family. Rather
than starting from pairwise alignments, the approach seeks to
take advantage of the massive amount of information typi-
cally present in a family with a flexible use of position-
dependent parameters. A new algorithm is introduced for the
iterative adjustments of the parameters of the models. The
algorithm is used here to model three protein families:
globins, immunoglobulins, and kinases.tt

HMMs and Learning

A first-order discrete HMM (15) is completely defined by a
set of states S, an alphabet of m symbols, a probability
transition matrix T = (tv), and a probability emission matrix
E = (eta). When the system is in state i, it has a probability
t(/ of moving to state] and a probability eia of emitting symbol
a. Only the output string is observed, one of the goals being
the reconstruction of the underlying hidden transitions.
As in the application of HMMs to speech recognition, a

family ofbiological sequences can be seen as a set ofdifferent
utterances of the same word generated by a common under-
lying HMM with a left-right architecture, with m = 4 for
DNA or RNA and m = 20 for proteins. Common knowledge
about evolutionary mechanisms suggests to introduce three
classes of states (in addition to the start and end states): the
main states, the delete states, and the insert states with S =
start, ml,. . . ,MN, il,. . . ,JN+l, di,. . . ,dN+l, end (Fig. 1). N
is the length of the model. The main and insert states always
emit a letter of the alphabet, whereas the delete states are
mute. The linear sequence of main state transitions is the
backbone of the model. Self loops on the insert states allow
for multiple insertions. Architectural variations are possible
and may be tailored to particular problems when additional
information is available.
Given a set of training sequences, the parameters of a

model can be iteratively modified to optimize the fit of the
model to the data according to some measure, usually the
product of the likelihoods of the sequences. Different algo-
rithms are available forHMM training, including the classical
Baum-Welch algorithm (15). Here, we introduce a smooth
algorithm which is particularly simple and can be used
on-line-i.e., after the presentation of each example. The
mathematical properties of this algorithm and its relation to
other approaches have been studied (16). We first reparam-
etrize the model by using a new set of variables wV and via in
the form tu, = eWu/yk e wi and ej, = evi/: eve This repa-
rametrization has two advantages: (a) modification of the w
and v parameters automatically preserves the normalization
constraints on probability distributions and (b) transition and
emission probabilities can never reach the absorbing value 0.
We then iteratively cycle through the training set and com-
pute, for each sequence, the corresponding most likely path
through the model. This can be done efficiently in O(N2)
steps by using a dynamic programming scheme known as the
Viterbi algorithm. Being in a state i along a Viterbi path, we
update the parameters of the model according to AwV = q(Tv
- tY) and Avia = 'q(Eia - eia), where v1 is the learning rate. At

Abbreviation: HMM, hidden Markov model.
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FIG. 1. HMM architecture. S and E are the start and end states.
Sequence of main states mi is the backbone. Side states d, (resp. i,)
correspond to deletions (resp. insertions).

each step of a Viterbi path, and for any state i on the path, TV
= 1 (resp. Eta = 1) if the i --j transition (resp. emission of a
from i) is used and 0 otherwise. Parameters of a loop are
updated every time the loop is traversed. These rules are
repeated for each example until no significant variations
occur. This algorithm approximates a gradient descent pro-
cedure on the negative log-likelihood of the sequences (16).
As such, it can be expected to converge to a possibly local
maximum likelihood estimator.
Once aHMM has been successfully trained, it can be used

for a number oftasks. Multiple alignments result immediately
from aligning the corresponding optimal paths. Discrimina-
tion ofwhether any given sequence belongs to the family can

Proc. Nati. Acad. Sci. USA 91 (1994)

be based on its likelihood according to the model. Structural
properties ofthe model revealed-for instance, by an entropy
plot ofthe emission distribution along the backbone-are also
useful.

Experiments and Results

Experiments have been performed with several protein fam-
ilies, including globins, immunoglobulins, kinases, G-pro-
tein-coupled receptors, aspartic proteases, and human im-
munodeficiency virus membrane proteins. The focus here
will be on globins, immunoglobulins, and kinases. In all three
experiments, the length of the model is initially set to the
average length of the sequences in the family and then kept
constant for the entire experiment. The probability parame-
ters of the models are initialized uniformly prior to training.
A random subset of sequences is typically used for training
with a learning rate v1 = 0.1. The remaiing sequences are
used for validation. After training, all the sequences in the
training and validation set are aligned to the model. For
brevity, only aportion of the resulting multiple alignments is
displayed, by using a subset of phylogenetically representa-
tive sequences covering both the training and validation sets.

Globins. The globins form a well-known family of heme-
containing proteins that reversibly bind oxygen and are
involved in its storage and transport. From crystallographic
studies, all globins have similar three-dimensional structure
characterized by seven a-helices, labeled A, B, C, E, F', G,
and H (some structures also have a short D helix) (17). The
globin sequences used here were extracted from the nonre-
dundant (NR) data base composed of Protein Identification
Resource 34.0, Swiss-Prot 23, and GenPept (translated Gen-
3 4

.i; AAAiUUUUUUAhAAAAAA.BBBBBBBBBBBBBBBBBBBBBBBBBBBBBCCCCCCC..
V HAHU--------------- VLSPA-DRTNVKAAWGKVGAHAgEYGAE-A---L--E-R--MFL----SFPTTKTYFP
T EAOR -------- ------MLTDA-EKKEVTALWGKAAGHGeEYGAE-A---L-E-R--LFQ----AFPTTKTYFS
V HADK -----------------VLSAA-DKTNVKGVFSKIGGHAeEYGAE-T---L--E-R--MFI----AYPQTKTYFP
V HBHU -----------------VELTP-EEKSAVTALWGXVNVD-EVGGE-A---L--G-R--LLV----VYPWTQRFFE
T HBOR ---------------VHLSG-GEKSAVTNLWGKVNIN-ELGGE-A--L--G-R-LLV----VYPWTQRFFE
V HBDK ----------------VEWTA-EEKQLITGLWGKVNVA-DCGAE-A---L--A-R--LLI----VYPWTQRFFA
V MYHU -----------------GLSDG-EWQLVLNVWGKVEADIpGHGQE-V---L--I-R--LFK----GBPETLEKFD
V MYOR -----------------GLSDG-EWQLVLKVWGKVEGDLpGHGQE-V---L--I-R--LFK----THPETLEKFD
V IGLOB mkffavlalcivgaias-PLTA-DEASLVQSSWKAVSHN-EV--E-I---L--A-A--VFA----AYPDIQNKFS
V GPYL ------------ ---GVLTDvQVALVKSSFEEFNANIpKN---t-hr--ffT-L--VLE----IAPGAKDLF-
V GPUGNI -----------------ALTEK-QEALLKQSWEVLKQNIpAB---s-1-------R--LFAliieAAPESKYVF-
V GGZLB ----------------ML-D----QQTINIIKATVPVLkEHGVT-Ittt-f--y-knLFA ----KHPEVRPLFD
.......I.* ....*

................................................................................................................................................................I.........

5 6 7 8
................DD++++++EEEEEEEEEEEEEEEEEEE .................FFFFrFFFFFFF ........... G

HAHU HF-DLSHGSA--- QVRGHGKKVADALTNAVAHVDD-- ---P--NAL---SALSDLHAH--K-L-R--VD
HAOR HF-DLSHGSA-----QIKA^GKKVADALSTAAGHFDD-----M-D--SAL---SALSDLEAH--K-L-R-VD
HADK HF-DLSHGSA-----QQIIIGKKVAAALLVEAVNHVDD-----I-A--GAL--- SKLSDLHAQ--K-L-R--VD
HBHU SFGDLSTPDAVM-GNPKVKAHGKXVLGAFSDGLAHLDN----L-K--GTF--ATLSELHCD--K-L-H--VD
HBOR AFGDLSSAGAVM-GNPKVKAEGAKVLTSFGDALKNLDD----L-K--GTF---AKLSELHCD--K-L-B--VD
HBDK SFGNLSSPTAIL-QGNPMVRANGKKVLTSFGDAVKNLDN-----I-K-NTF--AQLSELHCD--K-L-H--VD
MYHU KFKHLKSEDEMK-ASEDLLKKGATVLTALGGILKKKKGBH----H-E-AEI--KPLAQSHAT-K-H-K--IP
MYOR KFKGLKTEDEMK-ASADLKKHGGTVLTALGNILKKKGQ---- H-E--AEL---KPLAQSHAT-K-E-K--IS
IGLOB QF-AGKDLASIK-DTGAFATHATRIVSFLSEVIALSGNtsnaaaV-N--SLV---SKLGDDH--k--a-r-g-VS
GPYL SF--LKGSSEVPqINPDLQABGKVFLTYElAAIQLEVngavava--D --ATL--KSLGSVH--v--3-k-gvVD
GPUGNI SF--LKDSNEIPeNNPKLKABAAVIFKTICESATELRQkghav-w-dnNTTL---KRLGSIH--lk-n-k-i-TD
GGZLB MG--RQESLE------QPKALAMTVLAA----AQNIEN-----L-P-AILpavKKIAVKH--c--q-a-g-VA

........ II.III.

0 1 2 3 4
.......... cx~~~~~~~~~lv~.?cC ....... _=I H H M I ER E H H H H ..................aHBE}HH~HiHB

HABU PVNFKLLSECLLVTLAAHLP-AEFTPAVHKSWRKFLAS-VSTV------LTSK-----Yr ----

HAOR PVNFKLLAECILVVLARHCP-GEFTPSAHAAUKFLSK-VATV-------LTSK----Yr---- -

HADK PVNFKLGBCFLVWVAIHBP-AALTPEVHASLDKFMCA-VGAV------LTAK-----Yr-------
HBHU PENFRLLGNVLVCVLABHFG-KEFTPPVQAAYQKVVAG-VANA------LARK-----Yh-------
HEBOR PENFNRLGNVLIVVLARHFS-KDFSPEVQAAWQKLVSG-VAEA --LGHK-----Yh-------
HBDK PENFRLLGDILIIVLAAHFT-KDFTPECQAAWQKLVRV-VAHA-------LARK-----Yh--- --

MYHU VKYLEFISECIIQVLQSKBP-GDFGADAQGAMWKALEL-FRKD------MASN-----Ykelgfqg-
MYOR IKFLEYISEAIIHVLQSKRS-ADFGADAQAAMGKALEL-FRND-----MAAK-----Ykefgfqg-
IGLOB AAQFGEFRTALVAYLQAN~v~GD NVAAAWNKALDNtFAIV-------VPRL--------------
GPYL AB-FPVVKEAILKTIXWVG-DKWSEELNTAWTIAYDE-LAII------IKKEmkdaa -------

GPUGNI PE-FEVMKGALLGTIKEAIK-ENWSDEMGQAWTEAYNQ-LVAT-------IKAE-----Mke- --
GGZLB AABYPIVGCQLLGAIKEVLG-DAATDDILDAWGKAYGV-IADVfiqveadLYAQ-----Ave------
................ ..................................----

.. . . . . . . . . . IV .. . . . . . . . .V . . . . . . . . . . . . . . . . . . .

FIG. 2. Alignment of 12 phylogeneti-
cally representative globins to the HMM
of length 145 trained on a random subset
of 275 globin sequences. HAHU (hu-
man), HAOR (duckbill platypus), and
HADK (duck) are a-globin chains and
HBHU (human), HBOR (duckbill platy-
pus), and HBDK (duck) are P-globin
chains, respectively. MYHU (human)
and MYOR (duckbill platypus) are myo-
globins. The remaining hemoglobin se-
quences are IGLOB (insect, Chironomus
thummi), GPYL (legume, yellow lupine),
GPUGNI (non-legume, swamp oak), and
GGZLB (bacteria, Vitreoscilla sp.). T
(resp. V) in the first column refers to
sequences in the training (resp. valida-
tion) set. Approximate positions of the
a-helices A-H are indicated on the top of
the ajigment (plus signs indicate a region
of overlap between the D and E helices).
Numbers above the alignment indicate
every 10 main states. Letters emitted
from insert states are lowercase. A dash
signals a transition through a delete state
or a position where other sequences in
the family are using an insert state.
Highly conserved residues are marked
with stars. Roman numerals indicate the
five conserved or semiconserved motifs.
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Bank 73). Partial sequences were removed. The set contains
483 sequences, with minimum length 116, average length 145,
and maximum length 170.
A random subset of 275 sequences was used to train a

model of length 145. Alignment of 12 phylogenetically rep-
resentative sequences to the model is given in Fig. 2. The
percentage of identical residues in this set ranges from 1o
to 70%o. Correct identification of five motifs that are con-
served or semiconserved throughout this phylogenetic dis-
tribution is used as an indicator of a good alignment. Motif I
is essentially helical region C. Motifs II and III, in helical
regions E and F, respectively, are within the heme-binding
region. Motifs IV and V are in helical regions G and H,
respectively (Fig. 2).
To test the classification abilities of the globin model, we

generated 300 random sequences of length 100, 120, 140, 160,
180, and 200 (50 random sequences at each length) with the
same amino acid composition as the average computed over
the entire data base. The negative logarithms of the likeli-
hoods of the Viterbi paths associated with these random
sequences are essentially a linear function of the length (P.B.
and Y.C., unpublished work) (Fig. 3). A regression line was
computed together with the histograms of the residuals of the
globins and of the random sequences.

Immunoglobulins. Immunoglobulins or antibodies are pro-
teins produced by B cells that bind with specificity to foreign
antigens in order to neutralize them or target their destruction
by other effector cells. The various classes of immunoglob-
ulins are defined by pairs oflight and heavy chains that are held
together principally by disulfide bonds. Each light or heavy
chain contains one variable (V) region and one (light) or
several (heavy) constant (C) regions. The V regions provide
the specificity of the antigen recognition. Our data base
consists of human and mouse immunoglobulin heavy-chain
V-region sequences from the Protein Identification Resource
data base. It corresponds to 224 sequences, with minimum
length 90, average length 117, and maximum length 254. The
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FIG. 3. (Upper) Regression line for the negative log-likelihood of
the Viterbi paths associated with 300 random sequences of similar
amino acid composition to globins. (Lower) Histogram of residuals
measured in approximate standard deviations of random sequences.
Most globins are separated by 5 standard deviations or more. Modes
in globin distribution correspond to different subclasses.

variation in length results from including any sequence with a
V region: those with or without signal or leader sequences,
germ-line sequences not rearranged to anyjoining () segment,
and some that contain the C region as well.
A model oflength 117 was trained by using a random subset

of 150 sequences. A multiple alignment of a representative
subset of 20 sequences is given in ref. 8. The algorithm
detects all the main regions ofhighly conserved residues. The
cysteine residues toward the beginning and the end of the
region, responsible for the disulfide bonds, are perfectly
aligned. The only exception (PH0097), which has a serine
residue in its terminal portion, is a rare but recognized
exception to the conservation of this position. We did not
remove the headers (transport signal peptide) attached to
some sequences prior to training. The model detects and
accommodates these headers by treating them as initial
repeated inserts.

Kinases. Eukaryotic protein kinases constitute a large
family of proteins that regulate the most basic of cellular
processes through phosphorylation, by transferring phos-
phate groups usually from an ATP or GTP, onto tyrosine,
serine, or threonine residues ofmany different proteins. They
have been termed the "transistors" of the cell (18). We have
used the sequences available in the kinase data base main-
tained at the Salk Institute. Our basic set consists of 223
sequences, with minimum length 156, average length 287, and
maximum length 569.
We trained a model of length 287 by using a random subset

of 150 kinase sequences. Fig. 4 displays the alignment for a
subset of 12 phylogenetically representative sequences. The
percentage of identical residues within the kinase data sets
ranges from 8% to 30%o, suggesting that only those residues
involved in catalysis are conserved among the most divergent
sequences. All the 12 characteristic catalytic domains or
subdomains described in refs. 19 and 20 are easily recogniz-
able. We have indicated the unvaried or rarely varied resi-
dues used by the authors of refs. 19 and 20 to characterize
each domain. For instance, the initial hydrophobic consensus
Gly-Xaa-Gly-Xaa-Xaa-Gly, together with the Lys located
15-20 residues downstream, is part of the ATP/GTP binding
site. The carboxyl terminus is characterized by the presence
of an unvaried Arg residue. Conserved residues in proximity
to the acceptor amino acid are found in the VIb (Asp), VII
(Asp-Phe-Gly), and VIII (Ala-Pro-Glu) domains. Crystallo-
graphic studies of the cAMP-dependent protein kinase con-
firm that most of the conserved motifs of the protein kinase
core are clustered in the regions of the protein involved in
nucleotide binding and catalysis (21).
A classification test, similar to the one for the globins, was

done by generating 140 random sequences of length 150, 200,
250, 300, 350, 400, and 450 (20 random sequences at each
length) with the same average amino acid composition as the
kinases. Negative log-likelihoods associated with optimal
paths in the kinaseHMM model are plotted in Fig. 5, together
with the histogram ofthe residuals to the regression line ofthe
random sequences. The separation achieved by the kinase
model exceeds the one achieved by the globin model.

Discussion

The experiments show that the HMM approach can capture
the important statistical properties of protein families. While
providing global alignments for entire families, the method
uses locally adjustable parameters, equivalent to variable gap
penalties, in a way that is efficient in terms of both compu-
tation and motif detection. At each learning iteration, withK
sequences of average length N, the key step is the application
of the Viterbi procedure, which requires O(N2) operations. A
small number c, 2-15, of training cycles is usually sufficient
to produce stable alignments. Therefore the total number of

P-t-
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1 2 3 4 5 6 7
V CD28 anYKR--LEKVGEGTYGVVYKALDLrpg--QGQRVVALK.------KIRLESEDEGVPSTAIREISLLKEL-K-DDNIVRLYDIVH
T MLCK --FSMnsKEALGGGKFGAVCTCTEK-----STGLKLAAK---VI-KKQTPKDKE----MVMLEIEVMNQL-N-HRNLIQLYAAIE
V PSKH akYDI--KALIGRGSFSRVVRVEHR-----ATRQPYAIK---MIETKYREGRE-----VCESELRVLRRV-R-HANIIQLVEVFE
T CAPK dqFER--IKTLGTGSFGRVMLVKHM-----ETGNHYAMK---ILDKQKVVKLKQIE--HTLNEKRILQAV-N-FPFLVKLEFSFK
T WEE1 trFRN--VTLLGSGEFSEVFQVEDPv----EKTLKYAVK---KL-KVKFSGPKERN--RLLQEVSIQRALkG-HDHIVELMDSWE
V CSRC esLRL--EVKLGQGCFGEVWMGTWN------GTTRVAIK---TLKPGNMSPE------AFLQEAQVMKKL-R-HEKLVQLYAVVS
V EGFR teFKK--IKVLGSGAFGTVYKGLWIpege-KVKIPVAIK---ELREATSPKANK-----EILDEAYVMASV-D-NPHVCRLLGICL
T PDGF dqLVL--GRTLGSGAFGQVVEATAHglshsQATMKVAVK---MLKSTARSSEKQ----ALMSELY--GDL--v-DYLHRNKHTFL
V VFES edLVL--GEQIGRGNFGEVFSGRLR-----ADNTLVAVK---SCRETLPPDIKA----KFLQEAKILKQY-S-HPNIVRLIGVCT
V RAF1 seVML--STRIGSGSFGTVYKGKWH--------GDVAVK--- ILKVVDPTPEQFQ---AFRNEVAVLRKT-R-HVNILLFMGYMT
V CMOS eqVCL--LQRLGAGGFGSVYKATYR-------GVPVAIKQvNKCTKNRLASRR-----SFWAELNV-ARL-R-HDNIVRVVAAST
V HSVK mgFTI--HGALTPGSEGCVFDSSHP-----DYPQRVIVK------AGWYT--------STSHEARLLRRL-D-HPAILPLLDLHV...................... ... ......... ... ... .. . ..................... .................................... ................ ......

................................................ III. IV.

8 9
CD28 SDAHk---------LY-L-V-FEFLDL-DLKRYMEGIpkd---------------------------------------------

MLCK TPHE----------IV-L-F-MEYIEGGELFERIVDE------------------------------------------------

PSKH TQER----------VY-M-V-MELATGGELFDRIIAK------------------------------------------------

CAPK DNSN----------LY-M-V-MEYVPGGEMFSHLRRI------------------------------------------------

WEE1 HGGF----------LY-M-Q-VELCENGSLDRFLEEQgqq---------------------------------------------
CSRC -EEP----------IY-I-V-TEYMSKGSLLDFLKGE------------------------------------------------

EGFR -TST----------VQ-L-I-TQLMPFGCLLDYVREH ------------------------------------------------
PDGF -QRHsnkhcppsaeLYs-n-a--LPVGFSLPSHLNLTgesdggymdmskdesidyvpmldmkgdikyadiespsymapydnyvps
VFES QKQP----------IY-I-V-MELVQGGDFLTFLRTE------------------------------------------------

RAF1 -KDN----------LA-I-V-TQWCEGSSLYKHLHVQ------------------------------------------------

CMOS RTPAgsnsl-----GT-I-I-MEFGGNVTLHQVIYGAaghpegdagephcrtg--------------------------------

HSVK VSGV----------TC-L-V-LPKYQA-DLYTYLSRR------------------------------------------------

.. .. ... ... . .... . ..... .. ........ . ...... ........................... ... .... ......................

.................................V.........................................

0 1 2 3 4 5 6
CD28 --------------- QP-LGADIVKKFMM Q-LCKGIAYCHSHRILHRDLKPQNLL-INKDG---N-LKLGDFGLARAFGVPLRAY
MLCK -------------- DYH-LTEVDTMVFVRQ-ICDGILFMHKMRVLHLDLKPENILcVNTTG---HlVKIIDFGLARRYNPNEKL-
PSKH --------------- GS-FTERDATRVLQM-VLDGVRYLHALGITHRDLKPENLL-YYHPGtdsK-IIITDFGLASARKKGDDCL
CAPK --------------- GR-FSEPHARFYAAQ-IVLTFEYLHSLDLIYRDLKPENLL- IDQQG---Y-IQVTDFGFAKRVKGRT---
WEE---------------- SR-LDEFRVWKILVE-VALGLQFIHHKNYVHLDLKPANVM-ITFEG---T-LKIGDFGMASVWPVPRG--
CSRC -------------- MGKyLRLPQLVDMAAQ-IASGMAYVERMNYVHRDLRAANIL-VGENL---V-CKVADFGLARLIEDNEYTA
EGFR --------------KDN-IGSQYLLNWCVQ-IAKGMNYLEDRRLVHRDLAARNVL-VKTPQ---H-VKITDFGLAKLLGAEEKEY
PDGF apertyratllnds-PV-LSYTDLVGFSYQ-VANGMDFLASKNCVHRDLAARNVL-ICEGK---L-VKICDFGLARDIMRDSNYI
VFES -------------- GAR-LRMKTLLQMVGD-AAAGMEYLESKCCIHRDLAARNCL-VTEKN---V-LKISDFGMSREAADGIYAA
RAF1 -------------- ETK-FQMFQLIDIARQ-TAQGMDYLHAKNIIHRDMKSNNIF-LHEGL---T-VKIGDFGLATVKSRWSGSQ
CMOS --------------- GQ-LSLGKCLKYSLD-VVNGLLFLHSQSIVHLDLKPANIL-ISEQD---V-CKISDFGCSEKLEDLLCFQ
HSVK --------------. LP-LGRPQIAAVSRQ-LLSAVDYIHRQGIIHRDIKTENIF-INTPE---D-ICLGDFGAACFVQGSRSSP

............................... .VIa.VIb. VII.

7 8 9 0 1 2 3 4
CD28 ---THEIVTLWYRAPEVLLgGK---QYSTGVDTWSIGCIFAEMCNRKP-------------IFSGDSE-----IDQIFKIFRV
MLCK ---KVNFGTPEFLSPEVVN-YD---QISDKTDMWSLGVITYMLLSGLS .-------------.PFLGDDD-----TETLN8VLSG
PSKH M--KTTCGTPEYIAPEVLV-RK---PYTNSVDMWALGVIAYILLSGTM -------------PFEDDNR-----TRLYRQILRG
CAPK ---WTLCGTPEYLAPEIIL-SK---GYNKAVDWWALGVLIYEMAAGYP -------------PFFADQP-----IQIYEKIVSG
WEE1 ---MEREGDCEYIAPEVLA-NH---LYDKPADIFSLGITVFEAAANIV-------------LPDNGQSW-----Q----KLRSG
CSRC R--QGAKFPIKWTAPEAAL-YG---RFTIKSDVWSFGILLTELTTKGR--------------VPYPGMVN-----REVLDQVERG
EGFR H-AEGGKVPIKWMALESIL-HR---IYTHQSDVWSYGVTVWELMTFGS-------------KPYDGIPA-----SEISSILEKG
PDGF S-KGSTYLPLKWMAPESIF-NS---LYTTLSDVWSFGILLWEIFTLGG--------------TPYPELPM----NDQFYNAIKRG
VFES S-GGLRQVPVKWTAPEALN-YG---RYSSESDVWSFGILLWETFSLGA------------ SPYPNLSN-----QQTREFVEKG
RAF1 Q-VEQPTGSVLWMAPEVIR-.MQdnnPFSFQSDVYSYGIVLYELMTGEL------------ PYS---R-----DQIIFMVGRG
CMOS TpSYPLGGTYTHRAPELLK-GE---GVTPKADIYSFAITLWQMTTKQA -------------PYSGERQ-----HILYAVVAYD
HSVK F-PYGIAGTIDTNAPEVLA-GD---PYTTTVDIWSAGLVIFETAVHNA------ SLFSAPRGPKRGPCD-----SQITRIIRQA..................................... ............... .......................... ................................................

......................VIII.. Ix.x.

5 6 7 8
CD28 -----LGTPNEAIwpdivylpdfkpsfpqwrrkdlsqvvpsLDPRGIDLLDKLLAYDPINRISARRAAIHPYFQES--------
MLCK nwy--FDEETFEA---------------------------- VSDEAKDFVSMLIVKEQGARMSAAQCLAHPWLNNL--------
PSKH kys--YSGEPWPS---------------------------- VSNLAKDFIDRLLTVDPGARMTALQALRHPWVVSM--------
CAPK -----KVR-FPSH---------------------------- FSSDLKDLLRNLLQVDLTKRFGNLKDGVNDIKNHK--------
WEE1 -----DLSDAPRLsstdngssltsssretpansi1.---GQGGLDRVVEWMLSPEPRNRPTIDQILATD--EVCWV------
CSRC -----YRMPCPPE---------------------------- CPESLHDLMCQCWRRDPEERPTFEYLQAFLEDYFT--------
EGFR -----ERLPQPPI---------------------------- CTIDVYMIMVKCWMIDADSRPKFRELIIEFSKMAR--------
PDGF -----YRMAQPAH---------------------------- ASDEIYEIMQKCWEEKFETRPPFSQLVLLLERLLGEGykkky-
VFES -----GRLPCPEL---------------------------- CPDAVFRLMEQCWAYEPGQRPSFSAIYQEL------------
RAF1 -----YASPDLSKlykn------------------------ CPKAMKRLVADCVKKVKEERPLFPQILSSIELLQH--------
CMOS -----LRPSLSAAvfedsl ---------------------- PGQRLGDVIQRCWRPSAAQRPSARLLLVDLTSLKA--------
HSVX qvhvdEFSPHPESrltsryrsraagnnrppytrpawtryykMDIDVEYLVCKALTFDGALRPSAAELLCLPLFQQK--------

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .................

FIG. 4. Alignment of 12 phylogenetically representative kinase sequences to the HMM of length 287 trained on a random subset of 150
kinases. CD28 (CDC28 of Saccharomyces cerevisiae), MLCK (myosin light-chain kinase of rat skeletal muscle), PSKH (HeLa cell), CAPK
(bovine cardiac muscle), and CMOS and RAF1 (human oncogenic proteins) are serine/threonine-specific kinase proteins. WEE1 is a
dual-specificity kinase from Schizosaccharomycespombe. CSRC (chicken oncogenic protein), EGFR (human epidermal growth factor receptor),
PDGMR (mouse platelet-derived growth factor receptor), VFES (feline sarcoma virus oncogenic protein), and HSVK (herpes simplex virus
kinase) are tyrosine-specific kinase proteins. Roman numerals at the bottom indicate domain designations as described (19). Characteristic
invariant or quasi-invariant residues used by those authors are also marked by stars. All other designations are as in Fig. 2.

steps scales like O(cK N2) = O(K N2). Alignment of K To be successful, the HMM approach requires a represen-
sequences to the model takes also O(K N2) steps associated tative training set capable of constraining the parameters
with K applications of dynamic programming. Thus, a solu- sufficiently. The architecture used here has 52N + 23 52N
tion to the multiple-alignment problem can be derived in time transition and emission parameters. The number of effective
which grows linearly with the number of sequences. parameters is smaller but difficult to estimate. In a training
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FIG. 5. Similar to Fig. 3 for the kinase model and 140 random
sequences of amino acid composition similar to kinases.

sequence of length N, each letter and each transition from
one letter to the next provide a constraint on the parameters.
Thus, a relatively small number of training sequences, per-
haps on the order of 30 or so, already provides a number of
constraints comparable to the number of parameters in the
model. In a recent experiment on human immunodeficiency
virus membrane proteins, good alignments were obtained
with 42 sequences only. In our experience, the quality of the
alignments is robust with respect to variations in the initial
conditions or learning parameters. The smoothness of the
learning algorithm introduced seems important for the or-

derly learning behavior we observe. Discontinuous learning
rules, such as the Baum-Welch algorithm, may be more
prone to overfitting.
The HMM approach can be extended in several directions.

We are applying it to other protein families and to DNA
families (26) with more complex versions of the algorithm, as
well as to the problem of phylogenetic reconstruction. Al-
though random sequences have been used here for demon-
stration purposes, it is clear that HMMs can be used for
classification experiments over entire data bases. In an
experiment reported elsewhere (P.B. and Y.C., unpublished
work), a model trained on 142 G-protein-coupled receptors
has been used to find all remaining known G-protein-coupled
receptors in the Swiss-Prot data base. Additional information
can also be incorporated in the method with a Bayesian
approach, to speed up learning, improve the models, or
compensate for the sparseness of the training data. Prior
information may be obtained from previous alignments and
from scoring matrices (22). New scoring matrices could also
be generated directly from the trained HMMs. Higher-order
correlations as well as secondary or tertiary structure infor-
mation could also be integrated in the models.

One additional useful feature of HMMs, which has been
exploited in speech recognition, is that they can be organized
in a modular, hierarchical fashion, to recognize speech seg-
ments of increasing length and complexity. It remains to be
seen whether a similar approach is also useful for biological
sequences by building HMMs for motifs, families, and su-
perfamilies (23). It may be of interest, for instance, to train
different models for protein-tyrosine kinases and protein-
serine/threonine kinases, or with different subclasses of
globins or immunoglobulins, and then try to merge them at a
higher level. Conversely, a bank of parallel HMMs could also
be trained simultaneously, via some form of competitive
learning, to progressively segregate different subclasses from
a family (14). In this modular context, it has been conjectured
(24, 25) that the total number of superfamilies ofproteins may
be relatively small, perhaps on the order of a thousand. If
true, it would then be possible to train one or a small number
of HMMs for each superfamily. Training of a typical model
takes only a few hours on a workstation, and HMMs naturally
lend themselves to parallel implementations. Such a battery
of models could have a wide range of applications in biology.
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