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ABSTRACT Using evolutionary informa- 
tion contained in multiple sequence alignments 
as input to neural networks, secondary struc- 
ture can be predicted at significantly increased 
accuracy. Here, we extend our previous three- 
level system of neural networks by using addi- 
tional input information derived from multiple 
alignments. Using a position-specific conserva- 
tion weight as part of the input increases per- 
formance. Using the number of insertions and 
deletions reduces the tendency for overpredic- 
tion and increases overall accuracy. Addition 
of the global amino acid content yields a further 
improvement, mainly in predicting structural 
class. The final network system has a sustained 
overall accuracy of 71.6% in a multiple cross- 
validation test on 126 unique protein chains. A 
test on a new set of 124 recently solved protein 
structures that have no significant sequence 
similarity to the learning set confirms the high 
level of accuracy. The average cross-validated 
accuracy for all 250 sequence-unique chains is 
above 72%. Using various data sets, the method 
is compared to alternative prediction methods, 
some of which also use multiple alignments: the 
performance advantage of the network system 
is at least 6 percentage points in three-state ac- 
curacy. In addition, the network estimates sec- 
ondary structure content from multiple se- 
quence alignments about as well as circular 
dichroism spectroscopy on a single protein and 
classifies 75% of the 250 proteins correctly into 
one of four protein structural classes. Of partic- 
ular practical importance is the definition of a 
position-specific reliability index. For 40% of all 
residues the method has a sustained three-state 
accuracy of 88%, as high as the overall average 
for homology modelling. A further strength of 
the method is greatly increased accuracy in 
predicting the placement of secondary struc- 
ture Segments. 0 1994 Wiley-Liss, Inc. 
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INTRODUCTION 
The Widening Sequence-Structure Gap 

About 30,000 protein sequences are known 
(SWISSPROT release 25.01). Only for about 1300 
has the three-dimensional (3D)* structure (PDB2r3) 
been experimentally determined. Less than 300 of 
the known structures are Large-scale se- 
quencing projects result in an explosive widening of 
the sequence-structure gap. It is well established 
that the formation of the 3D structure is determined 
by the ~ e q u e n c e . ~ , ~  Can theory contribute to close 
the sequence-structure gap by predicting structure 
from sequence? The task is not a difficult one if the 
sequence of unknown structure (SOS) has a signifi- 
cant sequence identity to a protein of known 3D 
structure. In this case, modeling by homology allows 
an accurate prediction of the 3D structure for 
SOS.8-16 Currently, this technique allows us to 
model the 3D structure for about 7,200 proteins.17 
For the remaining 21,500 known sequences the 3D 
structure cannot be predicted generally from the se- 
quence. For short peptides molecular dynamics can 
be used to predict the s t r u c t ~ r e . ~ ~ . ~ ~  For some cases, 
threading techniques can be used to find proteins of 
known 3D structure that have no significant se- 
quence similarity to SOS but the same 3D struc- 
ture. 10,20--30 However, for the majority of known 
proteins theory fails to close the sequence-structure 
gap by prediction of 3D structure. For these cases, in 
principle, the situation has not changed over the last 
20 years: the goal has to be simplified. 

*Abbreviations used 3D, three-dimensional; SWISSPROT, 
data bank of protein sequences; PDB, protein data bank of 
known structures; DSSP, dictionary of secondary structures of 
proteins; HSSP, data base of homology derived structure of 
proteins; SOS, protein sequence of unknown three-dimensional 
structure; PHD, profile network system from Heidelberg (three 
levels of networks for the prediction of secondary structure). 

Received October 4, 1993; revision accepted December 20, 
1993. 



56 B. ROST AND C .  SANDER 

Simplification to Secondary 
Structure Prediction 

One example for simplification is the description 
of structure in terms of one-dimensional strings of 
secondary structure. The formation of secondary 
structure is important for the stability of a pro- 
tein.31.32 From the early 1970s, secondary structure 
had been predicted based on properties of amino acid 

A decade ago, the accuracy in pre- 
dicting secondary structure in three states-helix, 
strand, and loop-was below 60%.42 In the 1980s, 
elaborated algorithms improved accuracy to  above 
60%.43-51 One method that had been used without 
improving the performance was neural net- 
w o r k ~ . ~ ’ , ~ ~  In a review of predictions by neural net- 
works Hirst and Sternberg54 summarized: “Recent 
 review^^^,^^ suggest that 65% appears to be the 
maximum attainable performance of a variety of 
methods of secondary structure prediction.” Why 
were the predictions not more accurate? One reason 
is that most methods used information local in se- 
quence. However, the formation of secondary struc- 
ture is determined not only by local interactions. 
Another reason was that the information used for 
the predictions was not sufficient. This made neural 
networks applied to the problem perform similarly 
to classical methods, although networks, in princi- 
ple, can process higher order correlation in the pat- 
terns to be classified than information theory can. 
(Note: the prediction task can be formulated as a 
pattern classification: given a pentapeptide with a 
preference to form a helix, the task is to  sort this 
peptide into the helix class.) 

Structure Is More Conserved Than Sequence 

Studying multiple alignments reveals that struc- 
ture is more conserved than s e q ~ e n c e . ~ ’ ~ ~ , ~ ~  In other 
words, proteins with different sequences can adopt 
the same 3D structure. What we see in alignments 
of native proteins is an evolutionary record of the 
unlikely: a pair of proteins residues evolved in na- 
ture is almost sure to have identical 3D structure if 
the two sequences have 30% identical r e s i d ~ e s . ~ , ~ ~  
Of course, not any two residues can be exchanged. 
On the contrary, the pattern of residue substitutions 
within one structure family contains specific infor- 
mation about the structure. A straightforward idea 
is to use this information for  prediction^.^'-^' Evo- 
lutionary information as present in multiple align- 
ments has recently been used for the secondary 
structure prediction for single  protein^.^'-^^ To fa- 
cilitate an evaluation of the performance of predic- 
tions based on multiple alignments, larger data sets 
have to be investigated. In an earlier study we used 
130 protein  chain^^^,^^; recently Levin et al.76 pub- 
lished an analysis based on some 60 proteins. With a 

neural network system the prediction accuracy 
could be improved for the first time above a sus- 
tained level of 70% three-state accuracy.77 

Here, we describe an improvement of the network 
system (dubbed PHD). The following questions will 
be answered. How important are the details in a 
multiple alignment for the prediction? Can the per- 
formance be improved by preprocessing the profile? 
Can the pattern of insertions and deletions be used 
profitably? Does it pay to  include global information 
such as the content of amino acids in the whole pro- 
tein? How does the performance depend on the 
choice of the data set used for evaluation? Are neu- 
ral networks particularly well suited for the task? 

METHODS 
Seven-Fold Cross-Validation on 126 Proteins 

For the evaluation of the method 7-fold cross-val- 
idation was performed, as described earlier.75377278 
The data set used comprised 126 globular protein 
chains (Set 1, Table I) with no significant pairwise 
sequence identity (length dependent cut-off, e.g., 
< 25% for alignment lengths > 80 residues13). The 
networks were trained seven times on different sets 
of 108 protein chains and tested on the remaining 
18, such that in the end each of the 126 proteins had 
been used for testing. The testing sets were deliber- 
ately chosen such that they did not reflect exactly 
the relative distribution of helix, strand, and loop in 
the data bank, to make the result less dependent on 
the current data bank. This was done to achieve a 
more general result, as the relative distribution of 
the data bank in 1993 might not exactly be the same 
as the one of the data bank a t  some future time. To 
investigate the influence of the particular choice of 
the data set on the result, four alternative sets were 
tested: (1) a set of 62 unique proteins as used by 
various a~ thor s ,~ ’  (2) a set of 82 protein fragments 
used in a recent study on the improvement of a sta- 
tistical method by using a multiple alignment,76 (3) 
a set of 124 protein chains the experimentally de- 
termined structures of which were published re- 
cently (Set 2, Table II), and (4) a set of five proteins 
for which expert predictions were published (note: 
subset of Set 2). For testing the first two sets, (1) and 
(21, and same cross-validation from the experimen- 
tal coordinates was performed as for the 126 pro- 
teins of Set 1 (Table I). For testing the second two 
sets, (3) and (41, the networks were trained on all 
proteins of Set 1, as no protein in this set has sig- 
nificant sequence identity to any of the proteins of 
Set 2 (Table 11). The secondary structure assignment 
was done according to DSSP.79 The 8 structure 
classes were converted to three states in the follow- 
ing way: DSSP “ H  and “G’ -+ here: helix (dubbed a. 
or H), DSSP “E” -+ here: strand (p or E), and all 
others to  loop (L). 
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TABLE 1. 126 Protein Chains Used for Training and Testing the Networks (Set 1)* 
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256b-A 
9api-B 
7cat-A 
6cpa 
3ebx 
4fxn 
6hir 
1158 
2mev-4 

3rnt 
2stv 
2utg-A 

1PYP 

2aat 
lazu 
lcbh 
6CPP 
5er2-E 
3gap-A 
3hmg-A 
llap 
2orl-L 
lr09-2 
7rsa 

9wga-A 
2ta-I 

8abp 
3b5c 
lcc5 
4cpv 
letu 
2gbP 
3hmg-B 
51dh 
lovo-A 
2mhu 
2rsp-A 
ltgs-I 
2wrp-R 

6acn 
lbbp-A 
2ccy-A 
lcrn 

2gcr 
2hmz-A 
21h4 
2pab-A 
lmrt 
4rxn 
3tim-A 
lwsy-A 

lfc2-c 

lacx 
lbds 
lcd4 
lcse-I 
lfdl-H 
lgdl-0 
5hvp-A 
21hb 
lpaz 
1PPt 
l S O l  
6tmn-E 
lwsy-B 

8adh 
lbmv-1 
lcdt-A 
6cts 
lfdx 
2gls-A 
2ilb 
llrd-3 
9PaP 
lrbp 
lsdh-A 
2tmv-P 
4xia-A 

3ait 
lbmv-2 
3cla 
2cYP 
lf-kf 
2gn5 
3icb 
2ltn-A 
2PCY 
lrhd 
4sgb-I 
ltnf-A 

lak3-A 
3blm 
3cln 
5cyt-R 
2fnr 
1gPl-A 
7icd 
21tn B 

4rhv-1 
lshl  
4tsl-A 

4pf-k- 

2alp 
4bp2 
4cms 
leca 
2fxb 
4grl 
li18-A 
51yz 
3 P P  
4rhv-3 
2sns 
2tsc-A 

9api-A 
2cab 
4cpa-I 
6dfr 
lfxi-A 
lhip 
Sins-B 
lmcp-L 
2phh 
4rhv-4 
2sod-B 
lubq 

- 
*Representative set of 126 globular protein chains with less than 25% painvise similarity for lengths > 80 used for training and 
testing the method (24,395 residues with 32% a, 21% f3, and 47% L, resolution 5 2.5A for crystal structures. Nomenclature: the 
Protein Data Bank (PDB) identifier (first four characters) is followed by the chain identifier. 

Three Levels of Neural Networks Using 
Profiles From Multiple Alignments 

The system of networks is described in detail else- 
where.77 Here, only the main idea is given. We used 
three levels of different networks (Fig. 1). First, a 
sequence-to-structure network: input is the profile 
of amino acid substitutions (as given in the HSSP 
data base17) for a stretch of 13 consecutive residues 
in a protein; output is the secondary structure state 
of the central residue (helix, strand, loop). Second, a 
structure-to-structure network: input is the output 
of the first level network for a window of 17 consec- 
utive residues; the target output is again the sec- 
ondary structure type of the central residue. The 
second level introduces a correlation between the 
secondary structure of adjacent residues, i.e., ac- 
counts for the fact that  helices and strands span over 
a t  least two adjacent residues. Third, an arithmetic 
average over various networks (termed jury deci- 
sion): input is the output of network architectures 
trained with different input information and with 
different training procedures; output is the com- 
bined prediction of all nets (Figs. 1 and 2). The net- 
works each consisted of two layers (input-hidden, 
hidden-output) with 15 hidden units. The units were 
fully connected between the layers. 

The whole system is independently trained seven 
times. The training procedure is the usual backprop- 
agation algorithm" performed in two ways. (1) Un- 
balanced training: the patterns are chosen a t  each 
algorithmic time step of the error minimization a t  
random, i.e., according to the relative distribution of 
helix (about 32%), strand (about 21%), and loop 
(about 47%). Thus, examples for loop are presented 
twice as often as those for strand. (2) Balanced train- 
ing: the samples are predicted equally often. Conse- 
quently, an  example for strand is presented 1.5 
times more often than for the unbalanced training 
and an example for loop 1.5 times less often. (Note: 
a similar idea had been successfully used before for 
a statistical prediction method.50) 

In addition to the profile of amino acid substitu- 
tions from the multiple alignment, a conservation 
weight was used as input.77 This weight places a 
higher weight on residues that are particularly well 
conserved throughout the multiple alignment (Fig. 
1). This conservation weight is used on both levels, 
that  of sequence-to-structure and that of structure- 
to-structure network. The alignment program13 im- 
plicitly has a tendency to down weight similar se- 
quences in generating the sequence profiles. A 
further explicit down weighting has not been inves- 
tigated. 

Adding Number of Insertions and Deletions to 
the Input 

Insertions and deletions (termed indels) in multi- 
ple alignments occur more often in loop regions than 
in regular secondary structure elements such as he- 
lix and strand.81,sz This implies that  the number of 
insertions and deletions (indels) at a particular se- 
quence position of the alignment carries information 
about secondary structure: the more insertions 
and/or deletions found in a region, the more likely it 
is a loop region (provided the alignment is correct). 
The number of indels used for the input of the first 
level networks was determined by adding two input 
units for each residue position. Thus, the input vec- 
tor s for one pattern p related to the secondary struc- 
ture state of residue p in the data set was (for a 
window of w = 13 consecutive residues): 

sk*j = frequency of amino acid k a t  position j ,  

szz*j = conservation weight at position j 
for k = 1,. . . ,2 1 

N&lW 
s z p j  = - 

Nali 
for the residues at positions j = p - 6, ...,p + 6 
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TABLE 11. 124 Newly Determined Protein Structures (Set 2)* 

lace, acetyl cholinesterase; latf, antifreeze polypeptide type A; lcol, antibacterial protein colicin A (C-terminal 
domain); lcox, cholesterol oxidase; lcpk-E; CAMP-dependent protein kinase; ldfn-B, defensin HNP-3; lend, glu- 
tathione synthase; lBg,  phosphocarrier; lgly, glucoamylase; lgmf-A, granulocyte-macrophage colony-stimulat- 
ing factor; lhcc, glycoprotein; 16th complement control protein of factor h; lhdd-C, engrailed homeodomain 
complex with DNA, lhrh,  ribonuclease H domain of HIV-1 reverse transcriptase; lhsc, heat shock protein 
hsc7O; lifb, intestinal fatty acid binding protein; lmsb-A, mannose binding protein A (lectin domain); I n s b B ,  
neuraminidase sialidase; lpi2, serine proteinase inhibitor; lrop, ColEl repressor of primer; lsar-A, endoribonu- 
clease SA, lsnv, sindbis virus capsid protein; Zfgf, basic fibroblast growth factor; 2gb1, protein G (bl domain); 
2pk4, human plasminogen kringle 4; 2hip-B, high potential iron sulfur protein; 2scp-A, sarcoplasmic calcium 
binding protein; 2zta-A, GCN4 leucine zipper; 3trx, thioredoxin; 3znf, zinc finger DNA binding domain; 5en1, 
enolase; 5p21, CH-ras p21 protein (amino acids 1-166); anpc-macam, antifreeze glycoprotein type 111; actl,  actin 
(complex with DNase I); arc, Arc repressor DNA-binding protein; cdk2, cyclin-dependent kinase; csrc, sh3 do- 
main of tyrosine kinase src; dp3b_ecoli, P-subunit of E .  coli DNA polymerase I11 holoenzyme; hxk, yeast hexoki- 
nase b; luxfqhole, flavoprotein related to  bacterial luciferase; nifk, nitrogenase molybdenum-iron; pik3, phos- 
phatidylinositol 3-kinase; pdr, phthalate dioxygenase reductase; poul, POU-specific domain; rrxa-su, retinoid X 
receptor aDNA binding domain; sh2, v-src tyrosine kinase transforming protein sh3: spectrin SH3 homologue 
domain; u la ,  RNA-binding domain of U1 small nuclear ribonucleoprotein A 

laai, ricin; laak, ubiquitin conjugating enzyme; laap, protease inhibitor domain of Alzheimer’s amyloid; labm, 
manganese superoxide dismutase; lads, aldose reductase with bound NADPH; laso, ascorbate oxidase; latn,  
deoxyribonuclease T complex with actin; lbaa, barley endochitinase; lbbh, cytochrome c; lbbk, methylamine 
dehydrogenase; lbbl, e3-binding domain of the dihydrolipoamide; lbbt, foot and mouth disease virus; lbib, (1)bi- 
otin repressor-biotinylated lysine complex; lbrd, bacteriorhodopsin; lcpc, c-phycocyanin; ld66, gal4 (residues 
1-65) complex with 19mer dna; leco, hemoglobin (erythrocruorin, carbonmonoxy); lfba, fructose-1,6-bisphos- 
phate aldolase; l f i a ,  ferritin (h-chain) mutant; lfkt, fk506 and rapamycin-binding protein; lgmp, ribonuclease 
from Streptomyces aureofuciens (RNase SA); lgrc, glycinamide ribonucleotide transformylase; lgrd, glucocorti- 
coid receptor dna-binding domain; lgst, isoenzyme 3-3 of glutathione S-transferase; lhc6, arthropodan hemocya- 
nin; lhlh, helix-loophelix domain; lisu, high-potential iron-sulfur protein (hipip); lizb, insulin 
mutant(e(bl3)q; llig, ligand-binding domain of the Salmonella tyrphimurium; llpe, apolipoprotein-*e3 (LDL re- 
ceptor binding domain); llts, heat-labile enterotoxin; 1123, lysozyme; lmin, nitrogenase molybdenum-iron pro- 
tein; lmrm, mandelate racemase; lms2, MS2 virus (bacteriophage); lmup, major urinary protein complex with 
2-(sec-butyl); lnip, nitrogenase iron protein; lofv, oxidized flavodoxin; lomf, matrix porin (ompf); lova, ovalbu- 
min (egg albumin); lpaf, pokeweed antiviral protein; lpdc, PDC-109 type I1 B-domain; lpde, the pyruvate de- 
carboxylase (elp); lphg, cytochrome P-450cam from Pseudomonas putida camphor; lppb, thrombin in covalent 
complex with d-pheproarg; lpya, pyruvoyl-dependent histidine decarboxylase (1-histidine); lpyg, pyridoxal-5’- 
pyrophosphoryl derivative of glycogen; lr09, rhinovirus 14 (HRV14) complex with antiviral agent; lrnd, ribonu- 
clease A; lrve, eco rv endonuclease; ltfg, transforming growth factor type p2 (tgf-b2); ltie, erythrina trypsin 
inhibitor (kunitz) de-3; ltlk, telokin; ltmd, trimethylamine dehydrogenase; ltrb, thioredoxin reductase NADPH; 
lula, purine nucleoside phosphorylase, lvaa, mhc class T h-2k-d and vesicular stomatitis virus; 2bpa, bacterio- 
phage phix 174 capid proteins; 2cdv, cytochrome c,; Zdpv, canine parvovirus; 2fcr, flavodoxin; Shad, haloalkane 
dehalogenase; Bhbg, hemoglobin (deoxy); 2hhm, human inositol monophosphatase dimer; 2mad, methylamine 
dehydrogenase MADH; 2pia, phthalate dioxygenase reductase; Zplv, poliovirus, 2pmg, phosphoglucomutase; 
2sic, subtilisin BPN; 2sn3, protein neurotoxin variant-3; 2snv, sindbis virus capsid protein; 3chy, che*y; 3ink, 
interleukin-2; 3pgk, phosphoglycerate kinase; 3rub; ribulose-1,5-bisphosphate carboxylaseloxygenase; 3sc2, 
serine carboxypeptidase 11; 3sgb, proteinase b from Streptomyces griseus (SGPB); 5fbp, fructose-1,6-bisphos- 
phatase (*fru-l,6-*pase); 5nn9, neuraminidase n9 

*The 124 protein chains were chosen from a much larger Protein Data Bank “prerelease” set such that they all have less than 25% 
(for length > 80) similarity to any of the proteins in Set 0 (Table I) used for training the networks (31,976 residues with 32% a, 22% 
p, and 46% L, resolution 53.5 A for crystal structures). Nomenclature: where possible the Protein Data Bank (PDB) identifier (first 
four characters) followed by the chain identifier is given; otherwise the code of SWISSPROT is used. 

with Nins(j) being the number of insertions at se- 
quence position j of the alignment, Ndel(j) the num- 
ber of deletions at that position, and Nali the number 
of sequences in the alignment (only introduced to 
normalize the input units to 1.0). Note: the first 
term, sKej, describes 20 units for the amino acids plus 
one for a spacer allowing the extension of a window 
beyond the N- and C-terminal ends of a protein. 

Add ing  the Global Amino  Acid  Composition to 
the Input 

Sequence conservation in a multiple alignment is 
determined not only by local interactions. Whether 
or not a certain protein is evolutionarily conserved 
can depend on interactions between residues more 
than say 20 positions apar t  in sequence. Conse- 
quently, the residue substitution patterns introduce 
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DSSP E E E E E E E  E E E E E E H H H  ________________________________________--------- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - .  
SH3 N S T N K D W W K V E V N D R Q G  F V P A R Y  

a 1  N K S N P D W W E C E L N C Q R C V F P A S Y  
a2  E E H . C E W W K A K s s K R E C F I P S N Y  

a4 F S  . . .  F F G V e v D D L Q V F V P P A Y  

6 0 C O C O  
0 0 0 0 0  

2 0 0 0 0 0  
0 0 0 0 0  

20 0 0 0 20  
0 0 0 0 0  
0 0 0 0 8 0  
0 0 0 0 0  
0 0 40 4 0  0 
0 100 2 0  0 0 
0 0 40 2 0  0 
0 0 0 0 0  
0 0 0 0 0  
0 0 0 0 0  
0 0 0 0 0  
0 0 0 0 0  
0 0 0 0 0  
0 0 0 0 0  
0 0 0 4 0  0 
0 0 0 0 0  

0 0 0 0 0  

0 3 0 0 c  

1 . 2  1 5 0 9 0 7 1 . 5  

a3  R S T . C D W W L A T V T C R E C Y V P S N F  

________________________________________--------- - - - - - - - - - - - - - - - - - - -~-------- - - - .  

______________.  

first level: 
sequence-to, 

structure 

second level 
structure-to- 

structure 

third level: 

decision 
jury 

winner-take-all : prediction = j3 
(unit with maximal value) 

= 24 units per residue 
20 for amino acids, 

1 for spacer 
1 for conservation weight 
2 for insertions and deletions 

= 20 units for amino 
acid content in protein 

= 35 units per residue 
7*3 for a, p, L 
7*1 for spacer 
7'1 for conservation weight 

acid content in protein 
= 20 units for amino 

1 = 3 units per architecture 
used in jury decision 
for: a, p, L 

Fig 1 Three levels of neural networks From the multiple alignment (here guide sequence SH3 plus 4 
other proteins al-a4, note lower case letters indicate deletions in the aligned sequence) a profile of amino 
acid occurrences is compiled To the resulting 20 values at one particular position p in the protein (one 
column) three values are added the number of deletions and insertions. and the conservation weight (CW) 
Thirteen adjacent columns are used as inpul The whole network system for secondary structure prediction 
consists of 3 layers 2 network layers and 1 layer averaging over independenlly trained networts 
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1st level: sequence-to-structum 2nd level: structure-to-structure 

balanced training 

conservation weights 

conservation weights 
+ amino acid content 

real coded profiles 
+conservation weights 
+ number of indels 
+ amino acid content 

with unbalanced training 

with balanced training with balanced training 

conservation weights 
+ amino acid content 

with unbalanced training , 

Fig. 2. PHD3: jury on 12 different neural networks. The ulti- 
mate network system mixing the information from all specific com- 
pilations of the profiles consists of 12 differently trained second- 
level networks. The quadrangles give the input of each of the 
networks used. The profiles of amino acid substitution were pro- 
jected onto an interval of 0 to 1 (number of occurrences in multiple 
alignment divided by number of sequences). For the input to the 

implicitly nonlocal information. However, explicitly 
only local information was included so far. The re- 
striction to local information is one disadvantage of 
today’s secondary structure prediction  method^.^^,^^ 
One global aspect available on the level of sequence 
is the amino acid composition of a protein. Such in- 
formation has been used to predict the protein’s 
structural class, like all-a, all+, a/p (next sec- 
t i ~ n ) . ~ ~ - ’ ~  Here, we coded the amino acid composi- 
tion by 20 additional units on both levels of net- 
works: 

Nal l  p i n d o w  

N W 
, fork= 1, ..., 20 s u + k  = - - ___ 

with N being the number of residues in a protein, 
Nfi(k1 the number of amino acids of type k in the 
whole protein, and N”&&” the number of amino ac- 
ids in the window of w consecutive residues used for 
one input vector. The additional units are added to 
the first and second network level (Fig. 1). The 
coding of amino acid content starts at the uth unit of 
the input. For the first level sequence-to-structure 
network with a window of w=13, u = 13x 
(20 + 1 + 1 + 2) = 312 (20 units for the amino acids, 1 
for the spacer, 1 for the conservation weight, and 2 
for the number of indels). For the second level struc- 
ture-to-structure network with a window of w = 17, u 
= 1 7 ~ 7 ~ ( 3 + 1 + 1 )  = 512 (3 units for the three 
output units of the first level, i.e., the three second- 
ary structure types, 1 for the spacer, 1 for the con- 
servation weight, and the factor 7 for coding each of 
the five real numbers by 7 binary units77). The dif- 
ferent neural networks used for the final jury deci- 
sion of the ultimate network system are sketched in 
Figure 2. 

3rd level: 
jury decision 

PHD3 

2*6 
networks 

first level network, these 20 numbers can be coded each by mul- 
tiple binary (0 or l )  input units (binary coding), or each by a real 
number between 0 and 1.” For the ultimate system (labeled 
PHD3) only real coding was used at the first level. The input to the 
second level was coded in all cases by seven binary units per real 
number. 

Prediction of Structural Class 

The knowledge of secondary structure content 
might provide useful boundary conditions for the 
theoretical as well as the experimental determina- 
tion of protein structure. It can directly contribute to 
the assessment of the folding type of a new protein. 
One experimental way to estimate secondary struc- 
ture content is circular dichroism spec t ros~opy.~~ 
The accuracy of the secondary structure content pre- 
dicted by the network system can simply be calcu- 
lated as the difference between observed and pre- 
dicted content averaged over all protein  chain^.^',^^ 
Levitt and Chothia” have pointed out that  proteins 
fall into well-defined structural classes. Figure 3 
shows that such a classification is not clear cut. 
Here, we used the classification according to Zhang 
and Chous7 as given in the legend to Figure 3. 
Knowledge about f ~ n c t i o n ~ ~ ~ ’ ~  protein  lass,'^-'^ or 
overall secondary structure content3’ has been used 
by others in the hope of improving secondary struc- 
ture prediction methods. For proteins of unknown 
structure the structural class is, of course, not 
known. Our experience is that there is no practical 
advantage in training on specific structure classes, 
given the margin of error in identifying the struc- 
tural class of a protein.98 But how accurate is the 
prediction of structural class? The task is made dif- 
ficult by the fact that the classification is not clear 
cut (Fig. 3). Small errors in prediction of secondary 
structure content result in false classifications. 
What could be achieved if homology modeling were 
possible? An analysis of 140 alignment pairsg0 
shows that even a method allowing accurate predic- 
tion of the 3D structure reaches only a value of 90% 
(all-a, 96%; all+, 70%) in classifying proteins into 
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% of helix 

Fig. 3. Content of helix vs. content of strand for 1000 PDB proteins. For all proteins in PDB (release 24.02), 
i.e., about 1000, the content of helix and strand is compiled according to DSSP.79 Distinct chains are not 
averaged separately. The division lines are apparently not clear-cut. One possible classification scheme ise7 
a h ,  %a 2 45% and %p < 5%; all-p, %a < 5% and %p 2 45%; mix, %a 2 30% and %p 2 20%. 

four structural classes (the measure is defined in the 
legend to Fig. 7). 

RESULTS 
The Details of the Multiple Alignment 
Are Important 

The first question arising from the use of the in- 
formation in multiple alignments is how important 
are the details of the alignment? We compared two 
different coding schemes: binary vs. real. The binary 
coding projects the profile entries (percentages: 
0-100, Fig. 1) onto four intervals: 0-2,3-33,34-66, 
and 67-100. The result of a three level network us- 
ing binary coding in terms of overall accuracy is 2 
percentage points inferior to  a network using real 
coding (Table 111, “binary profiles” vs. “PHDO”). For 
the example in Figure 1 with 5 sequences in the 
alignment, this result is not surprising, since, e.g., a 
value of 40 or 60 results in the same input signal. 
But what if the number of the aligned sequences is 
higher, say 50. Does it really make a difference to 
have 50 instead of 55? Only one-third of all proteins 
from PDB can be aligned to less than 20 proteins 
(HSSP data base, Reinhard Schneider, private com- 
munication). Roughly the same figure holds for the 
proteins of Set 1. Thus, the gain by real coding 
shows that indeed the fine details of the alignments 
are important for the prediction. 

The Addition of a Conservation Weight in 
PHDl Improves Performance 

The second question is of a more technical nature: 
is the network capable of extracting all the impor- 
tant information from the profiles, or does it facili- 
tate the prediction task to additionally add informa- 

tion such as the conservation weight that is derived 
from preprocessing the profile? The result is that the 
addition of the conservation weight to the input of 
the first level sequence-to-structure and of the sec- 
ond level structure-to-structure network adds half a 
percentage point in terms of overall accuracy. The 
results for PHDO (using only the profile) given in 
Table I11 are an average over the 126 proteins of Set 
1 plus 4 membrane chains: the comparable average 
for PHDl (using additionally the conservation 
weight) is Q3 = 70.2%, i.e., 0.5 percentage points 
higher than the one for PHDO. 

The Addition of Indel Information in PHDP 
Improves the Overall Accuracy and Reduces 
the Tendency for Overprediction 

The next question was: can the patterns of inser- 
tions and deletions be used to further improve the 
prediction? As mentioned above these patterns 
carry, in particular, information about the occur- 
rence of loop regions. Thus, what one expects is that 
the prediction of loop becomes more accurate. In- 
deed, using the number of indels on the first level 
(sequence-to-structure network) improves the accu- 
racy for loop from 72.3 to 76.9% (data not shown). 
The overall result is improvement in accuracy to 
71.4% (Table 111, PHDl vs. PHD2) and reduction of 
the tendency for overprediction. The latter corre- 
sponds to a significant decrease in the accuracy of 
correctly predicting observed helices and strands 
(2-4 percentage points reduction in QPbs and 
QPbs, Table 111). At the same time helices and 
strands predicted have a higher probability of being 
correct (Q:pred and Q F d  increase by 1-5 percentage 
points, Table 111). This means that the tendency of 
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TABLE 111. Prediction Accuracy for Various Networks* 

Method 

Reference Binary 

Q3 62.1 67.6 69.7 
Z 0.13 0.17 0.25 
Q p b s  57 70 70 

60 70 72 
c a  0.40 0.56 0.58 

41 66 64 
53 57 57 

net profiles+ PHDO+ 

QZpred 

QPbS 
Qrpred 
c, 0.35 0.47 0.50 

PHDl PHD2 
70.8 71.4 
0.25 0.27 

72 68 
73 78 

66 64 
60 61 

0.60 0.62 

0.52 0.52 

PHD3 
71.6 
0.27 

70 
76 

62 
63 

0.61 

0.52 

s o u p  61.8 - - 72.4 72.7 72.8 
s o u p  54.5 - - 67.6 67.7 67.9 
S0u:b” 59.0 - - 75.9 73.9 75.1 

s o u p  56.9 - - 73.4 73.9 72.0 
Sn,,R’ed 48.5 - - 65.4 66.6 67.8 

Soup&ed 48.7 - - 70.9 74.4 73.3 

*Given are average over 7-fold cross-validation on the 126 protein of Table I. Note: the results marked with a dagger relate to the 
126 globular soluble proteins of Table I plus 4 chains of the photoreaction center. The inclusion of the four trans-membrane chains 
results in an average overall accuracy roughly 0.5 percentage points lower than the average over exclusively globular proteins (e.g., 
for PHDO the average over 130 proteins is 70.2%). 

Abbreviations for networks: reference net, only first level sequence-to-structure net with unbalanced training using single se- 
quences instead of profiles from multiple alignments as input (similar to the networks evaluated by others on smaller data  set^^',^^). 
The other networks give the results for the three level system; “binary,” the substitution profiles (values between 0 and 1) input to 
the first level are coded by 4 binary (0 or 1) units each. For the three methods labeled PHD the profiles are coded by real units (values 
between 0 and 1). “PHDO” uses only the profiles as input; “PHD1” uses additionally conservation weights. “PHD2” adds the number 
of indels on the first level. Only “PHD3” uses explicitly global information as given by the amino acid content (Fig. 2). 

Per-residue measures (all values given in percent; for a more detailed definition see Rost and Sander77): Q3, residues predicted 
correctly in 3 states (helix, strand, loop) divided by all residues; QPbs, correctly predicted residues in helix divided by observed 
residues in helix; QFbs, same as previous for strand QZpred, correctly predicted residues in helidstrand divided by predicted residues 
in helidstrand; QZpred, same as previous for strand; I ,  information measure defined by 

N l n N -  2 b,Inb, 
i = l  

where N is the number of residues in the data bank, a, the number of residues predicted to be in secondary structure i, b, the number 
of residues observed to be in i, and A, the number of residues predicted to be in i and observed to be in j.77 C ,  is the Matthew 
correlation coefficient for helix and C ,  that for strand.Iz5 

Segment based measures (given in percent; for explicit discussion see Rost et al.”) 

where N is the total number of residues, s1 and sz are two secondary structure segments (one from the observed string of secondary 
structure, the other from the predicted string), and len(s,) is the number of residues in the segment of sequence 1. The sum is taken 
over all segment pairs s={s1,s2}. The actual overlap between the two segment is minov, i.e., the number of residues for which both 
segments have, e.g., en H (helix) in common; maxov is the total extent of both segments, i.e., the number of residues for which either 
of the two has, say, the assigned state H. The accepted variation 6 assures a ratio of 1.0 when there are only minor deviations at  the 
ends of segments; it is chosen to be smaller than minov and smaller than half the length of segment sl. The ratio minov/maxov is 
constrained to a maximum value of 1.0, i.e., the allowance cannot lead to a “more than perfect” value of fractional overlap, Sou, gives 
values for 3 states, Sou, those for helices, and Sou,, those for strand. The superscript “obs” indicates that the length of the observed 
segments was used for weighting (likelihood that an observed segment is correctly predicted). In contrast, “pred” labels the weighting 
by the length of the predicted segments (likelihood that a predicted segment is correct). 

the network to overpredict helices and strands is quence-to-structure) networks increases the accu- 
reduced, a desirable effect. A curious side effect is racy; using it for the second level (structure-to-struc- 
that the indel information has more influence on the ture) decreases the accuracy. This observation 
prediction of helices than on strands (differences be- cannot be explained clearly. Two potential reasons 
tween PHDl and PHD2 higher for helices, see Table are the following. First, indel information might be 
111). more important on the sequence than on the struc- 

Using the indel information for the first level (se- ture level. The conservation weight allows the net- 
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network systems using multiple alignments 
non-networks using multiple alignments 

non-network systems not using multiple alignments 

set: Set 1 setETH setK&S set LPAG Set 2 

Fig. 4. Overall three-state accuracy for various predictions. The overall three state accuracy of the network 
systems is compared to various predictions. Set 1 and set 2 are given in Tables I and 11. "ETHS" labels the 
five proteins for which an expert prediction from Gerloff et aL6' is comparable, "K&S" is the set of 62 proteins 
as used by Kabsch and Sander,4' and "LPAG" the one used by Levin et al.76 The results marked with an 
asterisk were taken from the literature: "C + F" (Ch~u-Fasman~~), "Lim,"40 and "GOR1"39 are given in Kabsch 
and SandeP'; "GORIII" and "LPAG" for set LPAG are from Levin et al.76 (other abbreviations as in Table 111). 

work to focus on particular residues of the protein. 
Thus, the information added by using additional 
units for the conservation weight is not restricted to 
the sequence level. This might not as clearly be the 
case for indels. The number of indels is strongly cor- 
related to sequence information. Thus, the inclusion 
of indel units pays off only on the first level of se- 
quence-to-structure network. Second, the coding 
scheme used is not optimal. The second level struc- 
ture-to-structure network codes one residue position 
by 5 units (helix, strand, loop, spacer, conservation 
weight). Indels contribute another 2 units. The net- 
work might fail to learn that the first 3 units are 
less important than the last 4. In other words, the 
indel information might dominate the structure in- 
formation. 

The Addition of the Global Amino Acid 
Content in PHD3 Has a Marginal Influence in 
Terms of Local Measures 

Does it pay to explicitly include global informa- 
tion to the input, such as the amino acid content in 
the entire protein? The inclusion of global informa- 
tion by using the amino acid content of the protein 

(outside of the window) presented as additional in- 
put influences the local measures like the overall 
accuracy only marginally: Q3 = 71.6% (Table 111, 
compared to 71.4% for PHD2). The tendency to bet- 
ter predict loop regions (than PHDl does) is main- 
tained, as well as the tendency for less overpredic- 
tion in helix and strand. The improvement in overall 
accuracy is mainly caused by a more accurate pre- 
diction of helices (Table 111). However, the dominant 
effect of using global information is a significant im- 
provement of prediction in terms of global measures 
like the correctness of the predicted content of sec- 
ondary structure. This point will be discussed in de- 
tail below. (Note: including the length of the protein 
as additional input did not yield further improve- 
ment. This again might partly be attributed to a 
nonoptimal coding scheme.) 

From 62.1 to 71.6%-Untangling the 
Contributions to the Improvement 

The three level network system is already rather 
complex. Which information contributes which frac- 
tion to the improvement of prediction accuracy? Us- 
ing a standard neural network consisting of one 
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Fig. 5. Expected variation of prediction accuracy with protein 
chain. The distribution of the per protein chain three state accu- 
racy can be interpreted as the expected variation of prediction 
accuracy for protein sequences of unknown structure. Given is the 
distribution over all 250 protein chains from Set 1 (Table I) and Set 
2 (Table 11). (a) The average in per-residue accuracy (0,) over all 
chains is 72.2% with a standard deviation of 9.3%. (b) The aver- 
age in segment overlap (Sov, as defined in Table Ill) is 72% with 
a much larger standard deviation of 15.8%. 

layer with single sequences52~53~93~95~100-105 results 
in an accuracy of 62.1% on Set 1 (dubbed reference 
net in Table I). A comparable first level network 
using profiles, conservation weight, indels, and 
amino acid composition scores a t  an overall accuracy 
of 69.5%. Thus, the multiple sequence input infor- 
mation accounts for roughly 7.5 percentage points of 
the improvement. The best network of the second 
level reaches 70.6%. Such a network trained on both 
levels by presenting the patterns during the train- 
ing according to their relative occurrence in the data 
set (unbalanced training) shares with the reference 
network a low accuracy in predicting strand regions 
(QPbS = 51%). Balanced training (presenting the 
three secondary structure types equally often during 
training) results in a lower overall accuracy (Q3 = 
68.5% on the first level and 69.1% on the second), 
but a substantially more accurate prediction of 
strand (QFbs = 65%). The final decision improves 

the overall accuracy from 69.1-70.6% on the second 
level to 71.6%. The introduction of the second level 
(structure-to-structure) network yields a further im- 
provement not revealed by the per-residue scores: 
the predictions look by far more protein-like, i.e., the 
average length of the predicted secondary structure 
segments is similar to the predicted averages (for 
helix: predicted 9.2 residues per segment, observed 
9.1; for strand: predicted 4.8, observed 5.1). This is 
reflected by the increase of prediction accuracy in 
terms of the segment overlap (Table 111). 

Overall Accuracy Above 72% Evaluated on 
250 Unique Protein Chains 

How much does the result depend on the choice of 
data set used for evaluation? One difficulty in the 
literature on secondary structure prediction meth- 
ods has always been that the data sets used for eval- 
uation were too small and/or allowed for significant 
sequence identities between the proteins used for 
developing the method and those used for evaluat- 
ing it (insufficient cross-validation). In addition, dif- 
ferent authors use different sets. Given the varia- 
tion of prediction accuracy between different protein 
chains (Fig. 5) ,  it is possible to improve the predic- 
tion accuracy-by chance or deliberately-by select- 
ing an  even larger set of sequences for which the 
accuracy is higher, e.g., leaving out the worst pre- 
dicted proteins in Fig. 5 results in an  average >80% 
for the best 50 proteins. How representative are the 
126 proteins of Set l? We performed 7-fold cross- 
validation tests on two other sets: first, a set of 62 
proteins (labeled “K&S” in Table IV) used for a com- 
parative study of the quality of secondary structure 
prediction a decade ago,42 and second, a set of 82 
protein fragments (labeled “LPAG’ in Table IV) 
used in a recent study on the improvement of clas- 
sical prediction methods by use of alignment infor- 
m a t i ~ n . ~ ~  For these the network system scores 1-3 
precentage points higher in overall accuracy than 
for the set of 126 proteins (Table I) discussed so far. 
This analysis allows for a direct comparison of the 
network system with methods of secondary struc- 
ture prediction still widely used: first the Chou and 
F a ~ m a n ~ ~ , ~ ~  algorithm with an overall accuracy of 
49%42 compared to 72.5% of PHD2 (Table 11, Fig. 4) 
and second, the GORIII method47 with an  overall 
accuracy of 60.2%76 compared to 74.8% of PHD3 
(data not shown). 

Will the method score equally high for the next 
100 proteins? Since we first asked this question77 
many experimentally determined structures became 
available. The result for Set 2 containing 124 new 
proteins (Table 111) is surprisingly even better than 
that for Set 2. The overall accuracy of PHD3 be- 
comes 72.5%. None of the 124 new proteins of Set 2 
had any significant sequence identity to any of the 
proteins in Set 1. It is very likely that none of the 
proteins from Set 2 has significant sequence identity 
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TABLE IV. Performance for Various Prediction Methods* 
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Method 
COM- COM- 
BINE ETH PHDl C+Ft  PHD2 LPAG’ PHD3 GORIII BINE S83 PHD3 
“5” 

5 

57.6 

73 
56 

17 
58 

57.3 
51.3 
69.7 
48.9 
26.5 
45.7 

0.09 

0.38 

0.23 

“5” 
5 

57.2 

50 
80 

47 
48 

63.2 
57.3 
61.1 
81.5 
55.4 
59.4 

0.14 

0.49 

0.30 

“5” 
5 

71.6 

69 
83 

55 
74 

76.2 
72.2 
75.4 
80.8 
69.7 
77.0 

0.29 

0.62 

0.55 

“ K & S  
62 

49 

42 
45 

52 
35 

- 

- 

- 
- 
- 
- 

- 
- 

- 

“ K & S  
62 

72.5 

68 
80 

71 
63 

72.7 
69.5 
71.5 
77.8 
74.4 
69.6 

0.30 

0.64 

0.57 

“LPAG’ 
60 

74.8 

70 
81 

78 
69 

76.8 
74.7 
70.3 
76.5 
83.3 
76.5 

0.34 

0.67 

0.62 

Set 2 
124 

58.9 

57 
57 

39 
48 

58.8 
50.2 
57.0 
44.4 
53.0 
42.3 

0.10 

0.37 

0.30 

Set 2 
124 

60.9 

68 
56 

30 
59 

61.4 
55.5 
68.1 
50.2 
45.7 
52.0 

0.12 

0.42 

0.32 

Set 2 
124 

61.1 

60 
60 

44 
50 

62.2 
58.0 
62.4 
57.7 
53.6 
53.2 

0.13 

0.42 

0.33 

Set 2 
124 

72.5 

71 
78 

62 
65 

73.9 
69.4 
75.1 
75.0 
72.5 
68.5 

0.28 

0.64 

0.53 

*For different protein sets the performance of network systems is compared to alternative prediction algorithms: 

Set “5”: set of 5 proteins for which a comparison is possible to the expert prediction “ETH,” from Gerloff et al.62-64,69,126J2’ The 
proteins are lcpk chain E, CAMP-dependent protein kinase’28; ksrc-avisr, SRC tyrosine kinasel”; spcn-chick, SH3 domain of 
~pectrin’~’; p85b_hurnan, phospatidylinositol 3-OH k ina~e’~~ , ’ ’~ ;  and nifk-azovi, molybdenum-iron nitr0gena~e.l~’ “COMBINE” 
gives for comparison the performance of a classical prediction not based on alignment i n f ~ r m a t i o n . ~ ~  

Set “K&S”: set of 62 unique proteins first used by Kabsch and Sander for a comparative assessment of prediction ac~uracy.~’ C + F 
gives the result of the Chou-Fasman p r e d i ~ t i o n ~ ~ , ~ ~  evaluated on this set (values taken from Kabsch and Sander4’). 

Set “LPAG: set of 82 protein fragments (from less than 20 structure families), used for prediction of secondary structure based on 
multiple alignments with an  information theory approach.76 LPAG gives the result the authors published for the performance of 
their method using the information from multiple sequence alignments (Levin et  

Set 2: see Table 11: “GORIII” and “COMBINE”46 are standard information theory algorithms (both methods were published to reach 
Q3>63% based on an  evaluation on a smaller data set55). “S83” (Segment 83) is an unpublished method.4” 

The measures and the abbreviations for the networks are explained in the footnote to Table 111. Note: values marked with a dagger 
were taken from the literature. 

and Garnier, private communication). 

to any protein used to develop earlier prediction 
methods, thus these methods can be evaluated di- 
rectly on Set 2. This we did for three methods avail- 
able to us: Segment 83 (Kabsch and Sander, unpub- 
lished), GORIII,47 and COMBINE.46 All three 
classical methods have an overall accuracy more 
than 10 percentage points lower than that of PHD3 
(Fig. 3, Table IV). 

The Expected Accuracy for a New Protein 
Varies Between 63 and 81%, But Reliably 
Predicted Regions Can Be Identified 

All these numbers might be less interesting for a 
potential user of the prediction who only wants to 
know: how good is the prediction on a new protein of 
unknown structure, say a protein called SOS? The 
discouraging message is, for the 250 proteins in Set 
1 and Set 2 the standard deviation is as large as 
9.3% (Fig. 5). But the prediction is significantly 
worse in isolated cases. Secondary structure predic- 
tions are successful in capturing the cliches con- 

tained in the data bank. So, the more unusual SOS 
is compared to known structures, the less likely is a 
good prediction. Two recent examples of failure of 
the prediction method are the phospatidylinositol 
3-OH kinase p85-human (PIK3)106,107 and the an- 
tifreeze protein type I11 anpc_macam,lo8 both pre- 
dicted a t  low accuracy of about 40%. Thus, there is a 
small but nonvanishing chance that the prediction 
for SOS is grossly wrong. 

A more encouraging result, in addition to the rel- 
atively high average accuracy, is that the network 
prediction allows the identification of regions which 
are predicted with higher reliability (reliability in- 
dex defined in caption of Fig. 6). An impressive 40% 
of all residues are predicted at an  expected accuracy 
of 88% (Fig. 6). This accuracy is comparable to what 
can be expected if homology modeling were possible 
for SOS.“” Thus, it is possible to estimate from the 
prediction whether or not the result for SOS is likely 
to be worse than the average over all proteins 
(72.3%): if the reliability index is 2-6 for more than 
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--o- PHD3 for Set 1 .----w-- COMBINE for Set 2 
+ PHD3 for Set 2 

percentage of predicted residues 

Fig. 6. Expected prediction accuracy for residues with a reli- 
ability index above a given cut-off. Plotted are averages of the 
three state accuracy over all those residues with reliability index 
RI > n, n = 0, . . . , 9. This index is simply defined by: 

where out,,, is the output of the output unit with highest value, 
and outnext that of the unit with the next highest value. The factor 
10 normalizes RI to integer values from 0 to 9. RI = 9 corre- 
sponds to a rather reliable prediction. Shown are the results for 
two different evaluation sets (Set 1 and Set 2), e.g., about 30% of 
all residues have RI > 7 and of these about 90% are correctly 
predicted by PHDS. 

RI = INTEGER [lo x (Out,, - OU~,,,)] 

half of the residues of SOS then the accuracy can be 
expected to be higher than average 72% (Fig. 6). 

The Neural Network Method vs. Statistical 
and Expert System Methods 

Hirst and Sternberg54 concluded: “The applica- 
tions of neural networks to problems in protein se- 
quence analysis, although interesting, have not 
yielded significant improvements over other current 
methodologies.” They then speculated that this 
might change with growing databases or the incor- 
poration of other information. This raises the ques- 
tion whether the time they foresaw has already 
come. Are neural networks particularly well suited 
for the task of predicting secondary structure from 
profiles of multiple alignments? The answer has to 
remain preliminary because of two reasons. First, by 
the end of 1993 only two analyses of nonnetwork 
methods using information from multiple sequence 
alignments have been evaluated on larger data sets 
(see below). The expert predictions based on multi- 
ple alignments are available for some examples, 
only. Second, our network system is perhaps not the 
optimal solution for the problem. We managed to 
improve the performance by some 5 -7 percentage 
points over the last 2 years. Others might continue 
on this road in the future. 

Which are the comparable methods for predicting 
secondary structure based on the information from 

multiple alignments? One attempt is to use the 
information theory as incorporated into the 
~ 0 ~ 3 7 - 3 9 , 4 7 , 1 0 9  method. A recent publication simply 
deduces the prediction from an average over the pre- 
dictions for each sequence in the multiple align- 
ment.76 An alternative method compiles an average 
over the information content of the multiple align- 
ment (Altenberg and Sander, unpublished). Both 
methods reach overall accuracies clearly below 70%. 
Levin et al. published a value of 68.5% for using 
sequence alignments. They report as well a result of 
69.6% based on the alignment of C“ traces, but for 
proteins of unknown structure the C“ traces are of 
course also unknown, consequently, C“ alignments 
cannot be obtained. If the network system (PHD3) is 
evaluated with 7-fold cross-validation on the same 
data set as used by Levin et  al.,76 the three-state 
overall accuracy rises to 74.8% (Table IV, Fig. 4). 
Thus, the nonnetwork system is some 6 percentage 
points inferior to the network system using the same 
information. 

Another comparison is the one between the net- 
work system and an expert system. This comparison 
continues to be overemphasized in the literature in 
the sense that it is based on very few cases, and “one 
swallow does not make a summer.”l1° The variation 
of the prediction accuracy on small data sets is sub- 
stantial (Fig. 5 ) .  The overall accuracy of the expert 
prediction by Gerloff et  al.,69 averaged over 5 pro- 
teins, is 57.2% (that of a statistical method not using 
multiple alignments is 57.6%, Table IV). On the 
same set the network system scores a t  71.6% (Table 
IV, Fig. 4). These comparisons show that the net- 
work system is indeed very suitable for incorporat- 
ing the additional evolutionary information con- 
tained in the multiple sequence alignments. 

Prediction of Structural Class Comparable to 
Methods Specialized on This Task 

How accurately can secondary structure content 
be predicted? As a simple measure we used the dif- 
ferences between observed and predicted secondary 
structure content averaged over all proteins of Set 1. 
The results is that the additional input of the global 
amino acid content incorporated in PHD3 yields a 
more accurate prediction of the secondary structure 
content and consequently of the structural class (Ta- 
ble V). How do these result compare to other meth- 
ods? 

First, the prediction of secondary structure con- 
tent: Muskal and Kims5 allowed for homology be- 
tween testing and training set. Consequently, their 
method has to compete with homology modelling 
(Table V), whereas the values given for the networks 
have to be compared to random prediction (Table V). 
Additionally, the test set used by Muskal and Kim 
contained less than 20 proteins. The performance of 
PHDS on the best of the seven test sets was about 
the same as the one reported by Muskal and Kim, 
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TABLE V. Prediction of Secondary Structure Content and Structural Class* 
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Method 
PHD2 PHD3 PHD3’ GORIII+ COMBINE+ HM RAN 

Ahelix 9.0 t 8.3 8.5 t 8.0 7.8 * 6.8 11.3 * 9.4 11.2 r 9.0 2.8 * 3.8 32.1 20.8 
Astrand 7.6 2 8.0 7.5 t 8.1 7.3 * 7.9 10.6 * 9.8 13.2 * 10.6 2.7 & 3.2 21.3 t 14.5 
C p  0.86 0.87 0.91 0.78 0.83 0.97 -0.36 

0.74 0.74 0.73 0.46 0.51 0.97 -0.22 
All-a 80.0 85.7 94.1 85.7 66.7 94.1 0.0 
All-p 66.7 50.0 0.0 0.0 0.0 86.7 0.0 
alp 33.3 50.0 55.6 50.0 0.0 100 0.0 
Rest 72.0 74.1 74.5 65.8 67.7 89.7 71.2 

70.6 74.6 75.8 66.1 66.1 90.0 44.7 Qclass 

C P  

99 *“HM labels a prediction by homology modeling and “ R A N  a random prediction ; the other methods are as in Tables I11 and 
IV. The results marked with a dagger refer to  Set 2; the others refer to  Set 1 (or comparable sets as for HM and RAN). 
The following measures are listed: 

Acontenti = Icontentpb,s - contenty,ed1, i = a$ 

with content?: being the observed content ofsecondary structure of type i in protein chain p,, and contentp’id the 
predicted content. Pearson correlation coefficient: 

all chains 

< x y >  - <x><y> 
i = -a,p,L ,,earson = 

v < x 2 >  - <x>2 d<y2><y>2’ 
where x and y are the observed and predicted content of the secondary structure of type z (here in three states: helix, 
strand, loop). Brackets < > indicate the average over all proteins under investigation. The percentages of proteins 
predicted correctly to be in either of the four structural classes: all-a, all-p, a@, and rest is given by 

number of chains predicted correctly in class i 
number of chains predicted in class i 

2 number of chains predicted correctly in class i 

number of chains predicted 

class = 

The total average over all four classes is defined as 
4 

Qclass = i = l  

although the network is not specialized on predict- 
ing secondary structure content, and although we 
did not allow for any significant sequence homology. 
The results of a network system also compares fa- 
vorably with those from circular dichroism spectros- 

Second, comparison of the prediction of structural 
class: other authors allowed for homologies between 
test and training sets. Among various analy- 

there is only ones8 that reports a 
thorough cross-validation on a set of 64 proteins. 
Again, the authors allow for homologies between 
training and testing set proteins. In spite of this, 
their results are not better than those given here 
(Table V). 

Summing up, PHD3 classifies 75% of the 250 pro- 
teins correctly into one of the four classes all-a, 
all+, a@, and rest (Fig. 7). This is at least compa- 
rable to the results obtained by other methods that 
specialize on this task but do not used the informa- 
tion of multiple sequence alignments. One reason 
for the prediction of structural class is the hope to 
improve the prediction of secondary structure by us- 
ing the information about structural class as input. 
We showed earliers8 that the difference between a 
network trained specifically on all-cx proteins and 

copy.77 

se~87,8S,111-116 

another one trained on proteins of all classes is only 
marginal. Given the additional error margin in find- 
ing the structural class, the balance shifts in favor of 
the training on proteins of all structural classes. 
Note, however, that prediction by homology is 
clearly superior to any other method, including an  
experimental estimate of secondary structure con- 
tent by circular dichroism spectroscopy. Figure 7 il- 
lustrates that  even for a prediction by homology 
with correlation coefficients close to 1, the error in 
predicting the structural class is some 10%. This er- 
ror is mainly caused by the fact that the line be- 
tween the four classes is not clear cut (Fig. 3). 

CONCLUSIONS 
The final network system PHD3 described here 

reaches an overall accuracy of 71.6% on Set 1 and 
72.5% on Set 2. The network scores a t  a sustained 
level of higher than 72% on the combined set of 250 
unique globular soluble protein chains, which in to- 
tal have about 57,000 residues. The best score pub- 
lished for a nonnetwork method using sequence 
alignments is 68.5%.76 On the same set of some 82 
protein fragments PHD3 scores a t  74.8% (Table IV, 
Fig. 4). Another comparison to a method using in- 
formation from multiple alignments (based on a 
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Fig. 7. Accuracy in predicting structural class vs. Pearson cor- 
relation coefficient for helix (a) and for strand (b). The Pearson 
correlation coefficient is often used when assessing the success 
of circular dichroism  estimate^.*^^'^^-'^^ It measures the correla- 
tion between predicted and observed content of secondary struc- 
ture (defined in Table V). Typical values for circular dichroism 
spectroscopy are helix, 0.84; antiparallel sheet, 0.41 ; parallel 
sheet, 0.37; and loop, 0.56.'33 The values for the correctness of 
predicting structural class relate on the four classes as given in 
Figure 3 (definition of measure in Table V). "HM" labels a predic- 
tion by homology modeling. The other methods are given in the 
footnote to Table Ill (in parentheses: number indicating whether 
Set 1 or Set 2 was used). 

very small set of 5 proteins) for the expert predic- 
tions of Gerloff et al.69 looks equally favorable: 57.2 
vs. 71.6% (Table IV, Fig. 4). Classical methods like 
Chou-Fasman and GORIII evaluated on the same 
data set yield overall accuracies 23 to 13 percentage 
points inferior to  PHD3. Thus we conclude that the 
time that "the power of neural networks may be ex- 
ploited in the analysis of protein sequences"54 has 
come already. 

Given a difference of more than 20 percentage 
points to the Chou-Fasman method, is this a sub- 
stantial improvement? Prediction methods have to 
be evaluated in relation to what the worst and the 
best possible predictions yield. The lower limit can 

be given by a random prediction (about 35%) and the 
upper limit by a prediction based on homology build- 
ing of the 3D structure, possible if a sequence homo- 
logue of known 3D structure to the new protein 
(SOS) exists (88.4%)." The span in between these 
two values is accessible to methods predicting sec- 
ondary structure from the sequence. Normalizing 
the overall accuracy such that a random prediction 
yields 0% and a prediction by homology 100% re- 
veals that the network system presented here is al- 
most three times as accurate as the prediction of 
Chou-Fasman, and substantially better than any 
other prediction method (Fig. 8). Of practical in- 
terest is the definition of a reliability index. Al- 
ternative methods enabling the definition of a reli- 
ability index predict about 2-4 times fewer residues 
at  a given accuracy (on not comparable data 

The segment-based accuracy exceeding 72% (as 
measured in the segment overlap defined in Table 
111) proves that the network system presented here 
is relatively more successful in producing protein- 
like predictions than previously used neural net- 
works: the reference network (Table 111) yields a 
lower segment than per-residue score (Table 111), in- 
dicating that the prediction is not as similar to  what 
is observed in globular proteins. 

Using amino acid content as additional input does 
not result in a significant increase of the overall 
accuracy (PHD2 vs PHD3). However, the network 
incorporating this global information (PHD3) is 
clearly superior to the one not using it (PHD2) in 
predicting the global content of secondary structure 
and consequently the structural class of a protein 
(Table V, Fig. 7). Of all 250 proteins 75% are cor- 
rectly classified into one of the four classes: all-a, 
all+, alp, and rest. 

The analysis given here is based on a data set of 
250 unique proteins. Will the result hold for the next 
250, the structure of which will be experimentally 
determined? Long-term use of PHD will provide an 
answer (the method is available for fully automatic 
use,12o send the word help by electronic mail to  the 
internet address PredictProtein@EMBL-Heidel- 
berg.de for detailed instructions). Indeed, secondary 
structure prediction as presented here is only suc- 
cessful in predicting the cliches contained in the 
data bank. But what are these cliches? Given a 
novel fold, will PHD be able to  correctly predict the 
secondary structure? In principle it should not, but 
what is a novel fold? An example is the recently 
solved flavoprotein related to the subunit of bacte- 
rial luciferase luxf-phole12' that has been presented 
as a novel fold by the cystallographers. They are 
probably right in that such a fold is not yet in the 
data bank. Yet, the prediction at  an overall accuracy 
of 78% indicates that the novel fold is based on the 
same local preferences as those already present in 
the data bank. If the universe of folds is lim- 

sets).47,52,117,119 
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Fig. 8. Normalized overall three-state accuracy for various predictions. A lower limit for secondary struc- 
ture prediction accuracy is given by a random prediction (=35.4%), an upper limit by the performance of 
homology modelling (=88.4% on Set l).” This figure shows the same results as Figure 4, but the values are 
normalized such that a random prediction scores at 0% and homology modeling at 100%. 

the prediction has a good chance to be 
accurate in the near future, a t  least, as long as the 
experimental techniques for the determination of 
structure remain restricted to the same features of 
proteins as today. 

Of course, the real goal of predictions is to reduce 
the sequence-structure gap, i.e., to predict 3D struc- 
ture rather than a one-dimensional abstraction of it 
in the form of secondary structure strings. For the 
time being, methods that predict more dimensions 
than one do not work generally reliably. In some 
cases, e.g., threading techniques are successful, in 
others, they fail; it is currently difficult in general to 
distinguish true positives from the background. The 
growth of the data bank coupled with technical im- 
provements made it possible to substantially im- 
prove secondary structure predictions from 56% 
overall accuracy a decade ago4’ to now above 72%. 
On the way to the prediction of 3D structure, this is 
only a small step, but a promising one. 
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