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Classification Problem

Legs weight size …. Feature m

4 100

80 0.1

Category / Label

Mammal

Bug

Input Output

Question: How to automatically predict output given input?
Idea: Learn from known examples and generalize to unknown ones.



Data Driven Machine Learning 
Approach

Data with 
Labels

Key idea: Learn from known data and Generalize to unseen data 

Input: words of news
Output: politics, sports, entertainment, 
…

Model: Map 
Input to Output

Training 
Data

Test Data

Training

Test

Training: Build a model (classifier)
Test: Test the model 

Prediction

New 
DataSplit



Outline• Introduction
• Linear regression
• Linear Discriminant function (classification) and one 

node neural network / perceptron
• Multi-layer network
• Prevent overfitting & speedup learning & stochastic 

gradient descent
• Deep neural network
• Convolutional neural network
• Recurrent neural network
• Advanced networks (GAN, inception, capsule, LSTM, 

deep auto-encoder)
• Deep belief network



Machine Learning

• Supervised learning (training with labeled data), 
un-supervised learning (clustering un-labeled 
data), and semi-supervised learning (use both 
labeled and unlabeled data)

• Supervised learning: classification and regression
• Classification: output is discrete value
• Regression: output is real value



Learning Example: Recognize 
Handwriting

Classification: recognize each number
Clustering: cluster the same numbers together
Regression: predict the index of Dow-Jones



Neural Network

• Neural Network can do both supervised 
learning and un-supervised learning

• Neural Network can do both regression and 
classification

• Neural Network has both statistical and 
artificial intelligence roots



History of Neural Networks

• 1957 – perceptron (Rosenblatt)
• 1960s – almost died 
• 1980s – neural networks (multi-layer 

perceptron)
• 1990-2000s – fell out of favor
• 2010s – deep learning (hottest)





Roots of Neural Network

• Artificial intelligence root (neuron science)
• Statistical root (linear regression, 

generalized linear regression, discriminant 
analysis. This is our focus.)



A Typical Cortical Neuron

Collect chemical signals
Axon: generate 
Potentials (Fire/not Fire)

Synapse: control
release chemical
transmitters.

Junction
between 
neurons

Dentritic tree
1011 neurons



A Neural Model

Input

weight

Adapted from http://www.doc.ic.ac.uk/~nd/surprise_96/journal/vol4/cs11/report.html

Activation
Activation function



Statistics Root: Linear Regression 
Example

Adapted from A. Moore, 2003

X: input or predictor
Y: output or response
Goal: learn a linear function E[y|x] = wx + b. 

Fish length vs. weight?



One Node Neural Network

https://ujjwalkarn.me/2016/08/09/quick-intro-neural-networks/



Linear Regression

Definition of a linear model: 
• y = wx + b + noise. 
• noise ~ N (0, σ2), assume σ is a constant.
• y ~ N(wx + b, σ2)
• Estimate expected value of y given x (E[y|x] 

= wx +b) . 
• Given a set of data (x1, y1), (x2, y2), …, (xn, 

yn), to find the optimal parameters w and b. 



Objective Function

• Least square error:
• Maximum Likelihood:
• Minimizing square 

error is equivalent to 
maximizing likelihood
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1-Variable Linear Regression
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Multivariate Linear Regression

• How about multiple predictors: (x1, x2, …, 
xd). 

• y = w0 + w1x1 +  w2x2 + … + wdxd + ε
• For multiple data points, each data point is 

represented as (yi, xi), xi consists of d 
predictors (xi1, xi2, …, xid).

• yi = w0 + w1xi1 +  w2xi2 + … + wdxid + ε



A Motivating Example
• Each day you get lunch at the cafeteria.

– Your diet consists of fish, chips, and beer.
– You get several portions of each

• The cashier only tells you the total price of the meal
– After several days, you should be able to figure out the price of 

each portion.
• Each meal price gives a linear constraint on the prices of the 

portions:

beerbeerchipschipsfishfish wxwxwxprice ++=

G. Hinton, 2006



Matrix Representation
n data points, d dimension
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Multivariate Linear Regression

• Goal: minimize square error = (Y-XW)T(Y-
XW) = YTY -2XTWY + WTXTXW

• Derivative:  -2XTY + 2XTXW = 0
• W = (XTX)-1XTY
• Thus, we can solve linear regression using 

matrix inversion, transpose, and 
multiplication. 



Difficulty and Generalization

• Numerical computation issue. (a lot data 
points. Matrix inversion is impossible.)

• Singular matrix (determinant is zero) : no 
inversion

• How to handle non-linear data?
• Turns out neural network and its iterative 

learning algorithm can address this 
problem. 



Graphical Representation:
One Layer Neural Network for Regression

f

o Target: y

Input Unit 1 x1
xd……

w0 w1 wd

Output Unit 

a =Σwixi Activation

Activation function f is used
to convert a to output. Here
it is a linear function. o = a. 



Gradient Descent Algorithm

• For a data x = (x1,x2,…xd), error E = (y – o)2 = 
(y – w0x0 - w1x1 - … - wdxd)2

• Partial derivative: ii
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Algorithm of One-Layer Regression 
Neural Network

• Initialize weights w (small random numbers)
• Repeat

Present a data point x = (x1,x2,…,xd) to the network 
and compute output o.
if y > o, add ηxi to wi.

if y < o, add -ηxi to wi.  
• Until Σ(yk-ok)2 is zero or below a threshold or 

reaches the predefined number of iterations. 

Comments: online learning: update weight for every x. batch learning:
update weight every batch of x  (i.e. Σηxi ). 



Graphical Representation:
One Layer Neural Network for Regression

out

O Target: y

Input Unit 1 x1
xd……

w0 w1
wd

Output Unit 

a =Σwixi Activation

Output

O = f(Σwixi),  f is activation
function.



What about Hyperbolic Tanh 
Function for Output Unit

• Can we use activation function 
other than linear function? 

• For instance, if we want to 
limit the output to be in [-1, 
+1], we can use hyperbolic 
Tanh function:

• The only thing to change is to 
use the new gradient.
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Two-Category Classification

• Two classes: C1 and C2. 
• Input feature vector: x. 
• Define a discriminant function y(x) such 

that x is assigned to C1 if y(x) > 0 and to 
class C2 if y(x) < 0.

• Linear discriminant function: y(x) = wTx + 
w0 = wTx, where x = (1, x). 

• w: weight vector, w0: bias. 



A Linear Decision Boundary in 2-D 
Input Space

x1

x2

y(x) = wTx + w0 = 0

w

y(x) = wTx = 0
l = |wTx| / ||w|| = w0 / ||w|| 

w: orientation of decision boundary
w0: defines the position of the plan
in terms of its perpendicular distance
from the origin. 



Graphical Representation: Perceptron, One-
Layer Classification Neural Network

out

y=g(wTx)
wTx > 0: +1, class 1
wTx < 0: -1, class 2

Input Unit 1 x1
xd……

w0 w1
wd

wTx = ΣwixiActivation

Activation /
Transfer function (threshold function)



Perceptron Criterion

• Minimize classification error
• Input data (vector): x1, x2, …, xN and 

corresponding target value t1, t2, …, tN.
• Goal: for all x in C1 (t = 1), wTx > 0, for all x in 

C2 (t = -1), wTx < 0. Or for all x: wTxt > 0. 
• Error (loss): Eperc (w) =                     .     M is the 

set of misclassified data points.
å
Î
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Gradient Descent
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w = w -
w
E
¶
¶ � η = w + η xntn

For each misclassified data point, adjust weight as follows: 



Perceptron Algorithm

• Initialize weight w
• Repeat

For each data point (xn, tn)
Classify each data point using current w.
If wTxntn > 0 (correct), do nothing
If wTxntn < 0 (wrong), wnew = w + ηxntn

w = wnew

• Until w is not changed (all the data will be 
separated correctly, if data is linearly separable) or 
error is below a threshold. 

Rosenblatt, 1962



Perceptron Convergence Theorem

• For any data set which is linearly separable, 
the algorithm is guaranteed to find a 
solution in a finite number of steps 
(Rosenblatt, 1962; Block 1962; Nilsson, 
1965; Minsky and Papert 1969; Duda and 
Hart, 1973; Hand, 1981; Arbib, 1987; Hertz 
et al., 1991)



Perceptron Demo

• https://www.youtube.com/watch?v=vGwemZ
hPlsA



Limitation of the Perceptron

• Can�t not separate non-linear data 
completely. 

• Or can�t not fit non-linear data well.
• Two directions to attack the problem: (1) 

extend to multi-layer neural network (2) 
map data into high dimension (SVM 
approach)



Exclusive OR Problem

(0,0)

C1

C1

C2

C2

(1,0)

(0,1) (1,1)
Perceptron (or one-layer
neural network) can not
learn a function to separate
the two classes perfectly.



Logistic Regression 

• Estimate posterior distribution: P(C1|x)
• Dose – response estimation: in bioassay, the 

relation between dose level and death rate 
P(death | x). 

• We can not use 0/1 hard classification. 
• We can not use unconstrained linear 

regression because P(death | x) must be in 
[0,1]?



Logistic Regression and One Layer 
Neural Network With Sigmoid 

Function. 
wxe-+1

1

ze-+1
1

P( death | x) =  

(Sigmoid function)

……

1 x1 xd

Activation z = Σwixi

y
Target: t (0 or 1)

Activation
Function:
sigmoid 



How to Adjust Weights?

• Minimize error E=(t-y)2. For simplicity, we derive 
the formula for one data point. For multiple data 
points, just add the gradients together. 
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Error / Loss Function and 
Learning

• Least Square
• Maximum likelihood: output y is the probability of 

being in C1 (t=1). 1- y is the probability of being in 
C2. So what is probability of P(t|x) =  yt(1-y)1-t.

• Maximum likelihood is equivalent to minimize 
negative log likelihood: 
E = -log P(t|x) = -tlogy - (1-t)log(1-y).  (cross / 
relative entropy)



How to Adjust Weights?

• Minimize error E= -tlogy - (1-t)log(1-y). For 
simplicity, we derive the formula for one data 
point. For multiple data points, just add the 
gradients together. 
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Multi-Class Logistic Regression
• Transfer (or activation) function is normalized 

exponentials (or soft max)

……

……

y1
yc

x0 x1 xd

w10 w11 w1d

wc0

wc1

w1d
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Activation to Node Oi

Activation Function

How to learn this network? Once again, gradient descent.



Questions?

• Is logistic regression a linear regression?
• Can logistic regression handle non-linearly 

separable data?
• How to introduce non-linearity?



Neural Network Approach
• Multi-Layer Perceptrons 
• In addition to input nodes and output nodes, some 

hidden nodes between input / output nodes are 
introduced.

• Use hidden units to learn internal features to 
represent data. Hidden nodes can learn internal 
representation of data that are not explicit in the 
input features. 

• Transfer function of hidden units are non-linear 
function



Multi-Layer Perceptron
• Connections go from lower layer to higher layer.  

(usually from input layer to hidden layer, to output layer)
• Connection between input/hidden nodes, input/output 

nodes, hidden/hidden nodes, hidden/output nodes are 
arbitrary as long as there is no loop (must be feed-
forward).

• However, for simplicity, we usually only allow 
connection from input nodes to hidden nodes and from 
hidden nodes to output nodes.  The connections with a 
layer are disallowed. 



• Two-layer neural network (one hidden and one 
output) with non-linear activation function is a 
universal function approximator (see Baldi and 
Brunak 2001 or Bishop 96 for the proof), i.e. it can 
approximate any numeric function with arbitrary 
precision given a set of appropriate weights and 
hidden units. 

• In early days, people usually used two-layer (or 
three-layer if you count the input as one layer) 
neural network. Increasing the number of layers was 
occasionally helpful.    

• Later expanded into deep learning with many 
layers!!!

Multi-Layer Perceptron



Two-Layer Neural Network

å
=

M

j
jkj zw

0

å
=

d

i
iji xw

0

…

…

…

y1 yc

x1 xi
xd

yk

z1 zj
zM

wjiw11 w1i

wkj

Output
Activation function: f (linear,sigmoid, softmax)
Activation of unit ak: 

Activation function: g (linear, tanh, sigmoid)

Activation of unit aj: 

å å
= =

´=
M

j

d

i
ijikjk xwgwfy

0 0
))((

Z0=1

1

x0



Adjust Weights by Training

• How to adjust weights?
• Adjust weights using known examples 

(training data) (x1,x2,x3,…,xd,t). 
• Try to adjust weights so that the difference 

between the output of the neural network y
and t (target) becomes smaller and smaller.

• Goal is to minimize Error (difference) as we 
did for one layer neural network



Adjust Weights using Gradient 
Descent (Back-Propagation)

Data: (x1,x2,x3,…,xn)   target t.
Known:

Unknown weights w:
w11, w12,…..

Randomly initialize weights
Repeat

for each example, compute output y
calculate error E = (y-t)2

compute the derivative of E over w: dw=
wnew = wprev – η * dw

Until error doesn�t decrease or max num of iterations

Error

W

Note: η is learning rate or step size.

Minima

w
E
¶
¶



Insights
• We know how to compute the derivative of one 

layer neural network? How to change weights 
between input layer and hidden layer?

• Should we compute the derivative of each w
separately or we can reuse intermediate results? 
We will have an efficient back-propagation 
algorithm. 

• We will derive learning for one data example. For 
multiple examples, we can simply add the 
derivatives from them for a weight parameter 
together. 



Neural Network Learning: Two 
Processes

• Forward propagation: present an example 
(data) into neural network. Compute 
activation into units and output from units. 

• Backward propagation: propagate error 
back from output layer to the input layer 
and compute derivatives (or gradients). 



Forward Propagation
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Neural Network Calculations are 
essentially matrix operations 



Backward Propagation
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Algorithm

• Initialize weights w
• Repeat

For each data point x, do the following:
Forward propagation: compute outputs and activations
Backward propagation: compute errors for each output units 
and hidden units. Compute gradient for each weight. 
Update weight w = w - η (∂E / ∂w)

• Until a number of iterations or errors drops below a 
threshold.



Implementation Issue
• What should we store?
• An input vector x of d dimensions
• A M*d matrix {wji} for weights between input and hidden 

units
• An activation vector of M dimensions for hidden units
• An output vector of M dimensions for hidden units
• A C*M matrix {wkj} for weights between hidden and 

output units
• An activation vector of C dimensions for output units
• An output vector of C dimensions for output units
• An error vector of C dimensions for output units
• An error vector of M dimensions for hidden units



Recurrent Network

…

…

…

y1 yc

x1 xi
xd

yk

z1 zj
zM

wjiw11 w1i

wkj

w

Forward:
At time 1: present X1, 0
At time 2: present X2, y1
……

Backward: 
Time t: back-propagate
Time t-1: back-propagate with 
Output errors and errors from previous step



Overfitting

Good fitting

Example of Overfitting and Good Fitting

Overfitting function can not generalize well to unseen data.



Preventing Overfitting

• Use a model that has the right capacity:
– enough to model the true regularities
– not enough to also model the spurious regularities 

(assuming they are weaker).
• Standard ways to limit the capacity of a neural 

net:
– Limit the number of hidden units.
– Limit the size of the weights.
– Stop the learning before it has time to overfit.

G. Hinton, 2006



Limiting the Size of the Weights

• Weight-decay involves 
adding an extra term to 
the cost function that 
penalizes the squared 
weights.
– Keeps weights small 

unless they have big error 
derivatives.
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The Effect of Weight-Decay
• It prevents the network from using weights that it 

does not need.
– This can often improve generalization a lot. 
– It helps to stop it from fitting the sampling error. 
– It makes a smoother model in which the output changes 

more slowly as the input changes. 

• If the network has two very similar inputs it 
prefers to put half the weight on each rather than 
all the weight on one.

w/2 w/2 w 0

G. Hinton, 2006



Deciding How Much to Restrict the 
Capacity

• How do we decide which limit to use and how 
strong to make the limit?
– If we use the test data we get an unfair prediction 

of the error rate we would get on new test data. 
– Suppose we compared a set of models that gave 

random results, the best one on a particular dataset 
would do better than chance.  But it wont do better 
than chance on another test set. 

• So use a separate validation set to do model 
selection.

G. Hinton, 2006



Using a Validation Set

• Divide the total dataset into three subsets:
– Training data is used for learning the parameters of 

the model.
– Validation data is not used of learning but is used 

for deciding what type of model and what amount 
of regularization works best.

– Test data is used to get a final, unbiased estimate 
of how well the network works. We expect this 
estimate to be worse than on the validation data.

• We could then re-divide the total dataset to get 
another unbiased estimate of the true error rate.

G. Hinton, 2006



Preventing Overfitting by Early 
Stopping

• If we have lots of data and a big model, its very expensive 
to keep re-training it with different amounts of weight 
decay.

• It is much cheaper to start with very small weights and let 
them grow until the performance on the validation set 
starts getting worse (but don�t get fooled by noise!)

• The capacity of the model is limited because the weights 
have not had time to grow big.

G. Hinton, 2006



Why Early Stopping Works
• When the weights are very 

small, every hidden unit is 
in its linear range.
– So a net with a large layer 

of hidden units is linear.
– It has no more capacity than 

a linear net in which the 
inputs are directly 
connected to the outputs!

• As the weights grow, the 
hidden units start using 
their non-linear ranges so 
the capacity grows.

outputs

inputs

G. Hinton, 2006



Combining Networks
• When the amount of training data is limited, we 

need to avoid overfitting. 
– Averaging the predictions of many different networks is 

a good way to do this.
– It works best if the networks are as different as 

possible.
– Combining networks reduces variance

• If the data is really a mixture of several different 
�regimes� it is helpful to identify these regimes 
and use a separate, simple model for each regime.
– We want to use the desired outputs to help cluster cases 

into regimes. Just clustering the inputs is not as 
efficient.

G. Hinton, 2006



How the Combined Predictor 
Compares with the Individual 

Predictors
• On any one test case, some individual predictors will 

be better than the combined predictor. 
– But different individuals will be better on different cases. 

• If the individual predictors disagree a lot, the 
combined predictor is typically better than all of the 
individual predictors when we average over test 
cases.
– So how do we make the individual predictors disagree? 

(without making them much worse individually).

G. Hinton, 2006



Ways to Make Predictors Differ
• Rely on the learning algorithm getting stuck in a 

different local optimum on each run.
– A dubious hack unworthy of a true computer scientist (but 

definitely worth a try).
• Use lots of different kinds of models:

– Different architectures
– Different learning algorithms.

• Use different training data for each model:
– Bagging: Resample (with replacement) from the training 

set:  a,b,c,d,e  -> a c c d d
– Boosting: Fit models one at a time. Re-weight each training 

case by how badly it is predicted by the models already 
fitted. 

• This makes efficient use of computer time because it does not 
bother to �back-fit� models that were fitted earlier.

G. Hinton, 2006



How to Speedup Learning?
The Error Surface for a Linear Neuron

• The error surface lies in a space with a horizontal axis 
for each weight and one vertical axis for the error. 
– It is a quadratic bowl.

• i.e. the height can be expressed as a function of the weights without 
using powers higher than 2. Quadratics have constant curvature 
(because the second derivative must be a constant)

– Vertical cross-sections are parabolas. 
– Horizontal cross-sections are ellipses.

E w1

w2w

G. Hinton, 2006



Convergence Speed

• The direction of steepest 
descent does not point at 
the minimum unless the 
ellipse is a circle.
– The gradient is big in the 

direction in which we 
only want to travel a 
small distance.

– The gradient is small in the 
direction in which we want 
to travel a large distance.

This equation is sick. 
i

i w
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G. Hinton, 2006



How the Learning Goes Wrong

• If the learning rate is big, 
it sloshes to and fro across 
the ravine. If the rate is too 
big, this oscillation 
diverges.

• How can we move quickly 
in directions with small 
gradients without getting 
divergent oscillations in 
directions with big 
gradients?

E

w

G. Hinton, 2006



Five Ways to Speed up Learning
• Use an adaptive global learning rate

– Increase the rate slowly if its not diverging
– Decrease the rate quickly if it starts diverging

• Use separate adaptive learning rate on each connection
– Adjust using consistency of gradient on that weight axis

• Use momentum
– Instead of using the gradient to change the position of the weight 
�particle�, use it to change the velocity. 

• Use a stochastic estimate of the gradient from a few cases
– This works very well on large, redundant datasets.

G. Hinton, 2006



The Momentum Method

Imagine a ball on the error 
surface with velocity v.
– It starts off by following the 

gradient, but once it has 
velocity, it no longer does 
steepest descent. 

• It damps oscillations by 
combining gradients with 
opposite signs.

• It builds up speed in directions 
with a gentle but consistent 
gradient. 

Δw(t) = v(t)

=α Δw(t −1)−ε ∂E
∂w
(t)

G. Hinton, 2006



How to Initialize weights?

• Use small random 
numbers. For instance 
small numbers 
between [-0.2, 0.2].

• Some numbers are 
positive and some are 
negative. 

• Why are the initial 
weights should be 
small?

wxe-+1
1

Saturated



Stochastic Gradient Descent



Ensemble, Dropout and Batch 
Normalization



Recurrent Neural Networks



Getting targets when modeling sequences
•When applying machine learning to sequences, we often want to turn an input sequence into 
an output sequence that lives in a different domain.

– E. g. turn a sequence of sound pressures into a sequence of word identities.

•When there is no separate target sequence, we can get a teaching signal by trying to predict 
the next term in the input sequence. 

– The target output sequence is the input sequence with an advance of 1 step.
– This seems much more natural than trying to predict one pixel in an image from the 

other pixels, or one patch of an image from the rest of the image.
– For temporal sequences there is a natural order for the predictions.

•Predicting the next term in a sequence blurs the distinction between supervised and 
unsupervised learning.

– It uses methods designed for supervised learning, but it doesn’t require a separate 
teaching signal.



Memoryless models for sequences
• Autoregressive models          Predict 

the next term in a  sequence from a 
fixed number of previous terms using 
“delay taps”.

• Feed-forward neural nets        These 
generalize autoregressive models by 
using one or more layers of non-
linear hidden units. 

input(t-2) input(t-1) input(t)

wt−2

hidde
n

wt−1

input(t-2) input(t-1) input(t)



Beyond memoryless models
• If we give our generative model some hidden state, 

and if we give this hidden state its own internal 
dynamics, we get a much more interesting kind of 
model.
– It can store information in its hidden state for a 

long time.
– If the dynamics is noisy and the way it generates 

outputs from its hidden state is noisy, we can never 
know its exact hidden state.

– The best we can do is to infer a probability 
distribution over the space of hidden state vectors.

• This inference is only tractable for two types of 
hidden state model.



Linear Dynamical Systems (engineers love them!)

• These are generative models. 
They have a real-valued hidden 
state that cannot be observed 
directly. 
– The hidden state has linear dynamics with Gaussian 

noise and produces the observations using a linear model 
with Gaussian noise.

– There may also be driving inputs.

• To predict the next output (so that 
we can shoot down the missile) 
we need to infer the hidden state. 
– A linearly transformed Gaussian is a Gaussian. So the 

distribution over the hidden state given the data so far is 
Gaussian. It can be computed using “Kalman filtering”. 

driving 
input

hidde
n hidde
n hidde
n

output

output

output
time à

driving 
input
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Hidden Markov Models (computer scientists love them!)

• Hidden Markov Models have a discrete 
one-of-N hidden state. Transitions 
between states are stochastic and 
controlled by a transition matrix. The 
outputs produced by a state are stochastic. 
– We cannot be sure which state 

produced a given output. So the state 
is “hidden”.

– It is easy to represent a probability 
distribution across N states with N 
numbers.

• To predict the next output we need to 
infer the probability distribution over 
hidden states.
– HMMs have efficient algorithms for 

inference and learning.

output

output

output

time à



A fundamental limitation of HMMs
• Consider what happens when a hidden Markov 

model generates data.
– At each time step it must select one of its hidden states. So with N hidden 

states it can only remember log(N) bits about what it generated so far.

• Consider the information that the first half of 
an utterance contains about the second half:
– The syntax needs to fit (e.g. number and tense agreement).
– The semantics needs to fit. The intonation needs to fit.
– The accent, rate, volume, and vocal tract characteristics must all fit.

• All these aspects combined could be 100 bits 
of information that the first half of an utterance 
needs to convey to the second half. 2^100 is 
big!



Recurrent neural networks
• RNNs are very powerful, 

because they combine two 
properties:
– Distributed hidden state that 

allows them to store a lot of 
information about the past 
efficiently.

– Non-linear dynamics that allows 
them to update their hidden state 
in complicated ways.

• With enough neurons and time, 
RNNs can compute anything 
that can be computed by your 
computer. 
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Do generative models need to be 
stochastic?

• Linear dynamical 
systems and hidden 
Markov models are 
stochastic models.
– But the posterior 

probability distribution 
over their hidden states 
given the observed data 
so far is a deterministic 
function of the data.

• Recurrent neural 
networks are 
deterministic. 
– So think of the hidden 

state of an RNN as the 
equivalent of the 
deterministic probability 
distribution over hidden 
states in a linear 
dynamical system or 
hidden Markov model.



Recurrent neural networks
• What kinds of behaviour can RNNs exhibit?

– They can oscillate. Good for motor control?
– They can settle to point attractors. Good for retrieving 

memories?
– They can behave chaotically. Bad for information 

processing?
– RNNs could potentially learn to implement lots of small 

programs that each capture a nugget of knowledge and run 
in parallel, interacting to produce very complicated effects.

• But the computational power of RNNs makes them 
very hard to train.
– For many years we could not exploit the computational 

power of RNNs despite some heroic efforts (e.g. Tony 
Robinson’s speech recognizer).



The equivalence between feedforward nets and recurrent nets

The recurrent net is just a 
layered net that keeps reusing 
the same weights.



An Example



Reminder: Backpropagation with weight constraints

• It is easy to modify the 
backprop algorithm to 
incorporate linear constraints 
between the weights.

• We compute the gradients as 
usual, and then modify the 
gradients so that they satisfy 
the constraints.
– So if the weights started off 

satisfying the constraints, 
they will continue to satisfy 
them.
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Backpropagation through time
• We can think of the recurrent net as a layered, 

feed-forward net with shared weights and then 
train the feed-forward net with weight 
constraints.

• We can also think of this training algorithm in 
the time domain: 
– The forward pass builds up a stack of the 

activities of all the units at each time step. 
– The backward pass peels activities off the 

stack to compute the error derivatives at each 
time step. 

– After the backward pass we add together the 
derivatives at all the different times for each 
weight.



An irritating extra issue
• We need to specify the initial activity state of all the hidden and 

output units. 
• We could just fix these initial states to have some default value 

like 0.5.
• But it is better to treat the initial states as learned parameters.
• We learn them in the same way as we learn the weights.

– Start off with an initial random guess for the initial states.
– At the end of each training sequence, backpropagate through 

time all the way to the initial states  to get the gradient of the 
error function with respect to each initial state.

– Adjust the initial states by following the negative gradient.



A good toy problem for a recurrent 
network• We can train a feedforward net to do 

binary addition, but there are obvious 
regularities that it cannot capture 
efficiently.
– We must decide in advance the 

maximum number of digits in each 
number.

– The processing applied to the beginning 
of a long number does not generalize to 
the end of the long number because      
it uses different weights.

• As a result, feedforward nets do not 
generalize well on the binary addition 
task.

00100110 10100110

11001100

hidden units



The algorithm for binary addition

no carry 
print 1

carry 
print 1

no carry 
print 0

carry 
print 0

1 
1

1 
0

1 
0

1 
0

1 
0

0 
1

0 
1

0 
1

0 
1

0 
0

0 
0

0 
0

0 
0

1 
1

1 
1

This is a finite state automaton. It decides what transition to make by 
looking at the next column.    It prints after making the transition. It moves 
from right to left over the two input numbers.

1 
1



A recurrent net for binary addition
• The network has two input units and 

one output unit.
• It is given two input digits at each time 

step.
• The desired output at each time step is 

the output for the column that was 
provided as input two time steps ago.
– It takes one time step to update the 

hidden units based on the two input 
digits.

– It takes another time step for the 
hidden units to cause the output.

0 0 1 1 0 1 0 0

0 1 0 0 1 1 0 1

1 0 0 0 0 0 0 1

time



The connectivity of the network

• The 3 hidden units are 
fully interconnected in 
both directions.
– This allows a hidden 

activity pattern at one time 
step to vote for the hidden 
activity pattern at the next 
time step.

• The input units have 
feedforward connections 
that allow then to vote for 
the next hidden activity 
pattern.

3 fully interconnected hidden units



What the network learns
• It learns four distinct 

patterns of activity for the 
3 hidden units. These 
patterns correspond to the 
nodes in the finite state 
automaton.
– Do not confuse units in a 

neural network with nodes 
in a finite state automaton. 
Nodes are like activity 
vectors.

– The automaton is restricted 
to be in exactly one state at 
each time. The hidden units 
are restricted to have 
exactly one vector of 
activity at each time.

• A recurrent network can 
emulate a finite state 
automaton, but it is 
exponentially more 
powerful. With N hidden 
neurons it has 2^N 
possible binary activity 
vectors    (but only N^2 
weights)
– This is important when the 

input stream has two 
separate things going on at 
once. 

– A finite state automaton 
needs to square its number 
of states.

– An RNN needs to double 
its   number of units.



The backward pass is linear
• There is a big difference between 

the forward and backward passes.
• In the forward pass we use 

squashing functions (like the 
logistic) to prevent the activity 
vectors from exploding.

• The backward pass, is completely 
linear. If you double the error 
derivatives at the final layer, all 
the error derivatives will double. 
– The forward pass determines the 

slope of the linear function used for 
backpropagating through each 
neuron.



The problem of exploding or 
vanishing gradients

• What happens to the magnitude of 
the gradients as we backpropagate
through many layers? 
– If the weights are  small, the gradients 

shrink exponentially.
– If the weights are big the gradients 

grow exponentially.
• Typical feed-forward neural nets 

can cope with these exponential 
effects because they only have a 
few hidden layers.

• In an RNN trained on long 
sequences (e.g. 100 time steps) the 
gradients can easily explode or 
vanish.
– We can avoid this by initializing the 

weights very carefully.
• Even with good initial weights, its 

very hard to detect that the current 
target output depends on an input 
from many time-steps ago.
– So RNNs have difficulty dealing with 

long-range dependencies.



Four effective ways to learn an 
RNN

• Long Short Term Memory                
Make the RNN out of little modules 
that are designed to remember values 
for a long time. 

• Hessian Free Optimization: Deal 
with the vanishing gradients problem 
by using a fancy optimizer that can 
detect directions with a tiny gradient 
but even smaller curvature.
– The HF optimizer ( Martens & 

Sutskever, 2011) is good at this.

• Echo State Networks:  Initialize the 
inputàhidden and hiddenàhidden and 
outputàhidden connections very carefully so 
that the hidden state has a huge reservoir of 
weakly coupled oscillators which can be 
selectively driven by the input.
– ESNs only need to learn the 

hiddenàoutput connections.
• Good initialization with momentum    

Initialize like in Echo State Networks, but 
then learn all of the connections using 
momentum.



Long Short Term Memory 
(LSTM)

• Hochreiter & 
Schmidhuber (1997) 
solved the problem of 
getting an RNN to 
remember things for a 
long time (like hundreds 
of time steps). 

• They designed a 
memory cell using 
logistic and linear units 
with multiplicative 
interactions. 

• Information gets into 
the cell whenever its 
“write” gate is on.

• The information stays in 
the cell so long as its 
“keep” gate is on.

• Information can be read 
from the cell by turning 
on its “read” gate.



Implementing a memory cell in a 
neural network

• To preserve information for a long 
time in the activities of an RNN, we 
use a circuit that implements an 
analog memory cell.
– A linear unit that has a self-link with a 

weight of 1 will maintain its state.
– Information is stored in the cell by 

activating its write gate. 
– Information is retrieved by activating the 

read gate.
– We can backpropagate through this 

circuit because logistics are have nice 
derivatives.

output to 
rest of RNN

input from 
rest of RNN

read 
gate

write 
gate

keep 
gate

1.73



Backpropagation through a 
memory cell

read 
1

write   
0

keep 
1

1.7

read 
0

write   
0
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read 
0

write   
1

1.7

1.71.7

keep 
1

keep 
0

keep 
0

time à



A simple LSTM block with only 
input, output, and forget gates

https://ipfs.io/ipfs/QmXoypizjW3WknFiJnKLwHCnL
72vedxjQkDDP1mXWo6uco/wiki/Long_short-
term_memory.html



A Simple LSTM Network 
Example



Another Example



Reading cursive handwriting

• This is a natural task for 
an RNN.

• The input is a sequence 
of (x,y,p) coordinates of 
the tip of the pen, where 
p indicates whether the 
pen is up or down.

• The output is a sequence 
of characters.

• Graves & Schmidhuber 
(2009) showed that 
RNNs with LSTM are 
currently the best 
systems for reading 
cursive writing.
– They used a sequence of 

small images as input 
rather than pen 
coordinates.



A demonstration of online handwriting recognition by an 
RNN with Long Short Term Memory (from Alex Graves)



SHOW ALEX GRAVES’ MOVIE

https://www.cs.toronto.edu/~graves/



How to generate character strings 
from the model

• Start the model with its default hidden state.
• Give it a “burn-in” sequence of characters and let it update its 

hidden state after each character.
• Then look at the probability distribution it predicts for the next 

character.
• Pick a character randomly from that distribution and tell the 

net that this was the character that actually occurred.
– i.e. tell it that its guess was correct, whatever it guessed.

• Continue to let it pick characters until bored.
• Look at the character strings it produces to see what it 

“knows”.



He was elected President during the Revolutionary 
War and forgave Opus Paul at Rome. The regime 
of his crew of England, is now Arab women's icons 
in  and the demons that use something between 
the characters‘ sisters in lower coil trains were 
always operated on the line of the ephemerable
street, respectively, the graphic or other facility for 
deformation of a given proportion of large 
segments at RTUS). The B every chord was a 
"strongly cold internal palette pour even the white 
blade.”



Some completions produced by 
the model

• Sheila thrunges                               (most frequent)
• People thrunge   (most frequent next character is space)
• Shiela, Thrungelini del Rey                       (first try)
• The meaning of life is literary recognition.  (6th try)

• The meaning of life is the tradition of the ancient human 
reproduction: it is less favorable to the good boy for when 
to remove her bigger.                      (one of the first 10 
tries for a model trained for longer).



What does it know?
• It knows a huge number of words and a lot about proper names, 

dates, and numbers.
• It is good at balancing quotes and brackets.

– It can count brackets: none, one, many
• It knows a lot about syntax but its very hard to pin down exactly 

what form this knowledge has.
– Its syntactic knowledge is not modular.

• It knows a lot of weak semantic associations
– E.g. it knows Plato is associated with Wittgenstein and cabbage is 

associated with vegetable.



RNNs for predicting the next 
word

• Tomas Mikolov and his collaborators have recently 
trained quite large RNNs on quite large training sets 
using BPTT.
– They do better than feed-forward neural nets.
– They do better than the best other models. 
– They do even better when averaged with other models. 

• RNNs require much less training data to reach the 
same level of performance as other models.

• RNNs improve faster than other methods as the dataset 
gets bigger.
– This is going to make them very hard to beat.



Problem of Traditional Neural 
Network

• Vanishing gradients à shallow network
• Exploding gradient
• Cannot use unlabeled data
• Hard to understand the relationship between 

input and output
• Cannot generate data



Deep Network Versus Shallow 
Network

• With the same number of weights, deep 
network is more expressive than shallow 
network

• Deep network generalizes better than 
shallow network

• So should we go deep? 



How to go deep?

• ReLu activation function
• Residual network
• Weight sharing (reduce number of 

parameters)
• Long- and Short-Memory network







Convolutional Neural Network



The replicated feature approach for 
hand writing recognition

(currently the dominant approach for neural networks)

• Use many different copies of the same 
feature detector with different 
positions.
– Could also replicate across scale and 

orientation (tricky and expensive)

– Replication greatly reduces the number of 
free parameters to be learned.

• Use several different feature types, each 
with its own map of replicated 
detectors.
– Allows each patch of image to be 

represented in several ways.

The red connections 
all have the same 
weight.



Backpropagation with weight 
constraints

• It’s easy to modify the 
backpropagation algorithm 
to incorporate linear 
constraints between the 
weights.

• We compute the gradients 
as usual, and then modify 
the gradients so that they 
satisfy the constraints.
– So if the weights started 

off satisfying the 
constraints, they will 
continue to satisfy them.

To constrain : w1 = w2
we need : Δw1 = Δw2

compute : ∂E
∂w1

and ∂E
∂w2

use ∂E
∂w1

+
∂E
∂w2

for w1 and w2



What does replicating the feature 
detectors achieve?

• Equivariant activities: Replicated features do not
make the neural activities invariant to translation. The 
activities are equivariant. 

• Invariant knowledge: If a feature is useful in some 
locations during training, detectors for that feature will 
be available in all locations during testing.

representation 
by active 
neurons

image

translated 
representation

translated      
image



Pooling the outputs of replicated 
feature detectors

• Get a small amount of translational invariance at 
each level by averaging four neighboring replicated 
detectors to give a single output to the next level.
– This reduces the number of inputs to the next 

layer of feature extraction, thus allowing us to 
have many more different feature maps.

– Taking the maximum of the four works slightly 
better.

• Problem: After several levels of pooling, we have lost 
information about the precise positions of things.
– This makes it impossible to use the precise spatial 

relationships between high-level parts for 
recognition.



Le Net
• Yann LeCun and his collaborators developed a really 

good recognizer for handwritten digits by using 
backpropagation in a feedforward net with:
– Many hidden layers
– Many maps of replicated units in each layer.
– Pooling of the outputs of nearby replicated units.
– A wide net that can cope with several characters at 

once even if they overlap.
– A clever way of training a complete system, not 

just a recognizer. 
• This net was used for reading ~10% of the checks in 

North America.
• Look the impressive demos of LENET at 

http://yann.lecun.com



LeNet Demo

• http://yann.lecun.com/exdb/lenet/index.html

http://yann.lecun.com/exdb/lenet/index.html


How LeNet Capture Various 
Invariance (Demo)

• http://yann.lecun.com/exdb/lenet/rotation.ht
ml

http://yann.lecun.com/exdb/lenet/rotation.html


The architecture of LeNet5



The 82 
errors made 
by LeNet5

Notice that most of the 
errors are cases that 
people find quite easy.

The human error rate is 
probably 20 to 30 errors 
but nobody has had the 
patience to measure it.



Priors and Prejudice
• We can put our prior knowledge 

about the task into the network by 
designing appropriate:
– Connectivity.
– Weight constraints.
– Neuron activation functions

• This is less intrusive than hand-
designing the features.
– But it still prejudices the network 

towards the particular way of 
solving the problem that we had in 
mind.

• Alternatively, we can use 
our prior knowledge to 
create a whole lot more 
training data.
– This may require a lot of work 

(Hofman&Tresp, 1993)
– It may make learning take much 

longer. 

• It allows optimization to 
discover clever ways of 
using the multi-layer 
network that we did not 
think of.
– And we may never fully understand 

how it does it.



The brute force approach

• LeNet uses knowledge 
about the invariances 
to design:
– the local connectivity
– the weight-sharing
– the pooling. 

• This achieves about 80 
errors.
– This can be reduced to 

about 40 errors by using 
many different 
transformations of the 
input and other tricks 
(Ranzato 2008)

• Ciresan et. al. (2010) 
inject knowledge of 
invariances by creating a 
huge amount of carefully 
designed extra training 
data:
– For each training image, 

they produce many new 
training examples by 
applying many different 
transformations.

– They can then train a 
large, deep, dumb net on a 
GPU without much 
overfitting.

• They achieve about 35 
errors.



The errors made by the Ciresan 
et. al. net

The top printed digit is the 
right answer. The bottom two 
printed digits are the 
network’s best two guesses.

The right answer is almost 
always in the top 2 guesses.

With model averaging they 
can now get about 25 errors.



How to detect a significant drop in 
the error rate

• Is 30 errors in 10,000 test cases significantly 
better than 40 errors?
– It all depends on the particular errors!
– The McNemar test uses the particular errors and can 

be much more powerful than a test that just uses the 
number of errors.

model 1 
wrong

model 1 
right

model 2 
wrong

29 1

model 2 
right

11 9959

model 1 
wrong

model 1 
right

model 2 
wrong

15 15

model 2 
right

25 9945



From hand-written digits to 3-D 
objects

• Recognizing real objects in color photographs downloaded 
from the web is much more complicated than recognizing 
hand-written digits:
– Hundred times as many classes (1000 vs 10)
– Hundred times as many pixels (256 x 256 color vs 28 x 28 gray)
– Two dimensional image of three-dimensional scene.
– Cluttered scenes requiring segmentation
– Multiple objects in each image.

• Will the same type of convolutional neural network work?



The ILSVRC-2012 competition 
on ImageNet

• The dataset has 1.2 million high-
resolution training images.

• The classification task:
– Get the “correct” class in your 

top 5 bets. There are 1000 
classes.

• The localization task:
– For each bet, put a box 

around the object. Your box 
must have at least 50% 
overlap with the correct box.

• Some of the best existing 
computer vision methods were  
tried on this dataset by leading 
computer vision groups from 
Oxford, INRIA, XRCE, …
– Computer vision systems 

use complicated multi-stage 
systems.

– The early stages are 
typically hand-tuned by 
optimizing a few parameters.



Examples from the test set (with the 
network’s guesses)



Error rates on the ILSVRC-2012 
competition

• University of Tokyo             
• Oxford University Computer 

Vision Group
• INRIA (French national research 

institute in CS) + XRCE (Xerox 
Research Center Europe)  

• University of Amsterdam

• 26.1%            
53.6%

• 26.9%            
50.0%

• 27.0%

• 29.5%     

• University of Toronto (Alex 
Krizhevsky)

• 16.4%  34.1%
•

classification
classification
&localization



A neural network for ImageNet
• Alex Krizhevsky (NIPS 2012) 

developed a very deep 
convolutional neural net of 
the type pioneered by  Yann
Le Cun. Its architecture was:
– 7 hidden layers not counting 

some max pooling layers.
– The early layers were 

convolutional.
– The last two layers were 

globally connected.

• The activation functions 
were:
– Rectified linear units in every 

hidden layer. These train much 
faster and are more expressive 
than logistic units.

– Competitive normalization to 
suppress hidden activities 
when nearby units have 
stronger activities. This helps 
with variations in intensity. 



Tricks that significantly improve 
generalization

• Train on random 224x224 
patches from the 256x256 
images to get more data. Also 
use left-right reflections of the 
images.
• At test time, combine the opinions 

from ten different patches: The 
four 224x224 corner patches plus 
the central 224x224 patch plus the 
reflections of those five patches. 

• Use “dropout” to 
regularize the weights 
in the globally 
connected layers 
(which contain most of 
the parameters). 
– Dropout means that 

half of the hidden units 
in a layer are randomly 
removed  for each 
training example. 

– This stops hidden units 
from relying too much 
on other hidden units.



Some more examples 
of how well the deep 
net works for object 
recognition.



The hardware required for 
Alex’s net

• He uses a very efficient implementation of convolutional nets on two 
Nvidia GTX 580 Graphics Processor Units (over 1000 fast little cores)
– GPUs are very good for matrix-matrix multiplies.
– GPUs have very high bandwidth to memory.
– This allows him to train the network in a week.
– It also makes it quick to combine results from 10 patches at test time.

• We can spread a network over many cores if we can communicate the 
states fast enough.

• As cores get cheaper and datasets get bigger, big neural nets will improve 
faster than old-fashioned (i.e. pre Oct 2012) computer vision systems.



Finding roads in high-resolution 
images

• Vlad Mnih (ICML 2012) 
used a non-convolutional net 
with local fields and multiple 
layers of rectified linear units 
to find roads in cluttered 
aerial images.
– It takes a large image patch and 

predicts a binary road label for 
the central 16x16 pixels.

– There is lots of labeled training 
data available for this task.

• The task is hard for many reasons:
– Occlusion by buildings trees and cars.
– Shadows, Lighting changes
– Minor viewpoint changes

• The worst problems are incorrect labels:
– Badly registered maps
– Arbitrary decisions about what counts as a 

road.
• Big neural nets trained on big image patches 

with millions of examples are the only hope.



The best road-
finder on the 

planet?



Two ways to average models

• MIXTURE: We can 
combine models by 
averaging their output 
probabilities:

• PRODUCT: We can 
combine models by 
taking the geometric 
means of their output 
probabilities:

Model A:    .3   .2   .5
Model B:    .1   .8   .1
Combined  .2   .5   .3

Model A:    .3     .2     .5
Model B:    .1     .8     .1

Combined   .03   .16   .05   /sum



Dropout: An efficient way to 
average many large neural nets 

(http://arxiv.org/abs/1207.0580)
• Consider a neural net with 

one hidden layer.
• Each time we present a 

training example, we 
randomly omit each hidden 
unit with probability 0.5.

• So we are randomly sampling 
from 2^H different 
architectures.
– All architectures share 

weights.



Dropout as a form of model 
averaging

• We sample from 2^H models. So only a few 
of the models ever get trained, and they 
only get one training example.
– This is as extreme as bagging can get.

• The sharing of the weights means that every 
model is very strongly regularized.
– It’s a much better regularizer than L2 or L1 

penalties that pull the weights towards zero.



But what do we do at test time?

• We could sample many different 
architectures and take the geometric mean 
of their output distributions.

• It better to use all of the hidden units, but to 
halve their outgoing weights.
– This exactly computes the geometric mean of 

the predictions of all 2^H models.



What if we have more hidden 
layers?

• Use dropout of 0.5 in every layer.
• At test time, use the “mean net” that has all 

the outgoing weights halved.
– This is not exactly the same as averaging all the 

separate dropped out models, but it’s a pretty 
good approximation, and its fast.

• Alternatively, run the stochastic model 
several times on the same input. 
– This gives us an idea of the uncertainty in the 

answer.



What about the input layer?

• It helps to use dropout there too, but with a 
higher probability of keeping an input unit.
– This trick is already used by the “denoising 

autoencoders” developed by Pascal Vincent, 
Hugo Larochelle and Yoshua Bengio.



How well does dropout work?

• The record breaking object recognition net 
developed by Alex Krizhevsky uses dropout 
and it helps a lot.

• If your deep neural net is significantly 
overfitting, dropout will usually reduce the 
number of errors by a lot.
– Any net that uses “early stopping” can do better 

by using dropout (at the cost of taking quite a 
lot longer to train). 

• If your deep neural net is not overfitting you 
should be using a bigger one!



Another way to think about 
dropout

• If a hidden unit knows 
which other hidden units 
are present, it can co-
adapt to them on the 
training data. 
– But complex co-

adaptations are likely to go 
wrong on new test data.

– Big, complex conspiracies 
are not robust.

• If a hidden unit has to 
work well with 
combinatorially many 
sets of co-workers, it is 
more likely to do 
something that is 
individually useful.
– But it will also tend to do 

something that is 
marginally useful given 
what its co-workers 
achieve. 



Recent Progress on ImageNet 
Competition













Deep Learning Revolution
2012: Is deep learning a revolution in artificial  
intelligence?

Apple’s Siri virtual personal assistant

Google’s Street View & Self-Driving Car

Google/Facebook/Tweeter/Yahoo Deep
Learning Acquisition

Hinton’s Hand Writing Recognition

CASP10 protein contact map prediction

Accomplishments

























• A model for a distribution 
over binary vectors
• Probability of a vector, v, 
under the model is defined 
via an �energy� v

h

wij

cj

bi

hidden layer

visible layer





Instead of attempting to sample from joint 
distribution p(v,h) (i.e. p∞), sample from 
p1(v,h).

Faster and lower variance in sample.   Hinton, Neural Computation(2002)



Hinton, Neural Computation(2002)
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Partials of E(v, h) easy to calculate.



Hinton, Neural Computation(2002)
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difference between interaction of vi and hj at time 0 and 
at time 1. 
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Hinton, Neural Computation(2002)

j

i

t = 0                 t = 1   

j

i

Gradient of the likelihood with respect to wij ≈ the 
difference between interaction of vi and hj at time 0 and 
at time 1. 

Visible
Layer

Hidden
Layer

Δwi,j = <vi pj
0> - <pi

1pj
1>



ɛ is the learning rate, η is the weight cost, and υ the momentum. 

Smaller WeightsGradient Avoid Local Minima





Image 
pixels

Lines, 
circles, 
squares

Face or 
not ?

……

Brain Learning



Objective of 
Unsupervised 
Learning:

Find wi,j to maximize the 
likelihood p(v) of visible data

Iterative Gradient 
Descent Approach:

Adjust wi,j to increase the 
likelihood according to gradient







A Vector of ~400 Features (numbers between 0 and 1)

~400 input nodes

~500 nodes

~500 nodes

~350 nodes

wi,j
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Hinton and Salakhutdinov, Science, 2006

1. Weights are learned 
layer by layer via 
unsupervised learning.

2. Final layer is learned as a 
supervised neural 
network.

3. All weights are fine-
tuned using supervised 
back propagation.
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Hinton and Salakhutdinov, Science, 2006

1. Weights are learned 
layer by layer via 
unsupervised learning.

2. Final layer is learned as a 
supervised neural 
network.

3. All weights are fine-
tuned using supervised 
back propagation.



Speed up training by 
CUDAMat and GPUs

Train DNs with over 1M 
parameters in about an 
hour
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http://www.cs.toronto.edu/~hinton/digits.html 
Demo:









Various Deep Learning 
Architectures

• Deep belief network
• Deep neural networks
• Deep autoencoder
• Deep convolution networks
• Deep residual network
• Deep recurrent network



Deep Belief Network





Deep 
AutoEncoder



Deep Convolutional 
AutoEncoder



Deep Convolution Neural 
Network 



Deep Recurrent Neural Network



An Example of Network 
Combination



Deep Residual Network

the rectifier is an activation function defined as 

A unit employing the rectifier is also called a rectified linear unit 
(ReLU)



Generative-Adversarial Network 
(GAN)



Inception Network



Capsule Network



• Prevent from over-fitting
• Prevent units from co-

adapting

• Training: remove randomly 
selected units according to a 
rate (0.5)

• Testing: multiply all the units 
with dropout rate



Deep Learning Tools
• Pylearn2
• Theano
• Caffe
• Torch
• Cuda-convnet
• Deeplearning4j
• Keras
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Googles’s 
TensorFlow

https://www.tensorflow.org/

TensorFlow™ is an open source software library for 
numerical computation using data flow graphs. Nodes in the 
graph represent mathematical operations, while the graph 
edges represent the multidimensional data arrays (tensors) 
communicated between them. The flexible architecture 
allows you to deploy computation to one or more CPUs or 
GPUs in a desktop, server, or mobile device with a single 
API. TensorFlow was originally developed by researchers 
and engineers working on the Google Brain Team within 
Google's Machine Intelligence research organization for the 
purposes of conducting machine learning and deep neural 
networks research, but the system is general enough to be 
applicable in a wide variety of other domains as well.
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