
Statistical Machine Learning
Methods for Bioinformatics

III. Neural Network & Deep
Learning Theory

William and Nancy Thompson Missouri Distinguished
Professor

Department of Electrical Engineering & Computer Science
University of Missouri

Free for Academic Use. Copyright @ Jianlin Cheng & original sources of some materials.

Classification Problem

Legs weight size …. Feature m

4 100

80 0.1

Category / Label

Mammal

Bug

Input Output

Question: How to automatically predict output given input?
Idea: Learn from known examples and generalize to unknown ones.

Data Driven Machine Learning
Approach

Data with
Labels

Key idea: Learn from known data and Generalize to unseen data

Input: words of news
Output: politics, sports, entertainment,
…

Model: Map
Input to Output

Training
Data

Test Data

Training

Test

Training: Build a model (classifier)
Test: Test the model

Prediction

New
DataSplit

Outline• Introduction
• Linear regression
• Linear Discriminant function (classification) and one

node neural network / perceptron
• Multi-layer network
• Prevent overfitting & speedup learning & stochastic

gradient descent
• Deep neural network
• Convolutional neural network
• Recurrent neural network
• Advanced networks (GAN, inception, capsule, LSTM,

deep auto-encoder)
• Deep belief network

Machine Learning

• Supervised learning (training with labeled data),
un-supervised learning (clustering un-labeled
data), and semi-supervised learning (use both
labeled and unlabeled data)

• Supervised learning: classification and regression
• Classification: output is discrete value
• Regression: output is real value

Learning Example: Recognize
Handwriting

Classification: recognize each number
Clustering: cluster the same numbers together
Regression: predict the index of Dow-Jones

Neural Network

• Neural Network can do both supervised
learning and un-supervised learning

• Neural Network can do both regression and
classification

• Neural Network has both statistical and
artificial intelligence roots

History of Neural Networks

• 1957 – perceptron (Rosenblatt)
• 1960s – almost died
• 1980s – neural networks (multi-layer

perceptron)
• 1990-2000s – fell out of favor
• 2010s – deep learning (hottest)

Roots of Neural Network

• Artificial intelligence root (neuron science)
• Statistical root (linear regression,

generalized linear regression, discriminant
analysis. This is our focus.)

A Typical Cortical Neuron

Collect chemical signals
Axon: generate
Potentials (Fire/not Fire)

Synapse: control
release chemical
transmitters.

Junction
between
neurons

Dentritic tree
1011 neurons

A Neural Model

Input

weight

Adapted from http://www.doc.ic.ac.uk/~nd/surprise_96/journal/vol4/cs11/report.html

Activation
Activation function

Statistics Root: Linear Regression
Example

Adapted from A. Moore, 2003

X: input or predictor
Y: output or response
Goal: learn a linear function E[y|x] = wx + b.

Fish length vs. weight?

One Node Neural Network

https://ujjwalkarn.me/2016/08/09/quick-intro-neural-networks/

Linear Regression

Definition of a linear model:
• y = wx + b + noise.
• noise ~ N (0, σ2), assume σ is a constant.
• y ~ N(wx + b, σ2)
• Estimate expected value of y given x (E[y|x]

= wx +b) .
• Given a set of data (x1, y1), (x2, y2), …, (xn,

yn), to find the optimal parameters w and b.

Objective Function

• Least square error:
• Maximum Likelihood:
• Minimizing square

error is equivalent to
maximizing likelihood

Õ
=

N

i
ii bwxyP

1

),,|(

å
=

--
N

i
ii bwxy

1

2)(

Õ
=

N

i
ii bwxyP

1

),,|(
2

2

2
)(

1
22

1 s

ps

bwxyN

i

ii

e
--

-

=
Õ

Õ
=

-
N

i
ii bwxyP

1

)),,|(log(

Maximize Likelihood

Minimize negative log-likelihood:

)
2

)(
)2log(()

2

1
log(2

2

1

22
)(

1
2

2

2

s
ps

ps
s bwxy

e ii
N

i

bwxyN

i

ii --
---=- åÕ

=

--
-

=

)
2

)(
)2(log(2

2

1

2

s
ps bwxy ii

N

i

--
+å

=

=

=

=

Note: σ is a constant.

1-Variable Linear Regression

å
=

--
N

i
ii bwxy

1

2)(

0)(2)(*)(2
1 1

2 =++-=---=
¶
¶ å å

= =

N

i

N

i
iiiiiii bxwxxyxbwxy

W
E

0)(2)1(*)(2
1 1

=++-=---=
¶
¶ å å

= =

N

i

N

i
iiii bwxybwxy

b
E

Minimize E =
Error

w

N

wxy
b

N

i
iiå

=

-
= 1

)(

å

å

=

=

-

-
= N

i
i

N

i
ii

xxNx

yxNyx
w

1

2

1

Multivariate Linear Regression

• How about multiple predictors: (x1, x2, …,
xd).

• y = w0 + w1x1 + w2x2 + … + wdxd + ε
• For multiple data points, each data point is

represented as (yi, xi), xi consists of d
predictors (xi1, xi2, …, xid).

• yi = w0 + w1xi1 + w2xi2 + … + wdxid + ε

A Motivating Example
• Each day you get lunch at the cafeteria.

– Your diet consists of fish, chips, and beer.
– You get several portions of each

• The cashier only tells you the total price of the meal
– After several days, you should be able to figure out the price of

each portion.
• Each meal price gives a linear constraint on the prices of the

portions:

beerbeerchipschipsfishfish wxwxwxprice ++=

G. Hinton, 2006

Matrix Representation
n data points, d dimension

e+

÷÷
÷
÷
÷

ø

ö

çç
ç
ç
ç

è

æ

´

÷÷
÷
÷
÷

ø

ö

çç
ç
ç
ç

è

æ

=

÷÷
÷
÷
÷

ø

ö

çç
ç
ç
ç

è

æ

dndn

d

d

n w

w
w

xx

xx
xx

y

y
y

...
...1

........
...1
...1

...
1

0

1

221

111

2

1

n*1 n*(d+1) (d+1)*1

Y = XW + εMatrix Representation:

Multivariate Linear Regression

• Goal: minimize square error = (Y-XW)T(Y-
XW) = YTY -2XTWY + WTXTXW

• Derivative: -2XTY + 2XTXW = 0
• W = (XTX)-1XTY
• Thus, we can solve linear regression using

matrix inversion, transpose, and
multiplication.

Difficulty and Generalization

• Numerical computation issue. (a lot data
points. Matrix inversion is impossible.)

• Singular matrix (determinant is zero) : no
inversion

• How to handle non-linear data?
• Turns out neural network and its iterative

learning algorithm can address this
problem.

Graphical Representation:
One Layer Neural Network for Regression

f

o Target: y

Input Unit 1 x1
xd……

w0 w1 wd

Output Unit

a =Σwixi Activation

Activation function f is used
to convert a to output. Here
it is a linear function. o = a.

Gradient Descent Algorithm

• For a data x = (x1,x2,…xd), error E = (y – o)2 =
(y – w0x0 - w1x1 - … - wdxd)2

• Partial derivative: ii
ii

w xoyxoy
w
o

oy
w
E

E
i

)(2))((2)(2| --=--=
¶
¶

-=
¶
¶

=Ñ

0<
¶
¶
w
E

0>
¶
¶
w
E

Error

w

Minima

Update rule:

i
t
i

t
i xoyww)()()1(-+=+ h

Famous Delta Rule

Algorithm of One-Layer Regression
Neural Network

• Initialize weights w (small random numbers)
• Repeat

Present a data point x = (x1,x2,…,xd) to the network
and compute output o.
if y > o, add ηxi to wi.

if y < o, add -ηxi to wi.
• Until Σ(yk-ok)2 is zero or below a threshold or

reaches the predefined number of iterations.

Comments: online learning: update weight for every x. batch learning:
update weight every batch of x (i.e. Σηxi).

Graphical Representation:
One Layer Neural Network for Regression

out

O Target: y

Input Unit 1 x1
xd……

w0 w1
wd

Output Unit

a =Σwixi Activation

Output

O = f(Σwixi), f is activation
function.

What about Hyperbolic Tanh
Function for Output Unit

• Can we use activation function
other than linear function?

• For instance, if we want to
limit the output to be in [-1,
+1], we can use hyperbolic
Tanh function:

• The only thing to change is to
use the new gradient.

xx

xx

ee
ee
-

-

+
-

Two-Category Classification

• Two classes: C1 and C2.
• Input feature vector: x.
• Define a discriminant function y(x) such

that x is assigned to C1 if y(x) > 0 and to
class C2 if y(x) < 0.

• Linear discriminant function: y(x) = wTx +
w0 = wTx, where x = (1, x).

• w: weight vector, w0: bias.

A Linear Decision Boundary in 2-D
Input Space

x1

x2

y(x) = wTx + w0 = 0

w

y(x) = wTx = 0
l = |wTx| / ||w|| = w0 / ||w||

w: orientation of decision boundary
w0: defines the position of the plan
in terms of its perpendicular distance
from the origin.

Graphical Representation: Perceptron, One-
Layer Classification Neural Network

out

y=g(wTx)
wTx > 0: +1, class 1
wTx < 0: -1, class 2

Input Unit 1 x1
xd……

w0 w1
wd

wTx = ΣwixiActivation

Activation /
Transfer function (threshold function)

Perceptron Criterion

• Minimize classification error
• Input data (vector): x1, x2, …, xN and

corresponding target value t1, t2, …, tN.
• Goal: for all x in C1 (t = 1), wTx > 0, for all x in

C2 (t = -1), wTx < 0. Or for all x: wTxt > 0.
• Error (loss): Eperc (w) = . M is the

set of misclassified data points.
å
Î

-
Mx

nnT

n

txw

Gradient Descent

0<
¶
¶
w
E

0>
¶
¶
w
E

Error

W

Minima

w = w -
w
E
¶
¶ � η = w + η xntn

For each misclassified data point, adjust weight as follows:

Perceptron Algorithm

• Initialize weight w
• Repeat

For each data point (xn, tn)
Classify each data point using current w.
If wTxntn > 0 (correct), do nothing
If wTxntn < 0 (wrong), wnew = w + ηxntn

w = wnew

• Until w is not changed (all the data will be
separated correctly, if data is linearly separable) or
error is below a threshold.

Rosenblatt, 1962

Perceptron Convergence Theorem

• For any data set which is linearly separable,
the algorithm is guaranteed to find a
solution in a finite number of steps
(Rosenblatt, 1962; Block 1962; Nilsson,
1965; Minsky and Papert 1969; Duda and
Hart, 1973; Hand, 1981; Arbib, 1987; Hertz
et al., 1991)

Perceptron Demo

• https://www.youtube.com/watch?v=vGwemZ
hPlsA

Limitation of the Perceptron

• Can�t not separate non-linear data
completely.

• Or can�t not fit non-linear data well.
• Two directions to attack the problem: (1)

extend to multi-layer neural network (2)
map data into high dimension (SVM
approach)

Exclusive OR Problem

(0,0)

C1

C1

C2

C2

(1,0)

(0,1) (1,1)
Perceptron (or one-layer
neural network) can not
learn a function to separate
the two classes perfectly.

Logistic Regression

• Estimate posterior distribution: P(C1|x)
• Dose – response estimation: in bioassay, the

relation between dose level and death rate
P(death | x).

• We can not use 0/1 hard classification.
• We can not use unconstrained linear

regression because P(death | x) must be in
[0,1]?

Logistic Regression and One Layer
Neural Network With Sigmoid

Function.
wxe-+1

1

ze-+1
1

P(death | x) =

(Sigmoid function)

……

1 x1 xd

Activation z = Σwixi

y
Target: t (0 or 1)

Activation
Function:
sigmoid

How to Adjust Weights?

• Minimize error E=(t-y)2. For simplicity, we derive
the formula for one data point. For multiple data
points, just add the gradients together.

i
ii

xyyyt
w
z

z
y

y
E

w
E)1()(2 ---=

¶
¶

¶
¶

¶
¶

=
¶
¶

Notice:)1()
1
11(

1
1)

1
1(

yy
eez

e
z
y

zz

z
-=

+
-

+
=

¶
+

¶
=

¶
¶

--

-

Error / Loss Function and
Learning

• Least Square
• Maximum likelihood: output y is the probability of

being in C1 (t=1). 1- y is the probability of being in
C2. So what is probability of P(t|x) = yt(1-y)1-t.

• Maximum likelihood is equivalent to minimize
negative log likelihood:
E = -log P(t|x) = -tlogy - (1-t)log(1-y). (cross /
relative entropy)

How to Adjust Weights?

• Minimize error E= -tlogy - (1-t)log(1-y). For
simplicity, we derive the formula for one data
point. For multiple data points, just add the
gradients together.

ii
ii

xtyxyy
yy
ty

w
z

z
y

y
E

w
E)()1(

)1(
-=-

-
-

=
¶
¶

¶
¶

¶
¶

=
¶
¶

)1(1
1)1(

1
1

yy
ty

y
t

y
t

y
t

y
t

y
E

-
-

=
-
-

--=-
-
-

--=
¶
¶

i
t
i

t
i xytww)()1(-+=+ hUpdate rule:

Multi-Class Logistic Regression
• Transfer (or activation) function is normalized

exponentials (or soft max)

……

……

y1
yc

x0 x1 xd

w10 w11 w1d

wc0

wc1

w1d

å
=

= c

j

a

a

i
j

i

e

ey

1

Activation to Node Oi

Activation Function

How to learn this network? Once again, gradient descent.

Questions?

• Is logistic regression a linear regression?
• Can logistic regression handle non-linearly

separable data?
• How to introduce non-linearity?

Neural Network Approach
• Multi-Layer Perceptrons
• In addition to input nodes and output nodes, some

hidden nodes between input / output nodes are
introduced.

• Use hidden units to learn internal features to
represent data. Hidden nodes can learn internal
representation of data that are not explicit in the
input features.

• Transfer function of hidden units are non-linear
function

Multi-Layer Perceptron
• Connections go from lower layer to higher layer.

(usually from input layer to hidden layer, to output layer)
• Connection between input/hidden nodes, input/output

nodes, hidden/hidden nodes, hidden/output nodes are
arbitrary as long as there is no loop (must be feed-
forward).

• However, for simplicity, we usually only allow
connection from input nodes to hidden nodes and from
hidden nodes to output nodes. The connections with a
layer are disallowed.

• Two-layer neural network (one hidden and one
output) with non-linear activation function is a
universal function approximator (see Baldi and
Brunak 2001 or Bishop 96 for the proof), i.e. it can
approximate any numeric function with arbitrary
precision given a set of appropriate weights and
hidden units.

• In early days, people usually used two-layer (or
three-layer if you count the input as one layer)
neural network. Increasing the number of layers was
occasionally helpful.

• Later expanded into deep learning with many
layers!!!

Multi-Layer Perceptron

Two-Layer Neural Network

å
=

M

j
jkj zw

0

å
=

d

i
iji xw

0

…

…

…

y1 yc

x1 xi
xd

yk

z1 zj
zM

wjiw11 w1i

wkj

Output
Activation function: f (linear,sigmoid, softmax)
Activation of unit ak:

Activation function: g (linear, tanh, sigmoid)

Activation of unit aj:

å å
= =

´=
M

j

d

i
ijikjk xwgwfy

0 0
))((

Z0=1

1

x0

Adjust Weights by Training

• How to adjust weights?
• Adjust weights using known examples

(training data) (x1,x2,x3,…,xd,t).
• Try to adjust weights so that the difference

between the output of the neural network y
and t (target) becomes smaller and smaller.

• Goal is to minimize Error (difference) as we
did for one layer neural network

Adjust Weights using Gradient
Descent (Back-Propagation)

Data: (x1,x2,x3,…,xn) target t.
Known:

Unknown weights w:
w11, w12,…..

Randomly initialize weights
Repeat

for each example, compute output y
calculate error E = (y-t)2

compute the derivative of E over w: dw=
wnew = wprev – η * dw

Until error doesn�t decrease or max num of iterations

Error

W

Note: η is learning rate or step size.

Minima

w
E
¶
¶

Insights
• We know how to compute the derivative of one

layer neural network? How to change weights
between input layer and hidden layer?

• Should we compute the derivative of each w
separately or we can reuse intermediate results?
We will have an efficient back-propagation
algorithm.

• We will derive learning for one data example. For
multiple examples, we can simply add the
derivatives from them for a weight parameter
together.

Neural Network Learning: Two
Processes

• Forward propagation: present an example
(data) into neural network. Compute
activation into units and output from units.

• Backward propagation: propagate error
back from output layer to the input layer
and compute derivatives (or gradients).

Forward Propagation

å
=

M

j
jkj zw

1

å
=

d

i
iji xw

1

…

…

…

y1 yc

x1 xi xd

yk

z1 zj zM

wjiw11 w1i

wkj

Output
Activation function: f (linear,sigmoid, softmax)

Activation of unit ak:

Activation function: g (linear, tanh, sigmoid)

Activation of unit aj:

zj

yk

Time complexity?
O(dM + MC) = O(W)

Neural Network Calculations are
essentially matrix operations

Backward Propagation

å
=

M

j
jkj zw

1

å
=

d

i
iji xw

1

å
=

-=
C

k
kk tyE

1

2)(
2
1

…

…

…

y1 yc

x1 xi
xd

yk

z1 zj
zM

wjiw11 w1i

wkj

f

ak:

g

aj:

Time complexity?
O(CM+Md) = O(W)

kk
k

ty
y
E

-=
¶
¶

kkkk
k

k

kk

afty
a
y

y
E

a
E d=-=

¶
¶

¶
¶

=
¶
¶)(')(

jk
kj

k

kkj

z
w
a

a
E

w
E d=

¶
¶

¶
¶

=
¶
¶

j

C

k
jkjk

c

k j

j

j

k

k

k

kj

agw
a
z

z
a

a
y

y
E

a
E dd ==

¶

¶

¶
¶

¶
¶

¶
¶

=
¶
¶ åå

== 11
)('

ij
j

jji

x
wji
a

a
E

w
E d=

¶

¶

¶
¶

=
¶
¶

If no back-propagation, time
complexity is: (MdC+CM)

Example 2)(
2
1 tyE -=

)(ty
a
y

y
E

a
E

kk

-=
¶
¶

¶
¶

=
¶
¶

=d

j
j

z
w
E d=

¶
¶

å
=

M

i
iji xw

1
…

…

x1 xi xd

y

z1 zj zM

wjiw11 w1i

wj

f linear function

ak:

g is sigmoid:

aj:

)1()()(' jjjjjj zzwtyagw --== dd

ijjjij
ji

xzzwtyx
w
E)1()(--==

¶
¶ d

Algorithm

• Initialize weights w
• Repeat

For each data point x, do the following:
Forward propagation: compute outputs and activations
Backward propagation: compute errors for each output units
and hidden units. Compute gradient for each weight.
Update weight w = w - η (∂E / ∂w)

• Until a number of iterations or errors drops below a
threshold.

Implementation Issue
• What should we store?
• An input vector x of d dimensions
• A M*d matrix {wji} for weights between input and hidden

units
• An activation vector of M dimensions for hidden units
• An output vector of M dimensions for hidden units
• A C*M matrix {wkj} for weights between hidden and

output units
• An activation vector of C dimensions for output units
• An output vector of C dimensions for output units
• An error vector of C dimensions for output units
• An error vector of M dimensions for hidden units

Recurrent Network

…

…

…

y1 yc

x1 xi
xd

yk

z1 zj
zM

wjiw11 w1i

wkj

w

Forward:
At time 1: present X1, 0
At time 2: present X2, y1
……

Backward:
Time t: back-propagate
Time t-1: back-propagate with
Output errors and errors from previous step

Overfitting

Good fitting

Example of Overfitting and Good Fitting

Overfitting function can not generalize well to unseen data.

Preventing Overfitting

• Use a model that has the right capacity:
– enough to model the true regularities
– not enough to also model the spurious regularities

(assuming they are weaker).
• Standard ways to limit the capacity of a neural

net:
– Limit the number of hidden units.
– Limit the size of the weights.
– Stop the learning before it has time to overfit.

G. Hinton, 2006

Limiting the Size of the Weights

• Weight-decay involves
adding an extra term to
the cost function that
penalizes the squared
weights.
– Keeps weights small

unless they have big error
derivatives.

i
i

i

i
ii

i
i

w
Ew

w
Cwhen

w
w
E

w
C

wEC

¶
¶

-==
¶
¶

+
¶
¶

=
¶
¶

å+=

l

l

l

1

2
2

,0

w

C

G. Hinton, 2006

The Effect of Weight-Decay
• It prevents the network from using weights that it

does not need.
– This can often improve generalization a lot.
– It helps to stop it from fitting the sampling error.
– It makes a smoother model in which the output changes

more slowly as the input changes.

• If the network has two very similar inputs it
prefers to put half the weight on each rather than
all the weight on one.

w/2 w/2 w 0

G. Hinton, 2006

Deciding How Much to Restrict the
Capacity

• How do we decide which limit to use and how
strong to make the limit?
– If we use the test data we get an unfair prediction

of the error rate we would get on new test data.
– Suppose we compared a set of models that gave

random results, the best one on a particular dataset
would do better than chance. But it wont do better
than chance on another test set.

• So use a separate validation set to do model
selection.

G. Hinton, 2006

Using a Validation Set

• Divide the total dataset into three subsets:
– Training data is used for learning the parameters of

the model.
– Validation data is not used of learning but is used

for deciding what type of model and what amount
of regularization works best.

– Test data is used to get a final, unbiased estimate
of how well the network works. We expect this
estimate to be worse than on the validation data.

• We could then re-divide the total dataset to get
another unbiased estimate of the true error rate.

G. Hinton, 2006

Preventing Overfitting by Early
Stopping

• If we have lots of data and a big model, its very expensive
to keep re-training it with different amounts of weight
decay.

• It is much cheaper to start with very small weights and let
them grow until the performance on the validation set
starts getting worse (but don�t get fooled by noise!)

• The capacity of the model is limited because the weights
have not had time to grow big.

G. Hinton, 2006

Why Early Stopping Works
• When the weights are very

small, every hidden unit is
in its linear range.
– So a net with a large layer

of hidden units is linear.
– It has no more capacity than

a linear net in which the
inputs are directly
connected to the outputs!

• As the weights grow, the
hidden units start using
their non-linear ranges so
the capacity grows.

outputs

inputs

G. Hinton, 2006

Combining Networks
• When the amount of training data is limited, we

need to avoid overfitting.
– Averaging the predictions of many different networks is

a good way to do this.
– It works best if the networks are as different as

possible.
– Combining networks reduces variance

• If the data is really a mixture of several different
�regimes� it is helpful to identify these regimes
and use a separate, simple model for each regime.
– We want to use the desired outputs to help cluster cases

into regimes. Just clustering the inputs is not as
efficient.

G. Hinton, 2006

How the Combined Predictor
Compares with the Individual

Predictors
• On any one test case, some individual predictors will

be better than the combined predictor.
– But different individuals will be better on different cases.

• If the individual predictors disagree a lot, the
combined predictor is typically better than all of the
individual predictors when we average over test
cases.
– So how do we make the individual predictors disagree?

(without making them much worse individually).

G. Hinton, 2006

Ways to Make Predictors Differ
• Rely on the learning algorithm getting stuck in a

different local optimum on each run.
– A dubious hack unworthy of a true computer scientist (but

definitely worth a try).
• Use lots of different kinds of models:

– Different architectures
– Different learning algorithms.

• Use different training data for each model:
– Bagging: Resample (with replacement) from the training

set: a,b,c,d,e -> a c c d d
– Boosting: Fit models one at a time. Re-weight each training

case by how badly it is predicted by the models already
fitted.

• This makes efficient use of computer time because it does not
bother to �back-fit� models that were fitted earlier.

G. Hinton, 2006

How to Speedup Learning?
The Error Surface for a Linear Neuron

• The error surface lies in a space with a horizontal axis
for each weight and one vertical axis for the error.
– It is a quadratic bowl.

• i.e. the height can be expressed as a function of the weights without
using powers higher than 2. Quadratics have constant curvature
(because the second derivative must be a constant)

– Vertical cross-sections are parabolas.
– Horizontal cross-sections are ellipses.

E w1

w2w

G. Hinton, 2006

Convergence Speed

• The direction of steepest
descent does not point at
the minimum unless the
ellipse is a circle.
– The gradient is big in the

direction in which we
only want to travel a
small distance.

– The gradient is small in the
direction in which we want
to travel a large distance.

This equation is sick.
i

i w
Ew

¶
¶

-=D e

G. Hinton, 2006

How the Learning Goes Wrong

• If the learning rate is big,
it sloshes to and fro across
the ravine. If the rate is too
big, this oscillation
diverges.

• How can we move quickly
in directions with small
gradients without getting
divergent oscillations in
directions with big
gradients?

E

w

G. Hinton, 2006

Five Ways to Speed up Learning
• Use an adaptive global learning rate

– Increase the rate slowly if its not diverging
– Decrease the rate quickly if it starts diverging

• Use separate adaptive learning rate on each connection
– Adjust using consistency of gradient on that weight axis

• Use momentum
– Instead of using the gradient to change the position of the weight
�particle�, use it to change the velocity.

• Use a stochastic estimate of the gradient from a few cases
– This works very well on large, redundant datasets.

G. Hinton, 2006

The Momentum Method

Imagine a ball on the error
surface with velocity v.
– It starts off by following the

gradient, but once it has
velocity, it no longer does
steepest descent.

• It damps oscillations by
combining gradients with
opposite signs.

• It builds up speed in directions
with a gentle but consistent
gradient.

Δw(t) = v(t)

=α Δw(t −1)−ε ∂E
∂w
(t)

G. Hinton, 2006

How to Initialize weights?

• Use small random
numbers. For instance
small numbers
between [-0.2, 0.2].

• Some numbers are
positive and some are
negative.

• Why are the initial
weights should be
small?

wxe-+1
1

Saturated

Stochastic Gradient Descent

Ensemble, Dropout and Batch
Normalization

Recurrent Neural Networks

Getting targets when modeling sequences
•When applying machine learning to sequences, we often want to turn an input sequence into
an output sequence that lives in a different domain.

– E. g. turn a sequence of sound pressures into a sequence of word identities.

•When there is no separate target sequence, we can get a teaching signal by trying to predict
the next term in the input sequence.

– The target output sequence is the input sequence with an advance of 1 step.
– This seems much more natural than trying to predict one pixel in an image from the

other pixels, or one patch of an image from the rest of the image.
– For temporal sequences there is a natural order for the predictions.

•Predicting the next term in a sequence blurs the distinction between supervised and
unsupervised learning.

– It uses methods designed for supervised learning, but it doesn’t require a separate
teaching signal.

Memoryless models for sequences
• Autoregressive models Predict

the next term in a sequence from a
fixed number of previous terms using
“delay taps”.

• Feed-forward neural nets These
generalize autoregressive models by
using one or more layers of non-
linear hidden units.

input(t-2) input(t-1) input(t)

wt−2

hidde
n

wt−1

input(t-2) input(t-1) input(t)

Beyond memoryless models
• If we give our generative model some hidden state,

and if we give this hidden state its own internal
dynamics, we get a much more interesting kind of
model.
– It can store information in its hidden state for a

long time.
– If the dynamics is noisy and the way it generates

outputs from its hidden state is noisy, we can never
know its exact hidden state.

– The best we can do is to infer a probability
distribution over the space of hidden state vectors.

• This inference is only tractable for two types of
hidden state model.

Linear Dynamical Systems (engineers love them!)

• These are generative models.
They have a real-valued hidden
state that cannot be observed
directly.
– The hidden state has linear dynamics with Gaussian

noise and produces the observations using a linear model
with Gaussian noise.

– There may also be driving inputs.

• To predict the next output (so that
we can shoot down the missile)
we need to infer the hidden state.
– A linearly transformed Gaussian is a Gaussian. So the

distribution over the hidden state given the data so far is
Gaussian. It can be computed using “Kalman filtering”.

driving
input

hidde
n hidde
n hidde
n

output

output

output
time à

driving
input

driving
input

Hidden Markov Models (computer scientists love them!)

• Hidden Markov Models have a discrete
one-of-N hidden state. Transitions
between states are stochastic and
controlled by a transition matrix. The
outputs produced by a state are stochastic.
– We cannot be sure which state

produced a given output. So the state
is “hidden”.

– It is easy to represent a probability
distribution across N states with N
numbers.

• To predict the next output we need to
infer the probability distribution over
hidden states.
– HMMs have efficient algorithms for

inference and learning.

output

output

output

time à

A fundamental limitation of HMMs
• Consider what happens when a hidden Markov

model generates data.
– At each time step it must select one of its hidden states. So with N hidden

states it can only remember log(N) bits about what it generated so far.

• Consider the information that the first half of
an utterance contains about the second half:
– The syntax needs to fit (e.g. number and tense agreement).
– The semantics needs to fit. The intonation needs to fit.
– The accent, rate, volume, and vocal tract characteristics must all fit.

• All these aspects combined could be 100 bits
of information that the first half of an utterance
needs to convey to the second half. 2^100 is
big!

Recurrent neural networks
• RNNs are very powerful,

because they combine two
properties:
– Distributed hidden state that

allows them to store a lot of
information about the past
efficiently.

– Non-linear dynamics that allows
them to update their hidden state
in complicated ways.

• With enough neurons and time,
RNNs can compute anything
that can be computed by your
computer.

input

input

input

hidde
n hidde
n hidde
n

output

output

output
time à

Do generative models need to be
stochastic?

• Linear dynamical
systems and hidden
Markov models are
stochastic models.
– But the posterior

probability distribution
over their hidden states
given the observed data
so far is a deterministic
function of the data.

• Recurrent neural
networks are
deterministic.
– So think of the hidden

state of an RNN as the
equivalent of the
deterministic probability
distribution over hidden
states in a linear
dynamical system or
hidden Markov model.

Recurrent neural networks
• What kinds of behaviour can RNNs exhibit?

– They can oscillate. Good for motor control?
– They can settle to point attractors. Good for retrieving

memories?
– They can behave chaotically. Bad for information

processing?
– RNNs could potentially learn to implement lots of small

programs that each capture a nugget of knowledge and run
in parallel, interacting to produce very complicated effects.

• But the computational power of RNNs makes them
very hard to train.
– For many years we could not exploit the computational

power of RNNs despite some heroic efforts (e.g. Tony
Robinson’s speech recognizer).

The equivalence between feedforward nets and recurrent nets

The recurrent net is just a
layered net that keeps reusing
the same weights.

An Example

Reminder: Backpropagation with weight constraints

• It is easy to modify the
backprop algorithm to
incorporate linear constraints
between the weights.

• We compute the gradients as
usual, and then modify the
gradients so that they satisfy
the constraints.
– So if the weights started off

satisfying the constraints,
they will continue to satisfy
them.

21
21

21

21

21

:

:
:

wandwfor
w
E

w
E

use

w
E

and
w
E

compute

wwneedwe
wwconstrainTo

¶
¶

+
¶
¶

¶
¶

¶
¶

D=D
=

Backpropagation through time
• We can think of the recurrent net as a layered,

feed-forward net with shared weights and then
train the feed-forward net with weight
constraints.

• We can also think of this training algorithm in
the time domain:
– The forward pass builds up a stack of the

activities of all the units at each time step.
– The backward pass peels activities off the

stack to compute the error derivatives at each
time step.

– After the backward pass we add together the
derivatives at all the different times for each
weight.

An irritating extra issue
• We need to specify the initial activity state of all the hidden and

output units.
• We could just fix these initial states to have some default value

like 0.5.
• But it is better to treat the initial states as learned parameters.
• We learn them in the same way as we learn the weights.

– Start off with an initial random guess for the initial states.
– At the end of each training sequence, backpropagate through

time all the way to the initial states to get the gradient of the
error function with respect to each initial state.

– Adjust the initial states by following the negative gradient.

A good toy problem for a recurrent
network• We can train a feedforward net to do

binary addition, but there are obvious
regularities that it cannot capture
efficiently.
– We must decide in advance the

maximum number of digits in each
number.

– The processing applied to the beginning
of a long number does not generalize to
the end of the long number because
it uses different weights.

• As a result, feedforward nets do not
generalize well on the binary addition
task.

00100110 10100110

11001100

hidden units

The algorithm for binary addition

no carry
print 1

carry
print 1

no carry
print 0

carry
print 0

1
1

1
0

1
0

1
0

1
0

0
1

0
1

0
1

0
1

0
0

0
0

0
0

0
0

1
1

1
1

This is a finite state automaton. It decides what transition to make by
looking at the next column. It prints after making the transition. It moves
from right to left over the two input numbers.

1
1

A recurrent net for binary addition
• The network has two input units and

one output unit.
• It is given two input digits at each time

step.
• The desired output at each time step is

the output for the column that was
provided as input two time steps ago.
– It takes one time step to update the

hidden units based on the two input
digits.

– It takes another time step for the
hidden units to cause the output.

0 0 1 1 0 1 0 0

0 1 0 0 1 1 0 1

1 0 0 0 0 0 0 1

time

The connectivity of the network

• The 3 hidden units are
fully interconnected in
both directions.
– This allows a hidden

activity pattern at one time
step to vote for the hidden
activity pattern at the next
time step.

• The input units have
feedforward connections
that allow then to vote for
the next hidden activity
pattern.

3 fully interconnected hidden units

What the network learns
• It learns four distinct

patterns of activity for the
3 hidden units. These
patterns correspond to the
nodes in the finite state
automaton.
– Do not confuse units in a

neural network with nodes
in a finite state automaton.
Nodes are like activity
vectors.

– The automaton is restricted
to be in exactly one state at
each time. The hidden units
are restricted to have
exactly one vector of
activity at each time.

• A recurrent network can
emulate a finite state
automaton, but it is
exponentially more
powerful. With N hidden
neurons it has 2^N
possible binary activity
vectors (but only N^2
weights)
– This is important when the

input stream has two
separate things going on at
once.

– A finite state automaton
needs to square its number
of states.

– An RNN needs to double
its number of units.

The backward pass is linear
• There is a big difference between

the forward and backward passes.
• In the forward pass we use

squashing functions (like the
logistic) to prevent the activity
vectors from exploding.

• The backward pass, is completely
linear. If you double the error
derivatives at the final layer, all
the error derivatives will double.
– The forward pass determines the

slope of the linear function used for
backpropagating through each
neuron.

The problem of exploding or
vanishing gradients

• What happens to the magnitude of
the gradients as we backpropagate
through many layers?
– If the weights are small, the gradients

shrink exponentially.
– If the weights are big the gradients

grow exponentially.
• Typical feed-forward neural nets

can cope with these exponential
effects because they only have a
few hidden layers.

• In an RNN trained on long
sequences (e.g. 100 time steps) the
gradients can easily explode or
vanish.
– We can avoid this by initializing the

weights very carefully.
• Even with good initial weights, its

very hard to detect that the current
target output depends on an input
from many time-steps ago.
– So RNNs have difficulty dealing with

long-range dependencies.

Four effective ways to learn an
RNN

• Long Short Term Memory
Make the RNN out of little modules
that are designed to remember values
for a long time.

• Hessian Free Optimization: Deal
with the vanishing gradients problem
by using a fancy optimizer that can
detect directions with a tiny gradient
but even smaller curvature.
– The HF optimizer (Martens &

Sutskever, 2011) is good at this.

• Echo State Networks: Initialize the
inputàhidden and hiddenàhidden and
outputàhidden connections very carefully so
that the hidden state has a huge reservoir of
weakly coupled oscillators which can be
selectively driven by the input.
– ESNs only need to learn the

hiddenàoutput connections.
• Good initialization with momentum

Initialize like in Echo State Networks, but
then learn all of the connections using
momentum.

Long Short Term Memory
(LSTM)

• Hochreiter &
Schmidhuber (1997)
solved the problem of
getting an RNN to
remember things for a
long time (like hundreds
of time steps).

• They designed a
memory cell using
logistic and linear units
with multiplicative
interactions.

• Information gets into
the cell whenever its
“write” gate is on.

• The information stays in
the cell so long as its
“keep” gate is on.

• Information can be read
from the cell by turning
on its “read” gate.

Implementing a memory cell in a
neural network

• To preserve information for a long
time in the activities of an RNN, we
use a circuit that implements an
analog memory cell.
– A linear unit that has a self-link with a

weight of 1 will maintain its state.
– Information is stored in the cell by

activating its write gate.
– Information is retrieved by activating the

read gate.
– We can backpropagate through this

circuit because logistics are have nice
derivatives.

output to
rest of RNN

input from
rest of RNN

read
gate

write
gate

keep
gate

1.73

Backpropagation through a
memory cell

read
1

write
0

keep
1

1.7

read
0

write
0

1.7

read
0

write
1

1.7

1.71.7

keep
1

keep
0

keep
0

time à

A simple LSTM block with only
input, output, and forget gates

https://ipfs.io/ipfs/QmXoypizjW3WknFiJnKLwHCnL
72vedxjQkDDP1mXWo6uco/wiki/Long_short-
term_memory.html

A Simple LSTM Network
Example

Another Example

Reading cursive handwriting

• This is a natural task for
an RNN.

• The input is a sequence
of (x,y,p) coordinates of
the tip of the pen, where
p indicates whether the
pen is up or down.

• The output is a sequence
of characters.

• Graves & Schmidhuber
(2009) showed that
RNNs with LSTM are
currently the best
systems for reading
cursive writing.
– They used a sequence of

small images as input
rather than pen
coordinates.

A demonstration of online handwriting recognition by an
RNN with Long Short Term Memory (from Alex Graves)

SHOW ALEX GRAVES’ MOVIE

https://www.cs.toronto.edu/~graves/

How to generate character strings
from the model

• Start the model with its default hidden state.
• Give it a “burn-in” sequence of characters and let it update its

hidden state after each character.
• Then look at the probability distribution it predicts for the next

character.
• Pick a character randomly from that distribution and tell the

net that this was the character that actually occurred.
– i.e. tell it that its guess was correct, whatever it guessed.

• Continue to let it pick characters until bored.
• Look at the character strings it produces to see what it

“knows”.

He was elected President during the Revolutionary
War and forgave Opus Paul at Rome. The regime
of his crew of England, is now Arab women's icons
in and the demons that use something between
the characters‘ sisters in lower coil trains were
always operated on the line of the ephemerable
street, respectively, the graphic or other facility for
deformation of a given proportion of large
segments at RTUS). The B every chord was a
"strongly cold internal palette pour even the white
blade.”

Some completions produced by
the model

• Sheila thrunges (most frequent)
• People thrunge (most frequent next character is space)
• Shiela, Thrungelini del Rey (first try)
• The meaning of life is literary recognition. (6th try)

• The meaning of life is the tradition of the ancient human
reproduction: it is less favorable to the good boy for when
to remove her bigger. (one of the first 10
tries for a model trained for longer).

What does it know?
• It knows a huge number of words and a lot about proper names,

dates, and numbers.
• It is good at balancing quotes and brackets.

– It can count brackets: none, one, many
• It knows a lot about syntax but its very hard to pin down exactly

what form this knowledge has.
– Its syntactic knowledge is not modular.

• It knows a lot of weak semantic associations
– E.g. it knows Plato is associated with Wittgenstein and cabbage is

associated with vegetable.

RNNs for predicting the next
word

• Tomas Mikolov and his collaborators have recently
trained quite large RNNs on quite large training sets
using BPTT.
– They do better than feed-forward neural nets.
– They do better than the best other models.
– They do even better when averaged with other models.

• RNNs require much less training data to reach the
same level of performance as other models.

• RNNs improve faster than other methods as the dataset
gets bigger.
– This is going to make them very hard to beat.

Problem of Traditional Neural
Network

• Vanishing gradients à shallow network
• Exploding gradient
• Cannot use unlabeled data
• Hard to understand the relationship between

input and output
• Cannot generate data

Deep Network Versus Shallow
Network

• With the same number of weights, deep
network is more expressive than shallow
network

• Deep network generalizes better than
shallow network

• So should we go deep?

How to go deep?

• ReLu activation function
• Residual network
• Weight sharing (reduce number of

parameters)
• Long- and Short-Memory network

Convolutional Neural Network

The replicated feature approach for
hand writing recognition

(currently the dominant approach for neural networks)

• Use many different copies of the same
feature detector with different
positions.
– Could also replicate across scale and

orientation (tricky and expensive)

– Replication greatly reduces the number of
free parameters to be learned.

• Use several different feature types, each
with its own map of replicated
detectors.
– Allows each patch of image to be

represented in several ways.

The red connections
all have the same
weight.

Backpropagation with weight
constraints

• It’s easy to modify the
backpropagation algorithm
to incorporate linear
constraints between the
weights.

• We compute the gradients
as usual, and then modify
the gradients so that they
satisfy the constraints.
– So if the weights started

off satisfying the
constraints, they will
continue to satisfy them.

To constrain : w1 = w2
we need : Δw1 = Δw2

compute : ∂E
∂w1

and ∂E
∂w2

use ∂E
∂w1

+
∂E
∂w2

for w1 and w2

What does replicating the feature
detectors achieve?

• Equivariant activities: Replicated features do not
make the neural activities invariant to translation. The
activities are equivariant.

• Invariant knowledge: If a feature is useful in some
locations during training, detectors for that feature will
be available in all locations during testing.

representation
by active
neurons

image

translated
representation

translated
image

Pooling the outputs of replicated
feature detectors

• Get a small amount of translational invariance at
each level by averaging four neighboring replicated
detectors to give a single output to the next level.
– This reduces the number of inputs to the next

layer of feature extraction, thus allowing us to
have many more different feature maps.

– Taking the maximum of the four works slightly
better.

• Problem: After several levels of pooling, we have lost
information about the precise positions of things.
– This makes it impossible to use the precise spatial

relationships between high-level parts for
recognition.

Le Net
• Yann LeCun and his collaborators developed a really

good recognizer for handwritten digits by using
backpropagation in a feedforward net with:
– Many hidden layers
– Many maps of replicated units in each layer.
– Pooling of the outputs of nearby replicated units.
– A wide net that can cope with several characters at

once even if they overlap.
– A clever way of training a complete system, not

just a recognizer.
• This net was used for reading ~10% of the checks in

North America.
• Look the impressive demos of LENET at

http://yann.lecun.com

LeNet Demo

• http://yann.lecun.com/exdb/lenet/index.html

http://yann.lecun.com/exdb/lenet/index.html

How LeNet Capture Various
Invariance (Demo)

• http://yann.lecun.com/exdb/lenet/rotation.ht
ml

http://yann.lecun.com/exdb/lenet/rotation.html

The architecture of LeNet5

The 82
errors made
by LeNet5

Notice that most of the
errors are cases that
people find quite easy.

The human error rate is
probably 20 to 30 errors
but nobody has had the
patience to measure it.

Priors and Prejudice
• We can put our prior knowledge

about the task into the network by
designing appropriate:
– Connectivity.
– Weight constraints.
– Neuron activation functions

• This is less intrusive than hand-
designing the features.
– But it still prejudices the network

towards the particular way of
solving the problem that we had in
mind.

• Alternatively, we can use
our prior knowledge to
create a whole lot more
training data.
– This may require a lot of work

(Hofman&Tresp, 1993)
– It may make learning take much

longer.

• It allows optimization to
discover clever ways of
using the multi-layer
network that we did not
think of.
– And we may never fully understand

how it does it.

The brute force approach

• LeNet uses knowledge
about the invariances
to design:
– the local connectivity
– the weight-sharing
– the pooling.

• This achieves about 80
errors.
– This can be reduced to

about 40 errors by using
many different
transformations of the
input and other tricks
(Ranzato 2008)

• Ciresan et. al. (2010)
inject knowledge of
invariances by creating a
huge amount of carefully
designed extra training
data:
– For each training image,

they produce many new
training examples by
applying many different
transformations.

– They can then train a
large, deep, dumb net on a
GPU without much
overfitting.

• They achieve about 35
errors.

The errors made by the Ciresan
et. al. net

The top printed digit is the
right answer. The bottom two
printed digits are the
network’s best two guesses.

The right answer is almost
always in the top 2 guesses.

With model averaging they
can now get about 25 errors.

How to detect a significant drop in
the error rate

• Is 30 errors in 10,000 test cases significantly
better than 40 errors?
– It all depends on the particular errors!
– The McNemar test uses the particular errors and can

be much more powerful than a test that just uses the
number of errors.

model 1
wrong

model 1
right

model 2
wrong

29 1

model 2
right

11 9959

model 1
wrong

model 1
right

model 2
wrong

15 15

model 2
right

25 9945

From hand-written digits to 3-D
objects

• Recognizing real objects in color photographs downloaded
from the web is much more complicated than recognizing
hand-written digits:
– Hundred times as many classes (1000 vs 10)
– Hundred times as many pixels (256 x 256 color vs 28 x 28 gray)
– Two dimensional image of three-dimensional scene.
– Cluttered scenes requiring segmentation
– Multiple objects in each image.

• Will the same type of convolutional neural network work?

The ILSVRC-2012 competition
on ImageNet

• The dataset has 1.2 million high-
resolution training images.

• The classification task:
– Get the “correct” class in your

top 5 bets. There are 1000
classes.

• The localization task:
– For each bet, put a box

around the object. Your box
must have at least 50%
overlap with the correct box.

• Some of the best existing
computer vision methods were
tried on this dataset by leading
computer vision groups from
Oxford, INRIA, XRCE, …
– Computer vision systems

use complicated multi-stage
systems.

– The early stages are
typically hand-tuned by
optimizing a few parameters.

Examples from the test set (with the
network’s guesses)

Error rates on the ILSVRC-2012
competition

• University of Tokyo
• Oxford University Computer

Vision Group
• INRIA (French national research

institute in CS) + XRCE (Xerox
Research Center Europe)

• University of Amsterdam

• 26.1%
53.6%

• 26.9%
50.0%

• 27.0%

• 29.5%

• University of Toronto (Alex
Krizhevsky)

• 16.4% 34.1%
•

classification
classification
&localization

A neural network for ImageNet
• Alex Krizhevsky (NIPS 2012)

developed a very deep
convolutional neural net of
the type pioneered by Yann
Le Cun. Its architecture was:
– 7 hidden layers not counting

some max pooling layers.
– The early layers were

convolutional.
– The last two layers were

globally connected.

• The activation functions
were:
– Rectified linear units in every

hidden layer. These train much
faster and are more expressive
than logistic units.

– Competitive normalization to
suppress hidden activities
when nearby units have
stronger activities. This helps
with variations in intensity.

Tricks that significantly improve
generalization

• Train on random 224x224
patches from the 256x256
images to get more data. Also
use left-right reflections of the
images.
• At test time, combine the opinions

from ten different patches: The
four 224x224 corner patches plus
the central 224x224 patch plus the
reflections of those five patches.

• Use “dropout” to
regularize the weights
in the globally
connected layers
(which contain most of
the parameters).
– Dropout means that

half of the hidden units
in a layer are randomly
removed for each
training example.

– This stops hidden units
from relying too much
on other hidden units.

Some more examples
of how well the deep
net works for object
recognition.

The hardware required for
Alex’s net

• He uses a very efficient implementation of convolutional nets on two
Nvidia GTX 580 Graphics Processor Units (over 1000 fast little cores)
– GPUs are very good for matrix-matrix multiplies.
– GPUs have very high bandwidth to memory.
– This allows him to train the network in a week.
– It also makes it quick to combine results from 10 patches at test time.

• We can spread a network over many cores if we can communicate the
states fast enough.

• As cores get cheaper and datasets get bigger, big neural nets will improve
faster than old-fashioned (i.e. pre Oct 2012) computer vision systems.

Finding roads in high-resolution
images

• Vlad Mnih (ICML 2012)
used a non-convolutional net
with local fields and multiple
layers of rectified linear units
to find roads in cluttered
aerial images.
– It takes a large image patch and

predicts a binary road label for
the central 16x16 pixels.

– There is lots of labeled training
data available for this task.

• The task is hard for many reasons:
– Occlusion by buildings trees and cars.
– Shadows, Lighting changes
– Minor viewpoint changes

• The worst problems are incorrect labels:
– Badly registered maps
– Arbitrary decisions about what counts as a

road.
• Big neural nets trained on big image patches

with millions of examples are the only hope.

The best road-
finder on the

planet?

Two ways to average models

• MIXTURE: We can
combine models by
averaging their output
probabilities:

• PRODUCT: We can
combine models by
taking the geometric
means of their output
probabilities:

Model A: .3 .2 .5
Model B: .1 .8 .1
Combined .2 .5 .3

Model A: .3 .2 .5
Model B: .1 .8 .1

Combined .03 .16 .05 /sum

Dropout: An efficient way to
average many large neural nets

(http://arxiv.org/abs/1207.0580)
• Consider a neural net with

one hidden layer.
• Each time we present a

training example, we
randomly omit each hidden
unit with probability 0.5.

• So we are randomly sampling
from 2^H different
architectures.
– All architectures share

weights.

Dropout as a form of model
averaging

• We sample from 2^H models. So only a few
of the models ever get trained, and they
only get one training example.
– This is as extreme as bagging can get.

• The sharing of the weights means that every
model is very strongly regularized.
– It’s a much better regularizer than L2 or L1

penalties that pull the weights towards zero.

But what do we do at test time?

• We could sample many different
architectures and take the geometric mean
of their output distributions.

• It better to use all of the hidden units, but to
halve their outgoing weights.
– This exactly computes the geometric mean of

the predictions of all 2^H models.

What if we have more hidden
layers?

• Use dropout of 0.5 in every layer.
• At test time, use the “mean net” that has all

the outgoing weights halved.
– This is not exactly the same as averaging all the

separate dropped out models, but it’s a pretty
good approximation, and its fast.

• Alternatively, run the stochastic model
several times on the same input.
– This gives us an idea of the uncertainty in the

answer.

What about the input layer?

• It helps to use dropout there too, but with a
higher probability of keeping an input unit.
– This trick is already used by the “denoising

autoencoders” developed by Pascal Vincent,
Hugo Larochelle and Yoshua Bengio.

How well does dropout work?

• The record breaking object recognition net
developed by Alex Krizhevsky uses dropout
and it helps a lot.

• If your deep neural net is significantly
overfitting, dropout will usually reduce the
number of errors by a lot.
– Any net that uses “early stopping” can do better

by using dropout (at the cost of taking quite a
lot longer to train).

• If your deep neural net is not overfitting you
should be using a bigger one!

Another way to think about
dropout

• If a hidden unit knows
which other hidden units
are present, it can co-
adapt to them on the
training data.
– But complex co-

adaptations are likely to go
wrong on new test data.

– Big, complex conspiracies
are not robust.

• If a hidden unit has to
work well with
combinatorially many
sets of co-workers, it is
more likely to do
something that is
individually useful.
– But it will also tend to do

something that is
marginally useful given
what its co-workers
achieve.

Recent Progress on ImageNet
Competition

Deep Learning Revolution
2012: Is deep learning a revolution in artificial
intelligence?

Apple’s Siri virtual personal assistant

Google’s Street View & Self-Driving Car

Google/Facebook/Tweeter/Yahoo Deep
Learning Acquisition

Hinton’s Hand Writing Recognition

CASP10 protein contact map prediction

Accomplishments

• A model for a distribution
over binary vectors
• Probability of a vector, v,
under the model is defined
via an �energy� v

h

wij

cj

bi

hidden layer

visible layer

Instead of attempting to sample from joint
distribution p(v,h) (i.e. p∞), sample from
p1(v,h).

Faster and lower variance in sample. Hinton, Neural Computation(2002)

Hinton, Neural Computation(2002)

j

i

t = 0 t = 1

j

i

Partials of E(v, h) easy to calculate.

Hinton, Neural Computation(2002)

j

i

t = 0 t = 1

j

i

Gradient of the likelihood with respect to wij ≈ the
difference between interaction of vi and hj at time 0 and
at time 1.

Visible
Layer

Hidden
Layer

Hinton, Neural Computation(2002)

j

i

t = 0 t = 1

j

i

Gradient of the likelihood with respect to wij ≈ the
difference between interaction of vi and hj at time 0 and
at time 1.

Visible
Layer

Hidden
Layer

Hinton, Neural Computation(2002)

j

i

t = 0 t = 1

j

i

Gradient of the likelihood with respect to wij ≈ the
difference between interaction of vi and hj at time 0 and
at time 1.

Visible
Layer

Hidden
Layer

Δwi,j = <vi pj
0> - <pi

1pj
1>

ɛ is the learning rate, η is the weight cost, and υ the momentum.

Smaller WeightsGradient Avoid Local Minima

Image
pixels

Lines,
circles,
squares

Face or
not ?

……

Brain Learning

Objective of
Unsupervised
Learning:

Find wi,j to maximize the
likelihood p(v) of visible data

Iterative Gradient
Descent Approach:

Adjust wi,j to increase the
likelihood according to gradient

A Vector of ~400 Features (numbers between 0 and 1)

~400 input nodes

~500 nodes

~500 nodes

~350 nodes

wi,j

…

…

…

…

…

…

…

[0,1]

Hinton and Salakhutdinov, Science, 2006

1. Weights are learned
layer by layer via
unsupervised learning.

2. Final layer is learned as a
supervised neural
network.

3. All weights are fine-
tuned using supervised
back propagation.

…

…

…

…

…

…

…

[0,1]

Hinton and Salakhutdinov, Science, 2006

1. Weights are learned
layer by layer via
unsupervised learning.

2. Final layer is learned as a
supervised neural
network.

3. All weights are fine-
tuned using supervised
back propagation.

Speed up training by
CUDAMat and GPUs

Train DNs with over 1M
parameters in about an
hour

…

…

…

…

…

…

[0,1]

…

LSDEKIINVDF KPSEERVREII

http://www.cs.toronto.edu/~hinton/digits.html
Demo:

Various Deep Learning
Architectures

• Deep belief network
• Deep neural networks
• Deep autoencoder
• Deep convolution networks
• Deep residual network
• Deep recurrent network

Deep Belief Network

Deep
AutoEncoder

Deep Convolutional
AutoEncoder

Deep Convolution Neural
Network

Deep Recurrent Neural Network

An Example of Network
Combination

Deep Residual Network

the rectifier is an activation function defined as

A unit employing the rectifier is also called a rectified linear unit
(ReLU)

Generative-Adversarial Network
(GAN)

Inception Network

Capsule Network

• Prevent from over-fitting
• Prevent units from co-

adapting

• Training: remove randomly
selected units according to a
rate (0.5)

• Testing: multiply all the units
with dropout rate

Deep Learning Tools
• Pylearn2
• Theano
• Caffe
• Torch
• Cuda-convnet
• Deeplearning4j
• Keras

September 20, 2018 Data Mining: Concepts and
Techniques

210

Googles’s
TensorFlow

https://www.tensorflow.org/

TensorFlow™ is an open source software library for
numerical computation using data flow graphs. Nodes in the
graph represent mathematical operations, while the graph
edges represent the multidimensional data arrays (tensors)
communicated between them. The flexible architecture
allows you to deploy computation to one or more CPUs or
GPUs in a desktop, server, or mobile device with a single
API. TensorFlow was originally developed by researchers
and engineers working on the Google Brain Team within
Google's Machine Intelligence research organization for the
purposes of conducting machine learning and deep neural
networks research, but the system is general enough to be
applicable in a wide variety of other domains as well.

Acknowledgements
• Geoffery Hinton’s slides
• Jesse Eickholt’s slides
• Images.google.com

