Statistical Machine Learning
Methods for Bioinformatics

III. Neural Network & Deep
Learning Theory

William and Nancy Thompson Missour1 Distinguished
Professor

Department of Electrical Engineering & Computer Science
University of Missouri

Free for Academic Use. Copyright @ Jianlin Cheng & original sources of some materials.

Classification Problem

Input Output
m—---
Mammal
80 0.1 Bug

Question: How to automatically predict output given input?
Idea: Learn from known examples and generalize to unknown ones.

Data Driven Machine Learning
Approach

Trainin
mins Prediction

Training
Data Model: Map
Data with Input to Output
Labels
Test Data
Input: words of news Training: Build a model (classifier)
Output: politics, sports, entertainment, Test: Test the model

Key idea: L.earn from known data and Generalize to unseen data

Outline

Introduction

Linear regression

Linear Discriminant function (classification) and one
node neural network / perceptron

Multi-layer network

Prevent overfitting & speedup learning & stochastic
gradient descent

Deep neural network
Convolutional neural network
Recurrent neural network

Advanced networks (GAN, inception, capsule, LSTM,
deep auto-encoder)

Deep belief network

Machine Learning

Supervised learning (training with labeled data),
un-supervised learning (clustering un-labeled

data), and semi-supervised learning (use both
labeled and unlabeled data)

Supervised learning: classification and regression
Classification: output 1s discrete value
Regression: output 1s real value

Learning Example: Recognize
Handwriting

ol N\ (/A2
D232 25> 7
36 7949404659
el 772\N7TT1T4&2Y
D8 T8 Lo4g7

Classification: recognize each number
Clustering: cluster the same numbers together
Regression: predict the index of Dow-Jones

Neural Network

* Neural Network can do both supervised
learning and un-supervised learning

* Neural Network can do both regression and
classification

 Neural Network has both statistical and
artificial intelligence roots

History of Neural Networks

1957 — perceptron (Rosenblatt)
1960s — almost died

1980s — neural networks (multi-layer
perceptron)

1990-2000s — fell out of favor
2010s — deep learning (hottest)

Google Scholar

Geoffrey Hinton FOLLOW

Emeritus Prof. Comp Sci, U.Toronto & Engineering Fellow, Google
Verified email at cs.toronto.edu - Homepage

machine learning neural networks artificial intelligence cognitive science computer science

TITLE CITED BY YEAR

L . . *
Learning internal representations by error-propagation 44486 1986
DE Rumelhart, GE Hinton, RJ Williams

Parallel Distributed Processing: Explorations in the Microstructure of ...

*
Learning representations by back-propagating errors 39834 1986
DE Rumelhart, GE Hinton, RJ Williams
Nature 323, 533-536

Imagenet classification with deep convolutional neural networks 28519 2012
A Krizhevsky, | Sutskever, GE Hinton
Advances in neural information processing systems, 1097-1105

Cited by

Citations
h-index
i10-index

5306

2011 2012 2013 2014 2015 2016 2017 2018

All

240261
140
329

VIEW ALL

Since 2013

139376
104
235

40000

30000

20000

10000

Roots of Neural Network

 Artificial intelligence root (neuron science)

 Statistical root (linear regression,
generalized linear regression, discriminant
analysis. This 1s our focus.)

A Typical Cortical Neuron

10! neurons

! { / Dentritic tree Junction
\! AT Dendrite Axon thWCGIl
_) terminal P
/ button / /‘ { necurons
/

Soma (cell body) /

" Nucleus %
N N L7

Myelin sheath

Synapse: control
release chemical
transmitters.

@ 2000 John Wilay & Sons, Igc

Axon: generate
Collect chemical signals Potentials (Fire/not Fire)

A Neural Model

Cell body

Dendrites

L ; T;reshold
-
Ll I

? Axon

—_

—»
weight Summation
‘ 1 , Activation function
I Activation
nput

Adapted from http://www.doc.ic.ac.uk/~nd/surprise_96/journal/vol4/cs11/report.html

Statistics Root: Linear Regression

Example
DATASET
o
¢ inputs outputs
o x, =1 yi=1
® X, =3 y,=2.2
o o - " — ;
we X3 = < V3= <
<1 x,=15 =19
xs=4 5=3.1

Fish length vs. weight?

X: input or predictor
Y: output or response
Goal: learn a linear function E[y|x]

=wx + b.

Adapted from A. Moore, 2003

One Node Neural Network

Output of neuron =Y= f(wl. X1 +w2.X2+b)

https://ujjwalkarn.me/2016/08/09/quick-intro-neural-networks/

Linear Regression

Definition of a linear model:

* y=wx+ b + noise.

 noise ~ N (0, o?), assume ¢ is a constant.
¢ y~N(wx + b, 6?)

» Estimate expected value of y given x (E[y|x]
= wx +b) .

* (1ven a set of data (x;, y;), (x5, V), ..., (x,,
y,), to find the optimal parameters w and b.

Objective Function

2
 Least square error: Z(y, wx; —b)

¢ Maximum leehhood HP(y. | x., w,b)

e Minimizing square
error 1s equivalent to
maximizing likelihood

Maximize Likelihood

N (yi—le-—b)z
202

Hp(yi‘xiawab) H\/27Z'0

1=
Minimize negative log-likelihood:

N (y —WX; b) b)
_1 P(v. , ’b — _1 20? —_ 1 0) _ Wx

og(Q (v, | %, w,b)) og(H W) Z(og(2707) -)
= Z(log(\/27m')+ — " ~b)’)

20"

Note: ¢ 1s a constant.

1-Variable Linear Regression

N
Minimize E = Z (y, —wx, —b)’

_J

i1 Error
OF & N
— = 22(% —wx;, —Db)*(=x;) = ZZ(—yixl. +wx. +bx,)=0
aW i=1 i=1
OF &

—Zz(y —wx, —b)*(=1) = Z2(y+wx +5)=0

N
:Z”l Ny 2 (v —wx,)
fo—Nxx b=-+= N

w

Multivariate Linear Regression

* How about multiple predictors: (x;, x,, ...,
Xy)-

* Y=WeT WiX1T WoXyt ... T WXy T €

« For multiple data points, each data point 1s

represented as (v, x;), x; consists of d
predictors (xi;, X5, ..., Xig)-

C ViTWoT WX T WpXpp T ... T WX T €

A Motivating Example

« Each day you get lunch at the cafeteria.
— Your diet consists of fish, chips, and beer.
— You get several portions of each
« The cashier only tells you the total price of the meal

— After several days, you should be able to figure out the price of
each portion.

* Each meal price gives a linear constraint on the prices of the
portions:

price = ‘xﬁsh Wﬁsh T X T xbeerwbeer

chips cths

G. Hinton, 2006

Matrix Representation

n data points, d dimension

/y1\ (1 A1 e Xy \ /Wo\
1 x e X w
Y _ 21 2d | |,
\yn/ \1 xnl xnd/ \Wd/
n*1 n*(d+1) (d+1)*1

Matrix Representation: Y = XW+e¢

Multivariate Linear Regression

Goal: minimize square error = (Y-XW)!(Y-
XW)=Y'Y -2XTWY + WIXTXW
Derivative: -2X'Y +2XIXW =0

W = (XTX)1XTY

Thus, we can solve linear regression using

matrix inversion, transpose, and
multiplication.

Difficulty and Generalization

Numerical computation issue. (a lot data
points. Matrix inversion 1s impossible.)

Singular matrix (determinant 1s zero) : no
Inversion

How to handle non-linear data?

Turns out neural network and its iferative
learning algorithm can address this
problem.

Graphical Representation:

One Layer Neural Network for Regression
Target: y

O

Activation function fis used
to convert a to output. Here

Output Unit . : .
P 1t 1s a linear function. o = a.

a ZZWixi D ACth&thl’l

Input Unit B) e

Gradient Descent Algorithm

 For adatax = (x,x,,...xy), error E = (y — 0)? =

(V= WoXg = WX = ... - Wexg)®
e Partial derivative: ve| - S—E = 2(y—0) aa—" =2(y—0)(—x,) = —2(y - 0)x,
’ | |
. Minima
Error
Update rule:
OF (¢+1)

Sw w +n(y—o)x,

l

Famous Delta Rule

Algorithm of One-Layer Regression
Neural Network

* Initialize weights w (small random numbers)
* Repeat

Present a data point x = (x,,x,,...,X4) to the network
and compute output o.

if y > o, add #x; to w;
if y <o, add -nx; to w..

 Until X(y,-0,)? is zero or below a threshold or
reaches the predefined number of iterations.

Comments: online learning: update weight for every x. batch learning:
update weight every batch of x (1.e. Znx;).

Graphical Representation:
One Layer Neural Network for Regression

Output Target: y

Output Unit O =f(Zw.x,), f1s activation
function.
a ZZWixi<—— ACth&thl’l

Input Unit B) e

What about Hyperbolic Tanh
Function for Output Unit

 (Can we use activation function

other than linear function? t:nm J
« For instance, if we want to /
limit the output to be 1n [-1, 051
+1], we can use hyperbolic "
Tanh function: Y
et —e
ofs|
e +e
e The only thing to change 1s to —" 4|

use the new gradient.

Two-Category Classification

Two classes: C, and C..
Input feature vector: x.

Define a discriminant function y(x) such
that x 1s assigned to C, 1f y(x) > 0 and to
class C, 1f y(x) <O.

Linear discriminant function: y(x) = wlx +
wy,= wix, where x = (1, x).

w: weight vector, w,: bias.

A Linear Decision Boundary 1n 2-D
Input Space

x2t w: orientation of decision boundary
\ o MO defines the position of the plan
in terms of its perpendicular distance
from the origin.

\ x1
| yx)=wlx+w,=0

N I= i wll = wo / Iwl]

Graphical Representation: Perceptron, One-
Layer Classification Neural Network

wix > 0: +1, class 1
-»y=g(wlx) wTx <0: -1, class 2
(threshold function)

Activation /_ _ _ _ _ _ _ _ _ _ _ _
Transfer function

Activation

Input Unit

Perceptron Criterion

Minimize classification error
Input data (vector): x!, x%, ..., xN and
corresponding target value ¢!, £, ..., .

Goal: forallxin C, (z=1), wlx> 0, for all x in
C,(t=-1), wix <0. Or for all x: wlxt > 0.

Error (loss): Erere (wy=2"'*"" . Mis the
set of misclassified data points.

Gradient Descent

Minima
Error

For each misclassified data point, adjust weight as follows:

W=Ww - F x n =w+nxt"

ow

Perceptron Algorithm

* Initialize weight w
* Repeat
For each data point (x",)
Classify each data point using current w.
If wix"t* > 0 (correct), do nothing
If wix"" <0 (wrong), w"” = w + yx"t"
w = WI’Z@W
« Until w 1s not changed (all the data will be

separated correctly, 1f data 1s linearly separable) or
error 1s below a threshold.

Rosenblatt, 1962

Perceptron Convergence Theorem

* For any data set which 1s linearly separable,
the algorithm 1s guaranteed to find a
solution 1n a finite number of steps
(Rosenblatt, 1962; Block 1962; Nilsson,
1965; Minsky and Papert 1969; Duda and
Hart, 1973; Hand, 1981; Arbib, 1987; Hertz
et al., 1991)

Perceptron Demo

* https://www.youtube.com/watch?v=vGwemZ
hPIsA

Limitation of the Perceptron

 Can’ tnot separate non-linear data
completely.

e Or can’ tnot fit non-linear data well.

* Two directions to attack the problem: (1)
extend to multi-layer neural network (2)
map data into high dimension (SVM
approach)

Exclusive OR Problem

Cl 2
/ / ‘(1,1)

Perceptron (or one-layer
neural network) can not
learn a function to separate
the two classes perfectly.

Logistic Regression

Estimate posterior distribution: P(C, |x)

Dose — response estimation: 1in bioassay, the
relation between dose level and death rate
P(death | x).

We can not use 0/1 hard classification.

We can not use unconstrained linear
regression because P(death | x) must be 1n

10,17

0 O 0 0@ @ @ @ ©
: = = W s N O W

Logistic Regression and One Layer
Neural Network With Sigmoid

1

P(death | x) =

(Sigmoid function)

—

[+e "

Function. Target: t (0 or 1)
y

Activation
Function:
sigmoid

f/

Activation z = Xw X,

How to Adjust Weights?

« Minimize error E=(¢-y)?. For simplicity, we derive
the formula for one data point. For multiple data
points, just add the gradients together.

OE OF 0y oz
= =-2(t— 1-y)x,
ow Oy 0z ow (t—y)yd-y)x,
1
o() | |

. 0 ~z
Notice: 2 =_lte” _ —(1-
e

Oz Oz 1+

1 —)=y(-y)
+e

Error / Loss Function and
Learning

e Least Square

e Maximum likelihood: output y 1s the probability of
being in C, (t=1). 1- y 1s the probability of being in
C,. So what is probability of P(tjx) = y'(1-y)!-.

e Maximum likelihood 1s equivalent to minimize
negative log likelithood:
E = -log P(t|x) = -tlogy - (1-t)log(1-y). (cross/
relative entropy)

How to Adjust Weights?

 Minimize error E= -tlogy - (1-1)log(1-y). For
simplicity, we derive the formula for one data
point. For multiple data points, just add the
gradients together.

OF t 11—t t t-1 —1
= (==

a y l-y y 1=y y(1-y)

ok OEoy oz y-—t
ow, o0y ozow, y(l-y)

y(Il=y)x, =(y—-1)x,

Update rule: Wl.(Hl) = Wl.t +n(t—y)x,

Multi-Class Logistic Regression

» Transfer (or activation) function is normalized a

exponentials (or soft max) e
Y1 Ye A
>
...... =

Activation Function

W4 Z Wij *
‘ Actlvatlon to Node O,

How to learn this network? Once again, gradient descent.

Questions?

* Is logistic regression a linear regression?

* Can logistic regression handle non-linearly
separable data?

 How to introduce non-linearity?

Neural Network Approach

Multi-Layer Perceptrons

In addition to mput nodes and output nodes, some
hidden nodes between input / output nodes are
introduced.

Use hidden units to learn internal features to
represent data. Hidden nodes can learn internal
representation of data that are not explicit in the
input features.

Transter function of hidden units are non-linear
function

Multi-Layer Perceptron

» Connections go from lower layer to higher layer.
(usually from input layer to hidden layer, to output layer)

« Connection between mput/hidden nodes, imnput/output
nodes, hidden/hidden nodes, hidden/output nodes are
arbitrary as long as there 1s no loop (must be feed-
forward).

 However, for simplicity, we usually only allow
connection from input nodes to hidden nodes and from
hidden nodes to output nodes. The connections with a
layer are disallowed.

Multi-Layer Perceptron

* Two-layer neural network (one hidden and one
output) with non-linear activation function 1s a
universal function approximator (see Baldi and
Brunak 2001 or Bishop 96 for the proof), 1.e. 1t can
approximate any numeric function with arbitrary
precision given a set of appropriate weights and
hidden units.

 In early days, people usually used two-layer (or
three-layer 1f you count the input as one layer)
neural network. Increasing the number of layers was
occasionally helpful.

« Later expanded into deep learning with many
layers!!!

Two-Layer Neural Network

y. Output
Activation function: f (linear,sigmoid, softmax)
Activation of unit a,:

k
v
WwW,.Z .
) Z ki< J
kJ \ j=0

% Activation function: g (linear, tanh, sigmoid)

d
2 Wi,
i=0
M d
Xy Vi :f(zwlg'xg(zwjixi))
j=0 i=0

Y1

Z

Activation of unit a;:

Adjust Weights by Training

How to adjust weights?
Adjust weights using known examples
(training data) (x;,x,,X3,...,.X4,t).

Try to adjust weights so that the difference
between the output of the neural network y
and t (target) becomes smaller and smaller.

Goal i1s to minimize Error (difference) as we
did for one layer neural network

Adjust Weights using Gradient
Descent (Back-Propagation)

Known:
Data: (x,x,x;,...,x,) targett.

Unknown weights w:

Error

Randomly initialize weights
Repeat
for each example, compute output y
calculate error E = (y-1)?
compute the derivative of £ over w: dw=

— _ x
Whew Wp;ev Ui dw

Until error doesn t decrease or max num of iterations

OE

ow

Minima

Note: 7 1s learning rate or step size.

Insights

 We know how to compute the derivative of one
layer neural network? How to change weights
between input layer and hidden layer?

* Should we compute the derivative of each w
separately or we can reuse intermediate results?
We will have an efficient back-propagation
algorithm.

* We will derive learning for one data example. For
multiple examples, we can simply add the
derivatives from them for a weight parameter
together.

Neural Network Learning: Two
Processes

* Forward propagation: present an example
(data) into neural network. Compute
activation into units and output from units.

* Backward propagation: propagate error
back from output layer to the input layer
and compute derivatives (or gradients).

Forward Propagation
Output 1)’k

Y1 Yk Ve

Activation function: f (linear,sigmoid, softmax)

Activation Of unit a,.
k* E

J=l

1

e
L :] : :
Activation function: g (linear, tanh, sigmoid)

d
Z Wik

i=1

2, §\ z

Activation of unit a;:

Time complexity?
O(dM + MC) = O(W)

Neural Network Calculations are
essentially matrix operations

Layer 1: XW, = A,
Layer2: f(A) =Z

Layer3: ZW, = A,
Y =1(A,)

.l'\

Tenso

: c ¥
Backward Propagation = #-3Xo-w

oF /
=V L

Yk Ye

E OE |
i == (1) (@) =5,
ak:ZIijZj ay Vi 04y

™ 8E O oa, - l

- — 5.z
' z ow, oa, ow, *
) Oa, 450y, 0a, 0z, 0a, 4= =~ "7 ' /
ar Yw,x, 1
' - OF _OE"0a; _
0 o ~ = 0%
w, oa, Owji

X4

Time complexity?
If no back-propagation, time O(CM+Md) = O(W)
complexity 1s: (MdC+CM)

Example E=Liyp_py
Y 2 '
flinear function S5 = OF — ok Oy =(y—1)
a: Oa, Oy Oa,
OE l

g is sigmoid: —— = (g j

M ow .
aj:izz;wjixi / l
5j = 5ng'(aj) = (y_t)wjzj(l _Zj)
|

oF
= 5jxl. = (y—t)wjzj(l—zj)xl.

Wji

Algorithm

 Initialize weights w
 Repeat
For each data point x, do the following:
Forward propagation: compute outputs and activations

Backward propagation: compute errors for each output units
and hidden units. Compute gradient for each weight.

Update weight w=w - (OE / 0w)

e Until a number of iterations or errors drops below a
threshold.

Implementation Issue

What should we store?
An mput vector x of d dimensions

A M*d matrix {w;} for weights between input and hidden
units

An activation vector of M dimensions for hidden units
An output vector of M dimensions for hidden units

A C*M matrix {w,;{ for weights between hidden and
output units

An activation vector of C dimensions for output units
An output vector of C dimensions for output units
An error vector of C dimensions for output units

An error vector of M dimensions for hidden units

Recurrent Network

Forward:
At time 1: present X1, 0
At time 2: present X2, y1

Backward:

Time t: back-propagate

Time t-1: back-propagate with

°°°°°° Output errors and errors from previous step

Example of Overfitting and Good Fitting

Overfitting

Good fitting

Overfitting function can not generalize well to unseen data.

Preventing Overfitting

* Use a model that has the right capacity:
— enough to model the true regularities

— not enough to also model the spurious regularities
(assuming they are weaker).

» Standard ways to limit the capacity of a neural
net:
— Limit the number of hidden units.
— Limit the size of the weights.
— Stop the learning before 1t has time to overfit.

G. Hinton, 2006

Limiting the Size of the Weights

* Weight-decay involves C=F+ 4 Y Wi2
adding an extra term to 2
the cost function that oC OFE
penalizes the squared = + Aw;
weights. ow; oW,
— Keeps weights small
unless they have big error oC | OF
when — =0, w;=-
ow; A ow;

G. Hinton, 2006

The Effect of Weight-Decay

It prevents the network from using weights that 1t
does not need.
— This can often improve generalization a lot.
— It helps to stop 1t from fitting the sampling error.

— It makes a smoother model in which the output changes
more slowly as the input changes.

 If the network has two very similar imnputs it
prefers to put half the weight on each rather than
all the weight on one.

o o
W/7 wW/2 v/ 0
@ 9 G. Hinton, 2006

Deciding How Much to Restrict the
Capacity
e How do we decide which limit to use and how

strong to make the limit?

— If we use the test data we get an unfair prediction
of the error rate we would get on new test data.

— Suppose we compared a set of models that gave
random results, the best one on a particular dataset
would do better than chance. But 1t wont do better
than chance on another test set.

* So use a separate validation set to do model
selection.

G. Hinton, 2006

Using a Validation Set

 Divide the total dataset into three subsets:

— Training data 1s used for learning the parameters of
the model.

— Validation data 1s not used of learning but 1s used
for deciding what type of model and what amount
of regularization works best.

— Test data 1s used to get a final, unbiased estimate
of how well the network works. We expect this
estimate to be worse than on the validation data.

* We could then re-divide the total dataset to get
another unbiased estimate of the true error rate.

G. Hinton, 2006

Preventing Overfitting by Early
Stopping

« If we have lots of data and a big model, its very expensive
to keep re-training it with different amounts of weight
decay.

It 1s much cheaper to start with very small weights and let
them grow until the performance on the validation set
starts getting worse (but don’ t get fooled by noise!)

* The capacity of the model 1s limited because the weights
have not had time to grow big.

G. Hinton, 2006

Why Early Stopping Works

 When the weights are very
small, every hidden unit 1s
in 1ts linear range.

@ @ outputs

— So a net with a large layer
of hidden units is linear.

—

— It has no more capacity than

a linear net in which the ‘ ‘ . ‘ ‘ ‘

inputs are directly
connected to the outputs!
e As the weights grow, the
hidden units start using ®
their non-linear ranges so
the capacity grows.

@ =

iInputs

G. Hinton, 2006

Combining Networks

 When the amount of training data 1s limited, we
need to avoid overfitting.

— Averaging the predictions of many different networks 1s
a good way to do this.

— It works best 1f the networks are as different as
possible.

— Combining networks reduces variance

 If the data 1s really a mixture of several different
“regimes’ it is helpful to identify these regimes
and use a separate, simple model for each regime.

— We want to use the desired outputs to help cluster cases
into regimes. Just clustering the mputs 1s not as
efficient.

G. Hinton, 2006

How the Combined Predictor
Compares with the Individual
Predictors

* On any one test case, some individual predictors will
be better than the combined predictor.

— But different individuals will be better on different cases.

 If the individual predictors disagree a lot, the
combined predictor is typically better than all of the
individual predictors when we average over test
cases.

— So how do we make the individual predictors disagree?
(without making them much worse individually).

G. Hinton, 2006

Ways to Make Predictors Differ

* Rely on the learning algorithm getting stuck 1n a
different local optimum on each run.

— A dubious hack unworthy of a true computer scientist (but
definitely worth a try).

 Use lots of different kinds of models:

— Different architectures
— Different learning algorithms.

» Use different training data for each model:

— Bagging: Resample (with replacement) from the training
set: a,b,c.de -~accdd

— Boosting: Fit models one at a time. Re-weight each training
case by how badly it 1s predicted by the models already
fitted.

» This makes efficient use of computer time because it does not
bother to “back-fit” models that were fitted earlier.
G. Hinton, 2006

How to Speedup Learning?

The Error Surface for a Linear Neuron
* The error surface lies 1n a space with a horizontal axis
for each weight and one vertical axis for the error.

— It is a quadratic bowl.

* 1.e. the height can be expressed as a function of the weights without
using powers higher than 2. Quadratics have constant curvature
(because the second derivative must be a constant)

— Vertical cross-sections are parabolas. G. Hinton, 2006

— Horizontal cross-sections are ellipses

1 T

E w1

Convergence Speed

The direction of steepest — The gradient is small in the
descent does not point at direction in which we want
the minimum unless the to travel a large distance.
ellipse 1s a circle. OF

— The gradient is big in the AWi =—¢&

direction in which we an-

only want to travel a
small distance.

This equation 1s sick.

G. Hinton, 2006

How the Learning Goes Wrong

 If the learning rate is big,
1t sloshes to and fro across
the ravine. If the rate is too
big, this oscillation
diverges. E

—_—

* How can we move quickly
in directions with small
gradients without getting
divergent oscillations in
directions with big
gradients?

G. Hinton, 2006

Five Ways to Speed up Learning

Use an adaptive global learning rate

— Increase the rate slowly if its not diverging

— Decrease the rate quickly if it starts diverging
Use separate adaptive learning rate on each connection

— Adjust using consistency of gradient on that weight axis
Use momentum

— Instead of using the gradient to change the position of the weight
“particle”, use it to change the velocity.

Use a stochastic estimate of the gradient from a few cases
— This works very well on large, redundant datasets.

G. Hinton, 2006

The Momentum Method

Imagine a ball on the error
surface with velocity v.

— It starts off by following the
gradient, but once 1t has
velocity, 1t no longer does
steepest descent.

* It damps oscillations by
combining gradients with
opposite signs.

e It builds up speed in directions
with a gentle but consistent
gradient.

Aw(t) = v(t)

= Aw(t—l)—gﬁ(t)
ow

G. Hinton, 2006

How to Initialize weights? o

e Use small random
numbers. For instance
small numbers

between [-0.2, 0.2].

e Some numbers are .
positive and some are .
negative. ’

a

| | | | | | | | |
=
| | | | | | | | |

* Why are the mitial
weights should be
small? 1

o
£
|
n
=
n
£
o

Stochastic Gradient Descent

Ensemble, Dropout and Batch
Normalization

Recurrent Neural Networks

Getting targets when modeling sequences

*When applying machine learning to sequences, we often want to turn an input sequence into
an output sequence that lives in a different domain.

— FE. g turn a sequence of sound pressures into a sequence of word identities.

*When there is no separate target sequence, we can get a teaching signal by trying to predict
the next term in the input sequence.

— The target output sequence is the input sequence with an advance of 1 step.

— This seems much more natural than trying to predict one pixel in an image from the
other pixels, or one patch of an image from the rest of the image.

— For temporal sequences there is a natural order for the predictions.

*Predicting the next term in a sequence blurs the distinction between supervised and
unsupervised learning.

— It uses methods designed for supervised learning, but it doesn’t require a separate
teaching signal.

Memoryless models for sequences

Autoregressive models Predict
the next term in a sequence from a
fixed number of previous terms using
“delay taps”.

Feed-forward neural nets These
generalize autoregressive models by
using one or more layers of non-
linear hidden units.

-2

Wil

input(t-2)

input(t-1)

/n¢

input(t)

hidde

input(t-2)

input(t-1)

input(t)

Beyond memoryless models

» If we give our generative model some hidden state,
and 1f we give this hidden state its own internal
dynamics, we get a much more interesting kind of
model.

— It can store information in its hidden state for a
long time.

— If the dynamics 1s noisy and the way 1t generates
outputs from 1ts hidden state 1s noisy, we can never
know its exact hidden state.

— The best we can do 1s to infer a probability
distribution over the space of hidden state vectors.

e This inference 1s only tractable for two types of
hidden state model.

Linear Dynamical Systems (engineers love them!)

* These are generative models.
They have a real-valued hidden
state that cannot be observed
directly.

— The hidden state has linear dynamics with Gaussian

noise and produces the observations using a linear model
with Gaussian noise.

* To predict the next output (so that
we can shoot down the missile)
we need to infer the hidden state.

— A linearly transformed Gaussian is a Gaussian. So the
distribution over the hidden state given the data so far is
Gaussian. It can be computed using “Kalman filtering”.

time =2
@) @) @)
c c c
— — —
© © ©
c c c
— — —
5 3. S 3. > I,
o o o
o Q Q
D (¢)))
ERAIEREAER
c S ||le & || <.
—~ 3 -~ 3 —_~ 3
(@) «© (@)

Hidden Markov Models (computer scientists love them!)

Hidden Markov Models have a discrete
one-of-N hidden state. Transitions
between states are stochastic and
controlled by a transition matrix. The
outputs produced by a state are stochastic.

— We cannot be sure which state
produced a given output. So the state
1s “hidden”.

— It 1s easy to represent a probability
distribution across N states with N
numbers.

To predict the next output we need to
infer the probability distribution over
hidden states.

— HMMs have efficient algorithms for
inference and learning.

ndino

ndino

ndino

OO0 @O

®@ OO0

000 @

time =2

A fundamental limitation of HMMs

* Consider what happens when a hidden Markov
model generates data.

— At each time step it must select one of its hidden states. So with N hidden
states it can only remember log(N) bits about what it generated so far.

e Consider the information that the first half of
an utterance contains about the second half:

— The syntax needs to fit (e.g. number and tense agreement).
— The semantics needs to fit. The intonation needs to fit.
— The accent, rate, volume, and vocal tract characteristics must all fit.

* All these aspects combined could be 100 bits
of information that the first half of an utterance
needs to convey to the second half. 24100 1s
big!

Recurrent neural networks

time -
 RNNSs are very powertul,

. ®) o o
becaus§ they combine two % é’ %
properties: ~ ~ ~

— Distributed hidden state that ey |y [
allows them to store a lot of > % b % > %
information about the past
efficiently. 1 ! |

— Non-linear dynamics that allows 3| |2 e

them to update their hidden state
in complicated ways.

* With enough neurons and time,
RNNs can compute anything
that can be computed by your
computer.

Do generative models need to be

stochastic?
e Linear dynamical * Recurrent neural
systems and hidden networks are
Markov models are deterministic.
stochastic models. — So think of the hidden
— But the posterior state of an RNN as the
probability distribution equivalent of the
over their hidden states deterministic probability
given the observed data distribution over hidden
so far is a deterministic states in a linear
function of the data. dynamical system or

hidden Markov model.

Recurrent neural networks
 What kinds of behaviour can RNNs exhibit?

— They can oscillate. Good for motor control?

— They can settle to point attractors. Good for retrieving
memories?

— They can behave chaotically. Bad for information
processing?

— RNNs could potentially learn to implement lots of small
programs that each capture a nugget of knowledge and run
in parallel, interacting to produce very complicated effects.

* But the computational power of RNNs makes them
very hard to train.
— For many years we could not exploit the computational

power of RNNs despite some heroic efforts (e.g. Tony
Robinson’s speech recognizer).

The equivalence between feedforward nets and recurrent nets

0

O Ot—l 0 Ot+1

Y w v s v s VTS

Oy =) 05050
Unfold

U TU TU U

X X, X, %

The recurrent net is just a
layered net that keeps reusing
the same weights.

An Example

Recurrent Neural Network Feed-Forward Neural Network

Reminder: Backpropagation with weight constraints

It 1s easy to modify the
backprop algorithm to
Incorporate linear constraints
between the weights.

We compute the gradients as
usual, and then modify the
gradients so that they satisfy
the constraints.
— So if the weights started off
satisfying the constraints,

they will continue to satisfy
them.

To constrain: w;=w,

we need: Aw; =Aw,

oE OE
compute: —— and ——
8W1 8W2
use 22 + OE for wy and wy

@Wl 6W2

Backpropagation through time

* We can think of the recurrent net as a layered,
feed-forward net with shared weights and then
train the feed-forward net with weight
constraints.

* We can also think of this training algorithm in
the time domain:

— The forward pass builds up a stack of the
activities of all the units at each time step.

— The backward pass peels activities off the
stack to compute the error derivatives at each
time step.

— After the backward pass we add together the
derivatives at all the different times for each
weight.

An 1rritating extra 1ssue

We need to specify the initial activity state of all the hidden and
output units.

We could just fix these initial states to have some default value
like 0.5.

But it 1s better to treat the 1nitial states as learned parameters.
We learn them 1n the same way as we learn the weights.
— Start off with an initial random guess for the 1nitial states.

— At the end of each training sequence, backpropagate through
time all the way to the 1nitial states to get the gradient of the
error function with respect to each initial state.

— Adjust the mitial states by following the negative gradient.

A good toy problem for a recurrent

e We can train a feedforward nQ?otd\oV()rk

binary addition, but there are obvious
regularities that 1t cannot capture
efficiently.

— We must decide in advance the

maximum number of digits in each
number.

— The processing applied to the beginning

of a long number does not generalize to t t
the end of the long number because

it uses different weights.
e As aresult, feedforward nets do not _ _
generalize well on the binary addition
task.

I-}I

The algorithm for binary addition

! <’o 0 1
0 1 noo carry 0 ca.rry 1
print 1 print 1

g
10 0 0 I 10
ot 0 11 01
no carry ™\ >~ carry
0 print 0 1 print 0 0 > |
0 1 170

This 1s a finite state automaton. It decides what transition to make by
looking at the next column. It prints after making the transition. It moves
from right to left over the two input numbers.

A recurrent net for binary addition

e The network has two input units and
one output unit.

« [tis given two input digits at each time 00110100
step.

» The desired output at each time step is 01001101
the output for the column that was
provided as input two time steps ago. 10000001

— It takes one time step to update the
hidden units based on the two input
digits.

— It takes another time step for the
hidden units to cause the output.

- time

The connectivity of the network

The 3 hidden units are
fully interconnected in
both directions.

— This allows a hidden
activity pattern at one time
step to vote for the hidden
activity pattern at the next
time step.

The input units have
feedforward connections
that allow then to vote for
the next hidden activity
pattern.

O
1

3 fully interconnected hidden units

1

What the network learns

e [t learns four distinct

patterns of activity for the
3 hidden units. These
patterns correspond to the
nodes 1n the finite state
automaton.

— Do not confuse units 1n a
neural network with nodes
1n a finite state automaton.
Nodes are like activity
vectors.

— The automaton 1s restricted
to be 1n exactly one state at
each time. The hidden units
are restricted to have
exactly one vector of
activity at each time.

A recurrent network can

emulate a finite state
automaton, but it 1s
exponentially more
powerful. With N hidden
neurons 1t has 2N
possible binary activity
vectors (but only N*2
weights)

— This 1s important when the
input stream has two
separate things going on at
once.

— A finite state automaton

needs to square 1ts number
of states.

— An RNN needs to double
1ts number of units.

The backward pass 1s linear

* There 1s a big difference between
the forward and backward passes.

* In the forward pass we use
squashing functions (like the
logistic) to prevent the activity
vectors from exploding.

* The backward pass, 1s completely
linear. If you double the error
derivatives at the final layer, all
the error derivatives will double.

— The forward pass determines the
slope of the linear function used for
backpropagating through each
neuron.

The problem of exploding or
vanishing gradients

* What happens to the magnitude of * In an RNN trained on long

the gradients as we backpropagate sequences (e.g. 100 time steps) the
through many layers? gradients can easily explode or
— If the weights are small, the gradients vanish.
shrink exponentially. — We can avoid this by initializing the
— If the weights are big the gradients weights very carefully.
grow exponentially. « Even with good initial weights, its
* Typical feed-forward neural nets very hard to detect that the current
can cope with these exponential target output depends on an input
effects because they only have a from many time-steps ago.
few hidden layers. — So RNNs have difficulty dealing with

long-range dependencies.

Four effective ways to learn an
RNN

Long Short Term Memory

Make the RNN out of little modules
that are designed to remember values
for a long time.

Hessian Free Optimization: Deal
with the vanishing gradients problem
by using a fancy optimizer that can
detect directions with a tiny gradient
but even smaller curvature.

— The HF optimizer (Martens &
Sutskever, 2011) is good at this.

Echo State Networks: Initialize the
input—>hidden and hidden->hidden and
output->hidden connections very carefully so
that the hidden state has a huge reservoir of
weakly coupled oscillators which can be
selectively driven by the input.

— ESNSs only need to learn the
hidden—> output connections.

Good 1nitialization with momentum
Initialize like in Echo State Networks, but
then learn all of the connections using
momentum.

Long Short Term Memory
(LSTM)

* Hochreiter & Information gets into
Schmidhuber (1997) the cell whenever its
solved the problem of “write” gate 1s on.
getting an RNNto * The information stays in
remember things for a the cell so long as 1ts
long time (like hundreds “keep” gate is on.
of time st.eps). e Information can be read

* They designed a from the cell by turning
memory cell using on its “read” gate.

logistic and linear units
with multiplicative
interactions.

To preserve information for a long
time 1n the activities of an RNN, we
use a circuit that implements an
analog memory cell.

Implementing a memory cell 1in a
neural network

A linear unit that has a self-link with a
weight of 1 will maintain its state.

Information is stored in the cell by
activating its write gate.

Information is retrieved by activating the
read gate.

We can backpropagate through this output to
circuit because logistics are have nice rest of RNN

derivatives.

Backpropagation through a

4» é %3 é

tlme 9

A simple LSTM block with only
input, output, and forget gates

https://ipfs.io/ipfs/QmXoypizjW3WknFiJnKLWHCnL
/2vedxjQkDDP1mXWo6uco/wiki/Long_short-
term_memory.html

A Simple LSTM Network

Example

f't—1

memaqry blocks

Another Example

Previous Current
cell state ¢ cell state
Previous h Current

cell output * cell output

Reading cursive handwriting

 This 1s a natural task for

an RNN.

The input 1s a sequence
of (x,y,p) coordinates of
the tip of the pen, where
p indicates whether the
pen 1s up or down.

The output 1s a sequence
of characters.

 Graves & Schmidhuber

(2009) showed that
RNNs with LSTM are
currently the best
systems for reading
cursive writing.

— They used a sequence of
small images as input
rather than pen
coordinates.

A demonstration of online handwriting recognition by an
RNN with Long Short Term Memory (from Alex Graves)

Tp&y\g{eg‘ 1w TO M\q PC{\/PU\[
Now oV | ol 1@“ tjow\ LcﬂL

SHOW ALEX GRAVES” MOVIE

https://www.cs.toronto.edu/~graves/

How to generate character strings

from the model

Start the model with its default hidden state.

Give 1t a “burn-1n” sequence of characters and let 1t update its
hidden state after each character.

Then look at the probability distribution it predicts for the next
character.

Pick a character randomly from that distribution and tell the
net that this was the character that actually occurred.

— 1.e. tell 1t that 1ts guess was correct, whatever 1t guessed.
Continue to let 1t pick characters until bored.

Look at the character strings it produces to see what it
“knows”.

He was elected President during the Revolutionary
War and forgave Opus Paul at Rome. The regime
of his crew of England, is now Arab women's icons
In and the demons that use something between
the characters’ sisters in lower coil trains were
always operated on the line of the ephemerable
street, respectively, the graphic or other facility for
deformation of a given proportion of large
segments at RTUS). The B every chord was a
"strongly cold internal palette pour even the white
blade.”

Some completions produced by
the model

Sheila thrunges (most frequent)
People thrunge (most frequent next character 1s space)

Shiela, Thrungelini del Rey (first try)
The meaning of life is literary recognition. (6 try)

The meaning of life 1s the tradition of the ancient human
reproduction: it 1s less favorable to the good boy for when
to remove her bigger. (one of the first 10
tries for a model trained for longer).

What does 1t know?

It knows a huge number of words and a lot about proper names,
dates, and numbers.

It 1s good at balancing quotes and brackets.
— It can count brackets: none, one, many

It knows a lot about syntax but its very hard to pin down exactly
what form this knowledge has.

— Its syntactic knowledge 1s not modular.
It knows a lot of weak semantic associations

— E.g. it knows Plato is associated with Wittgenstein and cabbage is
associated with vegetable.

RNNs for predicting the next
word

* Tomas Mikolov and his collaborators have recently
trained quite large RNNs on quite large training sets
using BPTT.

— They do better than feed-forward neural nets.
— They do better than the best other models.

— They do even better when averaged with other models.

* RNNs require much less training data to reach the
same level of performance as other models.

 RNNs improve faster than other methods as the dataset
gets bigger.

— This 1s going to make them very hard to beat.

Problem of Traditional Neural
Network

Vanishing gradients = shallow network
Exploding gradient
Cannot use unlabeled data

Hard to understand the relationship between
input and output

Cannot generate data

Deep Network Versus Shallow
Network

* With the same number of weights, deep

network 1s more expressive than shallow
network

* Deep network generalizes better than
shallow network

* So should we go deep?

How to go deep?

Rel.u activation function
Residual network

Weight sharing (reduce number of
parameters)

Long- and Short-Memory network

* Big Data

M
m‘?
 Deep Learning @

?@

‘h

Deep Learning Network

Convolutional Neural Network

The replicated feature approach for
hand writing recognition

(currently the dominant approach for neural networks)
« Use many different copies of the same ¢ red connections
feature detector with different all have the samge
positions. wel

— Could also replicate across scale and
orientation (tricky and expensive)

— Replication greatly reduces the number of
free parameters to be learned.
« Use several different feature types, each
with its own map of replicated
detectors.

— Allows each patch of image to be
represented in several ways.

Backpropagation with weight
constraints

* It’s easy to modify the
backpropagation algorithm
to incorporate linear
constraints between the
weights.

 We compute the gradients
as usual, and then modify
the gradients so that they
satisfy the constraints.

— So 1f the weights started
off satisfying the
constraints, they will

continue to satisfy them.

To constrain: w;=w,

we need: Aw;=Aw,

oE oE
compute. — and —

dwy oW,

E OE
use ’ + ’ for w; and w,

dw; ow,

What does replicating the feature

detectors achieve?
« Equivariant activities: Replicated features do not
make the neural activities invariant to translation. The
activities are equivariant.

representation translated_
by active representation
neurons
_ translated
image :
image

 Invariant knowledge: If a feature is useful in some
locations during training, detectors for that feature will
be available in all locations during testing.

Pooling the outputs of replicated
feature detectors

« Get a small amount of translational invariance at
each level by averaging four neighboring replicated
detectors to give a single output to the next level.

— This reduces the number of inputs to the next
layer of feature extraction, thus allowing us to
have many more different feature maps.

— Taking the maximum of the four works slightly
better.

* Problem: After several levels of pooling, we have lost
information about the precise positions of things.

— This makes it impossible to use the precise spatial
relationships between high-level parts for
recognition.

Le Net

e Yann LeCun and his collaborators developed a really
good recognizer for handwritten digits by using
backpropagation in a feedforward net with:

— Many hidden layers
— Many maps of replicated units in each layer.
— Pooling of the outputs of nearby replicated units.

— A wide net that can cope with several characters at
once even 1f they overlap.

— A clever way of training a complete system, not
just a recognizer.

* This net was used for reading ~10% of the checks in
North America.

e Look the impressive demos of LENET at
http://yann.lecun.com

[.eNet Demo

http://yann.lecun.com/exdb/lenet/index.html

How LeNet Capture Various
Invariance (Demo)

http://yann.lecun.com/exdb/lenet/rotation.html

The architecture of LeNet5

C3: f. maps 16@10x10
S4: f. maps 16@5x5

C5: layer Fg: jayer OUTPUT
120 gd o 10

C1: feature maps
INPUT 6@28x28

S2: f. maps
6@14x14

l |

s Full coanection 1 Gaussian ¢
Convolutions Subsampling Convolutions Subsampling Full connection

The 82

D 0 . 220
O W0Eca 22827
-t o O ® ©m T =
(qV) oS o « © S
w g 9O n ©
Z 235 togw?
- >
m _..ﬂld.eum an/_ua.m
SgF E2Q2 09
O S8 02 2952
- 263 092
— - —
O3St 295%
(D) Z oo FFaoa
/IR SUL- DR S S S T
wlolelYlialhinliD]
@ﬁ ﬁQwOw * wV/wa,m
SPLIDL VLTI OLN N
Tl i@t od @F i
VI VNI] @) NN
AP IR G
LNV LS =LA O ™
[0 o] ¥] [0 o] Tel ~ un [Te] W
VITOIAI QL 130 ™I
2 el ot Rl f
WP ST AL Rl N
el AT i miti il
INEi DRI 0]RIN
L BN LN P T
[Ty o ™ o o] 9] @ [Ty w®
MOl QINIDIA bl %
(Yo <3 (3] < O ™~ un [0 o] s,

Priors and Prejudice

We can put our prior knowledge
about the task into the network by
designing appropriate:

— Connectivity.

— Weight constraints.

— Neuron activation functions

This is less intrusive than hand-
designing the features.

— But it still prejudices the network
towards the particular way of
solving the problem that we had in
mind.

 Alternatively, we can use

our prior knowledge to
create a whole lot more
training data.

— This may require a lot of work
(Hofman&Tresp, 1993)

— It may make learning take much
longer.

It allows optimization to
discover clever ways of
using the multi-layer
network that we did not
think of.

— And we may never fully understand
how it does it.

The brute force approach

* LeNet uses knowledge
about the invariances
to design:

— the local connectivity
— the weight-sharing
— the pooling.
* This achieves about 80
errors.

— This can be reduced to
about 40 errors by using
many different
transformations of the
iInput and other tricks
(Ranzato 2008)

Ciresan et. al. (2010)
inject knowledge of
Invariances by creating a
huge amount of carefully
designed extra training
data:
— For each training image,
they produce many new
training examples by

applying many different
transformations.

— They can then train a
large, deep, dumb net on a
GPU without much
overfitting.

They achieve about 35
errors.

The errors made by the Ciresan
et. al. net

12 7 1 q JE. T q e %8 The top printed digit is the

17| 71 98 59 79 35 right answer. The bottom two
: 5 4 E 4 2 | =5 printed digits are the
({4 g { c qg . c.! g 99 4 DD 5 5 network’s best two guesses.

Le ‘*b“éﬁwajl . |
16 qg il Ceal ne | sell “ra The rlght answer is almost
¥ I 0 < c P 5 5 IVE ' " always in the top 2 guesses.
X 3 > z = 2 - : d : ; : = With model averaging they
2 |\ AL b° 4 5’ can now get about 25 errors.
60

27 28 70 16 65 94

How to detect a significant drop in

~ the error rate
* Is 30 errors 1n 10,000 test cases significantly

better than 40 errors?

— It all depends on the particular errors!
EEAED - - IR
wrong right wrong rlght
model 2 rtul tha model 2
wrong wrong
model 2 R 9959 model 2 PN 9945
right right

From hand-written digits to 3-D
objects

* Recognizing real objects in color photographs downloaded
from the web 1s much more complicated than recognizing
hand-written digits:

— Hundred times as many classes (1000 vs 10)

— Hundred times as many pixels (256 x 256 color vs 28 x 28 gray)
— Two dimensional image of three-dimensional scene.

— Cluttered scenes requiring segmentation

— Multiple objects in each image.

* Will the same type of convolutional neural network work?

The ILSVRC-2012 competition
on ImageNet

The dataset has 1.2 million high- -
resolution training images.

The classification task:

— Get the “correct” class in your
top 5 bets. There are 1000
classes.

The localization task:

— For each bet, put a box
around the object. Your box
must have at least 50%
overlap with the correct box.

Some of the best existing
computer vision methods were
tried on this dataset by leading
computer vision groups from
Oxford, INRIA, XRCE, ...

— Computer vision systems
use complicated multi-stage
systems.

— The early stages are

typically hand-tuned by
optimizing a few parameters.

Examples from the test set (with the

network’s guesses)

: : t Rt pou cae pleg po s+ hasdonssnes énm 2 .: _
cheetah bullet train hand glass
cheet+h bullet tr4in scissor*
leopard passenger car han+ glass
snow leopard subway train fr+'ing pan
Egyptian cat electric locomotive st+thoscope

University of Toronto (Alex
Krizhevsky)

* 16.4%

Error rates on the ILSVRC-2012

competition

University of Tokyo

Oxford University Computer
Vision Group

INRIA (French national research
institute in CS) + XRCE (Xerox
Research Center Europe)

University of Amsterdam

classification

26.1%
53.6%

26.9%
50.0%

27.0%

29.5%

34.1%

classification
&localization

A neural network for ImageNet

« Alex Krizhevsky (NIPS 2012) ¢ The activation functions

developed a very deep were:
convolutional neural net of — Rectified linear units in every
the type pioneered by Yann hidden layer. These train much

faster and are more expressive
than logistic units.

— Competitive normalization to
suppress hidden activities

Le Cun. Its architecture was:

— 7 hidden layers not counting
some max pooling layers.

— The early layers were when nearby units have
convolutional. stronger activities. This helps
— The last two layers were with variations in intensity.

globally connected.

Tricks that significantly improve

generalization
* Train on random 224x224 » Use “dropout” to

patches from the 256x256 regularize the weights
images to get more data. Also in the globally
iu;gglifst-rlght reflections of the connected | ayers

Attt £ . . (which contain most of

est time, combine the opinions

from ten different patches: The the parameters)-

four 224x224 corner patches plus — Dropout means that

the central 224x224 patch plus the half of the hidden units

reflections of those five patches. :
| vePp In a layer are randomly

removed for each
training example.

— This stops hidden units
from relying too much
on other hidden units.

Some more examples
of how well the deep
net works for object

mite

container ship

motor scooter

mite container ship motor scooter ledpard

black widow lifeboat go-kart jaguar
cockroach amphibian moped cheetah
tick fireboat bumper car ’]_J snow leopard

starfis drilling platform golfcart Egyptian cat

W8
”V/‘% \\‘ R A

- e . R
grille mushroom cherry Madagascar
__convertible agaric dalmatian squirrel monkey
grille mushroom grape spider monkey
pickup jelly fungus elderberry titi
beach wagon gill fungus |ffordshire bullterrier indri
fire engine || dead-man's-fingers currant howler monkey

recognition.

The hardware required for
Alex’'s net

He uses a very efficient implementation of convolutional nets on two
Nvidia GTX 580 Graphics Processor Units (over 1000 fast little cores)
— GPUs are very good for matrix-matrix multiplies.
— GPUs have very high bandwidth to memory.
— This allows him to train the network in a week.
— It also makes it quick to combine results from 10 patches at test time.

We can spread a network over many cores if we can communicate the
states fast enough.

As cores get cheaper and datasets get bigger, big neural nets will improve
faster than old-fashioned (i.e. pre Oct 2012) computer vision systemes.

Finding roads in high-resolution

1Magcs
* Vlad Mnih (ICML 2012) . e task 1s hard for many reasons:
used a non-convolutional net — Occlusion by buildings trees and cars.
with local fields and multiple — Shadows, Lighting changes

layers of rectified linear units
to find roads in cluttered
aerial images.

— Minor viewpoint changes

* The worst problems are incorrect labels:

. — Badly registered maps
— It takes a large image patch and . -
predicts a binary road label for — Arbitrary decisions about what counts as a
the central 16x16 pixels. road.

— There is lots of labeled training * Big neural nets trained on big image patches
data available for this task. with millions of examples are the only hope.

The best road-
finder on the

Two ways to average models

 PRODUCT: We can

« MIXTURE: We can combine models by
combine models by taking the geometric
averaging their output means of their output
probabilities: probabilities:

ModelA: 3 .2 5 ModelA: .3 .2 5
ModelB: .1 .8 .1 ModelB: .1 .8 .1

Combined .2 .5 .3 Combinedv//03/16/05 /sum

Dropout: An efficient way to

average many large neural nets
(http://arxiv.org/abs/1207.0580)

 (Consider a neural net with
one hidden layer.

* Each time we present a
training example, we
randomly omit each hidden
unit with probability 0.5.

* So we are randomly sampling
from 2"H different
architectures.

— All architectures share
weights.

ORR00ORRO

Dropout as a form of model
averaging

 We sample from 2*H models. So only a few
of the models ever get trained, and they
only get one training example.

— This 1s as extreme as bagging can get.
* The sharing of the weights means that every
model 1s very strongly regularized.

— It’s a much better regularizer than L2 or L1
penalties that pull the weights towards zero.

But what do we do at test time?

* We could sample many different
architectures and take the geometric mean
of their output distributions.

It better to use all of the hidden units, but to
halve their outgoing weights.

— This exactly computes the geometric mean of
the predictions of all 2*H models.

What 1f we have more hidden
layers?
* Use dropout of 0.5 1n every layer.
o At test time, use the “mean net” that has all

the outgoing weights halved.

— This 1s not exactly the same as averaging all the
separate dropped out models, but it’s a pretty
good approximation, and its fast.

* Alternatively, run the stochastic model
several times on the same 1nput.

— This gives us an 1dea of the uncertainty 1n the
answer.

What about the input layer?

* It helps to use dropout there too, but with a
higher probability of keeping an input unit.
— Thus trick 1s already used by the “denoising

autoencoders” developed by Pascal Vincent,
Hugo Larochelle and Y oshua Bengio.

How well does dropout work?

* The record breaking object recognition net
developed by Alex Krizhevsky uses dropout
and 1t helps a lot.

 If your deep neural net 1s significantly
overfitting, dropout will usually reduce the
number of errors by a lot.

— Any net that uses “early stopping” can do better
by using dropout (at the cost of taking quite a
lot longer to train).

 If your deep neural net 1s not overfitting you
should be using a bigger one!

Another way to think about

dropout
 If a hidden unit knows e If a hidden unit has to
which other hidden units work well with
are present, 1t can co- combinatorially many
adapt to them on the sets of co-workers, 1t 1s
training data. more likely to do
— But complex co- something that 1s
adaptations are likely to go individually useful.
wrong on new test data. — But i1t will also tend to do
— Big, complex conspiracies something that is
are not robust. marginally useful given

what 1ts co-workers
achieve.

Recent Progress on ImageNet
Competition

Google acquires U of T neural networks company

e ICIEIES

Sara Franca

University Professor Geoffrey
Hinton and two of his
graduate students from the
Department of Computer
Science have sold their startup
company to Google Inc.

Google acquired the company,
incorporated by Alex
Krizhevsky, llya Sutskever
and Hinton in 2012, for its
research on deep neural
networks. Also known as “deep
learning” for computers, this
research involves helping

machines understand context. From left: llya Sutskever, Alex Krizhevsky and University Professor Geoffrey

Hinton of the University of Toronto's Department of Computer Science (photo by

Hinton is world-renowned for John Guatto)

his work with machine learning
and artificial intelligence. His neural networks research has profound implications for areas such as speech
recognition, computer vision and language understanding.

“Geoffrey Hinton's research is a magnificent example of disruptive innovation with roots in basic research,”
said U of T's president, Professor David Naylor."The discoveries of brilliant researchers, guided freely by
their expertise, curiosity, and intuition, lead eventually to practical applications no one could have imagined,
much less requisitioned.

Facebook Launches Advanced
Al Effort to Find Meaning in
Your Posts

A technique called deep learning could help Facebook understand
its users and their data better.

By Tom Simonite on September 20, 2013

Deep Learning Comes of Age

By Gary Anthes

Communications of the ACM, Vol. 56 No. 6, Pages 13-15
10.1145/2461256.2461262

Comments

VEWAS: 2 & B SHARE: = & @ 4 & B

Rainbow brainwaves made from a computer
simulation of pyramidal neurons found in the

cerebral cortex.

Credit: Hermann Cuntz

Improvements in algorithms and application architectures,
coupled with the recent availability of very fast computers and
huge datasets, are enabling major increases in the power of
machine learning systems. In particular, multilayer artificial
neural networks are producing startling improvements in the
accuracy of computer vision, speech recognition, and other
applications in a field that has become known as "deep learning."

Artificial neural networks ("neural nets") are patterned after the
arrangement of neurons in the brain, and the connections, or
synapses, between the neurons. Work on neural nets dates to the
1960s; although conceptually compelling, they proved difficult to
apply effectively, and they did not begin to find broad commercial
use until the early 1990s.

Neural nets are systems of highly interconnected, simple

processing elements. The behavior of the net changes according
to the "weights" assigned to each connection, with the output of
any node determined by the weighted sum of its inputs. The nets

Brains, Sex, and Machine Learning

It can deal with 2 wide range of objects

oEr

-y

do not work according to hand-coded rules, as
with traditional computer programs; they must
be trained, which involves an automated process
of successively changing the inter-nodal weights
in order to minimize the difference between the
desired output and the actual output. Generally,
the more input data used for this training, the
better the results.

For years, most neural nets contained a single
layer of "feature detectors" and were trained
mainly with labeled data in a process called
"supervised" training. In these kinds of networks,
the system is shown an input and told what

Yahoo Acquires Startup LookFlow To Work On Flickr
And ‘Deep Learning’

Anthony Ha

W6 Ellke 184 WTweet (30| [[fshare| 41

ADVERTISEMENT

LookFlow, a startup that describes
itself as “an entirely new way to
explore images you love,” just
announced that it has been acquired

Me
by Yahoo and will be joining the Flickr el

Venmo Touch.
The company writes on its homepage, “Fret not, LookFlow fans. Keep an eye out for our
product in future versions of Flickr — with many more wonderful photos and all that Flickr

awesomeness!” It also says it will be helping Yahoo to form a new “deep learning group.” Bra'i'ntrcc

team.

Google’s Large Scale Deep Learning Experiments

Google’s new large-scale learning experimentation using 16000 CPU cores and deep learning as part of google brain project had made a big success on Imagenet dataset.
This success had a wide media coverage. Some pointers to the news:

Google official blog, 26 June 2012 http://googleblog.blogspot.com/2012/06/using-large-scale-brain-simulations-for.html

NYT Front page on large scale neural network John Markoff, [...]

Deep Learning Revolution

~

Che | S
New ﬂork 2012: Is deep learning a revolution in artificial

. : : 2
Times intelligence

Accomplishments

Apple’s Siri virtual personal assistant

Google’s Street View & Self-Driving Car

Google/Facebook/Tweeter/Yahoo Deep
Learning Acquisition

Hinton’s Hand Writing Recognition

CASP10 protein contact map prediction

Outline

Motivating factors for study
RBMs

Deep Belief Networks
Applications

The Toolbox

We often reach for the familiar...
For discriminative tasks we have

o neural networks (~1980’s, back-prop)
o SVM (~1990’s, Vapnik)

But is there anything better out there???

Challenges with SVM/NN

Potential difficulties with SVM
o Training time for large datasets

o Large number of support vectors for hard
classification problems

Potential difficulties with NN & back-prop

o Diminishing gradient inhibits multiple layers
o Can get stuck in local minimums

o Training time can be extensive

Challenges with SVM/NN

More general “problems” with NNs and SVM...

o Need labeled data (what about unlabeled
data?)

o Amount of information restricted by labels (ie,
hard to learn a complex model if we are limited

by labels)

‘ What if | could use “8”s
\ to learn to recognize
7 “6"s ?

g
P

How to respond to these challenges

* Try to model the structure of the sensory input
(ie, data), but keep the efficiency and simplicity
of a gradient method

— Adjust the weights to maximize the probability that a
generative model would have produced the sensory
iInput.

— Learn p(data) not p(label | data)

* So instead of learning a label, first learn how to
generative your data

Hinton, 2007

How to respond to these challenges

* Try to model the structure of the sensory input
(ie, data), but keep the efficiency and simplicity
of a gradient method

— Adjust the weights to maximize the probability that a
generative model would have produced the sensory

Input,

) — Learn p(data) not p(label | data) <

* So instead of learning el, first learn how to

generative your data Immediate benefit in that all data
does not have to be label. Also
reduces dependency on label.

Hinton, 2007

Recap

So, we are convinced we ...

1.

recognize some concerns with
“standard” tools and would like
what other options are out
there

. like the idea of modeling the

input first (ie, building a model
of our data as oppose to an out
right classifier)

Energy Based Models

p(x) — probability of our data; data is represented by
feature vector x. B(z)

p(z) = - Z

7 — Z e Elx)
£

Attach an energy function (ie, E(x)) to score a
configuration (ie, each possible input x).

and

We want desirable data to have low energy. Thus, tweak
the parameters of E(x) accordingly.

Restricted Boltzann Machines (RBM)

EBMs with Hidden Units

To increase power of EBMs, add hidden
variables.

E(x.h)

ZP.L/I Z.'Z

h

By usmg the notatlon

_ l()h Z (x.h)
%

We can rewrite p(x) in a form similar to the

standard EBM, o
P(z) = < 7 with Z = Ze Fl=),

Restricted Boltzmann Machines (RBM)

EBMs with Hidden Units

To increase power of EBMs, add hidden
variables.

€ E(x.h)

ZPJ_’I Z.Z

h

By usmg the notatlon

p > T) = — 1‘%2 (2:h)
w

We can rewrite p(x) in a form similar to the
standard EBMV,

~F(x
P(z) = —— with Z = Z Flz),

Restricted Boltzmann Machines (RBM)

RBMs

* Represented by a bipartite
graph, with symmetric,
weighted connections

* One layer has visible nodes
and the other hidden (ie,
latent) variables.

* Notes are often binary,
stochastic units (ie, assume 0
or 1 based on probablity)

Restricted Boltzmann Machine

(RBM)

e A model for a distribution
over binary vectors

e Probability of a vector, v,
under the model is defined
via an “energy”

E(v,h) Zbu Z(*th Zhjz Wi j

J
7 ZZ —E(v h)

e—E(v.h)

Z

p(v) =
h

hidden layer

visible layer

Training a RBM — Maximum Likelihood
Approach

— % Z log(z e_E(”i’h)) —log Z
) h
S, e Bl _gp 1 _E(w.n) —OF
Zz e—BEwi,h) 99, ‘ZZU:%:G 00,
B pvz, —0F —0F
——ZZ ey (95,) ~F 90,
—0F
Sp h|v; —E
nzi:zh:p(‘U)(59j> laej]poo

—0F —0F
= F — F

Training a RBM - Contrastive
Divergence (CD)

Instead of attempting to sample from joint
distribution nlv.h) (i.e. nec). samn|e from

Ab: B | = _F|—
7 00; 00,

—0F —0F
]“E{aej}po E{f)@j}pl

Hinfon, Neura/ Computation(2002)
aster an ower varlance in sample

OF
8107;]'

Training a RBM

Partials of E(v, h) easy to calculate.

Uih]’

O] 0O

0
< Uipj >data

/
ofe

t=0

O
/

1.1 /
< pzp] >T‘econ
/

ofe

t=1

0
(1) _ Eh b,
p; 0'(wa—l— ’L)

J
p§1> =o() pjwij +c))

Hinton, Neural Computation(2002)

Training a RBM via Contrastive
Divergence

Gradient of the likelihood with respect to w;; = the

difference between interaction of v; and 4; at time 0 and
at time 1.

Hidden
Layer Q @ Q p§-0) = O'(Z VWi + C;)
-

1

0
< vipj >data

/
Visible G)‘ ®

Layer

Hinton, Neural Computation(2002)

Training a RBM via Contrastive
Divergence

Gradient of the likelihood with respect to w;; = the

difference between interaction of v; and 4; at time 0 and
at time 1.

Hidden
Layer Q/Q Q ng) — O'(Z Uzwz] + C])

< ’Uin >data i
'/ \ , pi = (3 hjwi; + b;)
Visible G)‘ o @ O j

Layer

t=0 t=1

Hinton, Neural Computation(2002)

Training a RBM via Contrastive
Divergence

Gradient of the likelihood with respect to w;; = the
difference between interaction of v; and 4; at time 0 and

at time 1.
Hidden
Layer Q @(Q Q/@ Q p§0) — O'(Z Usz] _|_ C])
/ ,
< UiPQ >data < p}pl > recon :
@J/ \@/3 p) = o(> hjwij +b;)
Visible J
Layer Q Q P;l) = U(Z p%’wij + ¢;)
t=0 t=1 P

- 0 1,1
A,/vl,] o <vipj > - <pi pj > Hinton, Neural Computation(2002)

Weight/Bias Updates

A<”)w¢j = e{(< vng > — < pg)p§) >) — nw;j }
(n—1)

+ VW, ;
AMp; = e{(<v; > — < pi >)} + ™Y

(1)

AMe; = e (< py”) > — < p§ Y

)>}—|—1/c

g is the learning rate, n is the weight cost, and v the momentum.

Gradient Smaller Weights Avoid Local Minima

A quick way to learn an RBM
O/@ Q Q O Sjca.rt with a training vector on the

visible units.

<Vi h >/ <Vi h Update all the hidden units in
parallel

Update the all the visible units in
parallel to get a “reconstruction”.

t=0 t=1
data reconstruction Update the hidden units again.
— 0 1

This is not following the gradient of the log likelihood. But it works well. It is

approximately following the gradient of another objective function (Carreira-
Perpinan & Hinton, 2005).

Slide modified from Hinton, 2007

Why Deep Learning? — A Face
Recognition Analogy

squares

Brain Learning

Training a RBM — A Maximum

Likelihood Approach
Objective of Iterative Gradient
Unsupervised Descent Approach:
Learning:
Find w;; to maximize the Adjust w; ; to increase the

likelihood p(v) of visible data | | likelihood according to gradien|t

Why 2?7

Okay, we can model p(x).

=

But how to...

1. Find p(label|x). We want a
classifier!

2. Improve the model for p(x).

Deep Belief Nets

RBMs are typically used | |
in stack +3 .

— Train them up one layer |

at a time

| | *+8 W,
— Hidden units become
visible units to the next | |

layer up 43
If your goal is a | data |
discriminator, you train a
classifier on the top level
representation of your
input.

[0,1]

Deep
Learning
~350 nodes
Network
Architecture 500 nodes
~500 nodes
~400 input nodes

A Vector of ~400 Features (numbers between 0 and 1)

Training a Deep Network

1. Weights are learned
layer by layer via
unsupervised learning.

. Final layer is learned as a
supervised neural
network.

. All weights are fine-
tuned using supervised
back propagation.

Hinton and Salakhutdinov, Science, 2006

Training a Deep Network

1. Weights are learned
layer by layer via
unsupervised learning.

. Final layer is learned as a
supervised neural
network.

. All weights are fine-
tuned using supervised
back propagation.

Hinton and Salakhutdinov, Science, 2006

Specific Implementation on GPU

LSDEKIINVDF KPSEERVRETI

Speed up training by
CUDAMat and GPUs

\ J

Train DNs with over 1M
parameters in about an
hour

How to generate from the model

* To generate data:

O

Get an equilibrium sample

from the top-level RBM by
performing alternating .
Gibbs sampling for a long 3

time.
Perform a top-down pass to

get states for all the other
layers. I 1 /2

So the lower level bottom-up
connections are not part of
the generative model. They I l, W
are just used for inference.
data

Slide modified from Hinton, 2007

Deep Autoencoders

* They always looked like a really
nice way to do non-linear
dimensionality reduction:

— But it is very difficult to
optimize deep
autoencoders using
backpropagation.

* We now have a much better
way to optimize them:

— First train a stack of 4
RBM’s
— Then “unroll” them.

— Then fine-tune with
backprop.

Hinton & Salakhutdinov, 2006; slide form Hinton
UCL tutorial

T
>
Wl

28x28 I

1000 neurons |

T
w;

| |

500 neurons |

T
W,

T
W
I/V

4

W,

| |

250 neurons

linear

30 :
units

250 neurons

T

500 neurons ‘

W

(3]

I

1000 neurons

W,

Applications: A model of digit recognition

* Classify digits (0 —9)

* |[nput is a 28x28 image from MNIST (training

60k, test 10k examples)

O—2MmI3I e Nd o
O~nNmMmEAWVne ~e o~
Q~NMYXTLVY N
O~NMITNO &G T
VD~ N T e oo n
QN RO ~oa®
D~ JT HY NN
ONN®ORWV8 ~3% ™
O~V N o
QN @ LS Ndg o
V—NM>-lq0 0N
D—-—NMT O
V—hm> Yo Noyoe
QN M TN N

Applications: A model of digit recognition

This is work from Hinton

et al., 2006 2000 top-level neurons

The top two layers form an

associative memory whose

energy landscape models the

low dimensional manifolds of

the digits. 10 label

—) 500 neurons

The energy valleys have names neurons

11

The model learns to generate

combinations of labels and images. ‘ 500 neurons
To perform recognition we start with a " 1
neutral state of the label units and do an
up-pass from the image followed by a few 28 X 28
iterations of the top-level associative pixel
memory. :

image

Matlab/Octave code available at
http://www.cs.utoronto.ca/~hinton/ Slide modified from Hinton, 2007

Model in action

Hinton has provided an excellent way to view the model in
action...

011 12]3]4]
goEnon

B NEER

i

Z=l2[= e L

n v

G A

B

4 DINFEN

BREN H

0 OZOE B 7

ITWWIWIW

Demo:
http://www.cs.toronto.edu/~hinton/digits.html

More Digits

Samples generated by letting the associative memory
run with one label clamped. There are 1000 iterations of
alternating Gibbs sampling between samples.

o 0 ¢ O6o 0O 0 0 0 9
/2N L N A A A
2 2 2 A 2 T 1 22)
7y 2 3233 232
Y 4 ¢ ¢ 4 & 4 ¢ 4 |
S5 § s 868 55 5 55
G & 6 4§ € b b o 6 ¢
7 777 7771771
F &8 6 © 8 3 ¥ § &£ €
¢ 9 2 5 9 79 ¢ ¢ 9 9

Slide from Hinton, 2007

Even More Digits

Examples of correctly recognized handwritten digits
that the neural network had never seen before

oot N\ (/4872
A2 2 A5 7
2 ¢ 79194746 >09
e L 772\ 71489379
b8 T3 HL9qg7

Slide from Hinton, 2007

Extensions

Do classification.

One way (probably no
the best), train
generative model with
labeled/unlabeled data

Then train a NN on
higher dimensional
representation.

| NNorsvm |

1

& | 2000 top-level neurons

T

| 500 neurons

T1

| 500 neurons

< T 1

28 x 28 pixel

image

Various Deep Learning
Architectures

Deep belief network

Deep neural networks
Deep autoencoder

Deep convolution networks
Deep residual network
Deep recurrent network

Deep Belief Network

OOOOO0C0O) hs

RBM

@OOAC)OOO) hz

@OOPOOO) hy

OO00000) x

Deep neural network

-

hadden bwyor 3

kadden lnver 2

hickien laver 1

L layer

inp

output layer

_ “‘.\\.ﬁ;llll!'%

- o Fraar " ‘I A.‘. -y
e T g e e TS YA FE n b

e ST T S| M g G

voAvo-o.S Q .vo

. O T TR T S L
...I J-.-...uua.....uo: '.-.ql...s.w.”t.um“...ﬁ\ .ﬂ.\..
LA J'#Plf!!b.—.itt\.\

| \w\.:..b...u..,:.
W\-.LL‘1“’Q¢J!'J’-J('—JJ.’JJ? -
* -

.- " ‘-ﬂ 1? ;.Q- i* ? yJ-P

.A.A.A.u.~ ©}e)e)e

" - ~ 1Y
.f St \;&\._

24 ks oy

Il:t;oa.tti*\\

'J'. YR T A T e

_ A v'._.-‘."'.:’f.i .1.“.:...‘
w_ ‘t‘iiv.hf+00#)ll f’I
__.v___.._.w~u“ Tar VAT EaR ¥ ant an)

. i _.__
&..t-. u.— uu.— LS A0 . ,f- -

000000

00O POQ@}
@OO OO0
Deep ©O QO

AutoEncoder O-0

0000 000 }wenmm

Deep Convolutional
AutoEncoder

Deep Convolution Neural
Network

, 512 512
input conv conv kernel stride = 1 7x8x8

AN

A p——
A) [
A /
\

max-pool
LN

9x9

max-pool kernel stride = 2
max-pool conv
~ —
==
=

\ / Part Detection
max-pool conv

\/

/
»

\\\ 5x5

>

\
\

=
=
Y/

~—
/ Joint Detection
- \ 512 512
\\ \ \\ \ \ 16
32@10x1
\\ \ \ 32@24x24 32@20x20 \ -
32@52x52 32@48x48
3@N2M12 55 @ 104x104

Joint Regression

Shared CNN

Deep Recurrent Neural Network

Softmax Ouput Layer

Mean Pooling

Pooling Layer

Merge Layer

Hidden Layer

' Hidden Layer

Input Layer

An Example of Network

Combination
Input Video Convolutional Net Recurrent Net Output

NN — Y — L5T™M — 1STM |— 4
CNN —— — LSTM | LSTM I——° boy

: S| — LST™ LSTM |— is
CNN —Te| [T LSTM LSTM playing

]
N E 1 v

CNN) — LSTM LSTM q
CNN '_K * LSTM LSTM ball

Deep Residual Network

X I
Y
‘ weight layer
F(x) l relu identity
‘ weight layer X

H(x) = F(x) +x |
reiu
the rectifier 1s an activation functelon defined as f(z) = max(0, x)

A unit employing the rectifier 1s also called a rectified linear unit
(ReLU)

Generative-Adversarial Network
(GAN)

Inception Network

Capsule Network

Dropout

Prevent from over-fitting

Prevent units from co-
adapting

Training: remove randomly
selected units according to a
rate (0.5)

Testing: multiply all the units
with dropout rate

H2

e Pylearn?2

Theano Pyeep Learning Tools
+ Caffe

 Torch
e Cuda-convnet
* Deeplearning4;

e Keras

Core Open Pretrained

Framework License language Binding(s) CPU GPU source Training models Developme
1 T . 1 Python, : ‘ : SR

Caffe BSD CH MATLAR v’ v’ v’ v’ v’ distributed
cuda-convnet (7] unspecified C+4+ Python v’ v’ v’ discontinue
Decaf [2] BSD Python v’ v’ v’ v’ discontinue
OverFeat [9] unspecified Lua C++,Python Vv~ v’ centralized
Theano/Pylearn2 [4] | BSD Python v’ v’ v’ v’ distributed
Torch7 [1] BSD Lua v’ v’ v’ v’ distributed

September 20, 2018 Data Mining: Concepts and 210

Techniques

Googles’s ===

Tensorklow) (i) (o) (e

TensorFlow™ is an open source software library for — %}
numerical computation using data flow graphs. Nodes in th |

graph represent mathematical operations, while the graph | ol
edges represent the multidimensional data arrays (tensors)
communicated between them. The flexible architecture 0—~
allows you to deploy computation to one or more CPUs or
GPUs in a desktop, server, or mobile device with a single
API. TensorFlow was originally developed by researchers
and engineers working on the Google Brain Team within
Google's Machine Intelligence research organization for the
purposes of conducting machine learning and deep neural
networks research, but the system 1s general enough to be

applicable in a wide variety of other domains as well.

https://www.tensorflow.org/

Acknowledgements

« Geoffery Hinton’s slides
» Jesse Eickholt’s slides
* Images.google.com

