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What we’ll discuss

 Recall the numerous and dramatic benetits
of Joint Distributions for describing
uncertain worlds

* Reel with terror at the problem with using
Joint Distributions

* Discover how Bayes Net methodology
allows us to built Joint Distributions in
manageable chunks



Ways to deal with Uncertainty

Three-valued logic: True / False / Maybe
Fuzzy logic (truth values between 0 and 1)

Dempster-Shafer theory (and an extension
known as quasi-Bayesian theory)

Possibabilistic Logic
Probability



Discrete Random Variables

A 1s a Boolean-valued random variable 1f A
denotes an event, and there 1s some degree
of uncertainty as to whether A occurs.

Examples
A = The US president 1n 2023 will be male

A = You wake up tomorrow with a
headache



Probabilities

 We write P(A) as “the fraction of possible
worlds 1n which A 1s true”

* We could at this point spend 2 hours on the
philosophy of this.

 But we won't.



Visualizing A

Event space of

all possible —____

worlds P(A) = Area of

reddish oval

Its area is 1 —~




Interpreting the axioms

- 0<=P(A) <=1

P(True) = 1

+ P(False)=0

P(AorB)=P(A) + P(B) - P(A and B)

The area of A can't get
any smaller than O

And a zero area would
mean no world could
ever have A true




Interpreting the axioms

* 0<=PA)<=1

* P(True)=1

+ P(False)=0

* P(AorB)=P(A)+P(B)- P(A and B)

The area of A can't get
any bigger than 1

And an area of 1 would
mean all worlds will have
A true




Interpreting the axioms

+ 0<=P(A)<=1

* P(True)=1

+ P(False)=0

« P(AorB)=P(A)+ P(B)-P(AandB)




Interpreting the axioms

+ 0<=PA) <=1

» P(True)=1

+ P(False)=0

» P(AorB)=P(A)+ P(B)-P(AandB)

Simple addition and subtraction



These Axioms are Not to be
Trifled With

* There have been attempts to do different
methodologies for uncertainty
* Fuzzy Logic
* Three-valued logic

* Dempster-Shafer
* Non-monotonic reasoning

» But the axioms of probability are the only
system with this property:

If you gamble using them you can’t be unfairly exploited by
an opponent using some other system [di Finetti 1931]



Theorems from the Axioms

« 0<=P(A)<=1, P(True) =1, P(False) =0
« P(AorB)=P(A)+ P(B)-P(A and B)

From these we can prove:
P(not A) = P(~A) = 1-P(A)

* How?



Conditional Probability

* P(A|B) = Fraction of worlds in which B is true

that also have A true

([

H = “Have a headache”
F = “Coming down with Flu”

P(H) = 1/10
P(F) = 1/40
P(H|F) = 1/2

“Headaches are rare and flu
is rarer, but if you're coming
down with ‘flu there’s a 50-
50 chance you'll have a
headache.”



Conditional Probability

F
[
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= )

H = “Have a headache”
F = “Coming down with Flu

P(H) = 1/10
P(F) = 1/40
P(H|F) = 1/2

P(H|F) = Fraction of flu-inflicted
worlds in which you have a
headache

= #worlds with flu and headache

#worlds with flu

= Area of “H and F” region

Area of “F” region

= P(H A F)



Definition of Conditional Probability

P(A* B)
P(AIB) = -

P(B)

Corollary: The Chain Rule
P(A * B) = P(A|B) P(B)



Bayes Rule
P(AA*B) P(A|B)P(B)

P(BIA) =

P(A) P(A)

This is Bayes Rule

Bayes, Thomas (1763) An essay
towards solving a problem in the doctrine
of chances. Philosophical Transactions
of the Royal Society of London, 53:370-
418




Using Bayes Rule to Gamble

o000 00
RRB B RB B
The "Win™ envelope
has a dollar and four The “Lose” envelope
beads in it has three beads and
no money

Trivial question: someone draws an envelope at random and offers to
sell it to you. How much should you pay?



Using Bayes Rule to Gamble

o000 00
The "Win” envelope
has a dollar and four The “Lose” envelope
beads in it has three beads and
no money

Interesting question: before deciding, you are allowed to see one bead
drawn from the envelope.

Suppose it's black: How much should you pay?

Suppose it's red: How much should you pay?



Calculation...

L XX
$1.00




Multivalued Random Variables

* Suppose A can take on more than 2 values

* Ais a random variable with arity k if it can
take on exactly one value out of {v,,v,, .. v/}

* Thus...

P(A=v,./\A=vJ.)=0ifi¢j
P(A=v,vA=v,vA=v,)=1



Another fact about Multivalued Random Variables:

» Using the axioms of probability...

0 <= P(A) <= 1, P(True) = 1, P(False) = 0
P(A or B) = P(A) + P(B) - P(A and B)

* And assuming that A obeys...

P(A=v,AnA=v,)=01fi#j
P(A=v,vA=v,vA=v)=1

» |It's easy to prove that

P(BA[A=v,vA=v,vA=v])= ZP(B/\A V)



Another fact about Multivalued Random Variables:
» Using the axioms of probability...

0<=P(A) <=1, P(True) =1, P(False) =0

P(A or B) = P(A) + P(B) - P(A and B)

* And assuming that A obeys...

P(A=v,nA=v;)=01ti#j
P(A=v,vA=v,vA=v,)=1

* |t's easy to prove that

P(BA[A=v,VA=v,vA=v,])= ZP(B/\A V)

=]
« And thus we can prove X J=

P(B)=) P(BAA=v))



More General Forms of Bayes Rule

P(B| AX(4)
AB| A A)+AB|~ AP~ A)

PB|ANX)AANX)
P(BAX)

P A|B)=

A ABAX)=



More General Forms of Bayes Rule

P(A=v,|B)= nP(B|A=Vz)P(A=v,-)
ZP(B | A=v,)A(A=V,)



Useful Easy-to-prove facts
P(A| B+P(—A4|B) =1

> P(4=v,|B)=1
k=1



The Joint Distribution

Example: Boolean
variables A, B, C

C

Recipe for making a joint distribution
of M variables:

1. Make a truth table listing all
combinations of values of your
variables (if there are M Boolean
variables then the table will have
2Mrows).

.......;oooo>

B
0
0
1
1
0
0
1
1

0
1
0
1
0
1
0
1




The Joint Distribution

Example: Boolean
variables A, B, C

Recipe for making a joint distribution A = c erob

. 0 0 0 0.30
of M variables:

0 0 1 0.05
Lo 0 1 0 0.10
1. Make a truth table listing all 5 1 ] o—
combinations of values of your 1 - 5 o
variables (if there are M Boolean 1 - ; 0.10
variables then the table will have , . " 0.25
2Mrows). ” 1 1 0.10

2. For each combination of values,
say how probable it is.



The Joint Distribution

Example: Boolean
variables A, B, C

Recipe for making a joint distribution A 2 © orob
. 0 0 0 0.30
of M variables:
0 0 1 0.05
o 0 1 0 0.10
1. Make a truth table listing all 5 1 ; 0.05
combinations of values of your 1 5 - 0'05
variables (if there are M Boolean 1 . 1 510
variables then the table will have , . " 0.25
2 .
2" rows). 1 1 1 0.10

2. For each combination of values,
say how probable it is.

3. If you subscribe to the axioms of
probability, those numbers must
sum to 1.




0253122 |

0.0245895 |}
0.0421768 |}
0.0116293 |

0331313 NG
0.0971295 N

0.134106 |EEEN

0.105933 N

gender hours_worked wealth

Female v0:40.5- poor
= rich

U S I n g th e v1:40.5+ poor
. rich

J O I nt Male  v0:40.5- poor
rich

v1:40.5+ poor
rich

Once you have the JD you P( E) =

can ask for the probability of
any logical expression
involving your attribute

Z P(row)

rows matching £




Using the
Joint

P(Poor Male) = 0.4654

gender hours_worked wealth

Female v0:40.5- poor 0253122 GGG
rich  0.0245895 |}
v1:40.5+ poor 0.0421768
rich  0.0116293 |
Male  v0:40.5- poor 0.331313 D
ich  0.0971295
v1:40 5+ poor 0.134106 NG
rich  0.105933
P(E)= ) P(row)

rows matching £




0.253122 D

0.0245895 |}
0.0421768 B}
0.0116293 |

0.331313 DG
0.0971295 N

0.134106 NG

0.105933 N

gender hours_worked wealth

Female v0:40.5- poor
e rich

U S I n g th e v1:40.5+ poor
e rich

J O l nt Male  v0:40.5- poor
rich

| v1:40.5+ poor
rich

P(Poor) = 0.7604 P(E)=

> P(row)

rows matching £




gender hours_worked wealth

I nfe re n Ce Female v0:40.5- poor 0253122 [
. rich  0.0245895 |}
Wlth th e v1:40.5+ poor 0.0421768 i}
rich  0.0116293 }

JOlnt Male  v0:40.5- poor 0.231313 NG

ich  0.0971295
v1:40.5+ poor 0.134106 [NEGEN
rich  0.105933 N

> P(row)

P(El AEZ) — rows matching £, and E,

P(E,) > P(row)

rows matching £,

P(E||E,)=



gender hours_worked wealth

INference lrowe wios oo
with the e

0.253122 D N

0.0245895 |}
0.0421768 B}

. rich  0.0116293 |
J Ol nt Male v0:405-  poor 0.331313_
ich  0.0971295 |
v1:40.5+ poor  0.1341 06))
'rich 0.105933 N

Z P(row)

P(El AEz) __ rows matching £, and E,

P(E1|E2)= P(E,)

Z P(row)

rows matching £,

P(Male | ") = 0.4654 / 0.7604 = 0.612




Joint distributions

 Good news * Bad news
Once you have a joint Impossible to create
distribution, you can for more than about
ask important ten attributes
questions about because there are
stuff that involves a SO many numbers
lot of uncertainty needed when you

build the damn
thing.



Using fewer numbers

Suppose there are two events:
« M: Manuela teaches the class (otherwise it's Andrew)
« S:Itis sunny

The joint p.d.f. for these events contain four entries.

If we want to build the joint p.d.f. we'll have to invent those
four numbers. OR WILL WE??

 We don’t have to specify with bottom level conjunctive
events such as P(~M"S) IF...

« ...instead it may sometimes be more convenient for us
to specify things like: P(M), P(S).
But just P(M) and P(S) don't derive the joint distribution. So
you can’t answer all questions.



Using fewer numbers

Suppose there are two events:
« M: Manuela teaches the class (otherwise it's Andrew)
« S:ltis sunny

The joint p.d.f. for these events contain four entries.

If we want to build the joint p.d.f. we'll have to invent those
four numbers. OR WILL WE??

 We don't have to specify with bottom level conjunctive
events such as P(~M"S) IF...

it may sometimes be more convenient for us
ike: P(M), P(S).




Independence

“The sunshine levels do not depend on and do not
influence who is teaching.”

This can be specified very simply:
P(S| M)=P(S)
This is a powerful statement!

It required extra domain knowledge. A different kind
of knowledge than numerical probabilities. It needed
an understanding of causation.



Independence

From P(S| M) = P(S), the rules of probability imply: (can
you prove these?)

+ P(~S| M)=P(~8)
. P(M| S)=P(WM)
+ P(MAS)=P(M)P(S)

+ P(~M A S) = P(~M) P(S), (PMA~S) = P(M)P(~S),
P(~MA~S) = P(~M)P(~S)



Independence

From P(Sl M) = P(S), the rules of probability imply: (can
you prove these?)

And in general:
P(M=u® S=v) = P(M=u) P(S=v)

for each of the four combinations of

. P(~S
. P(M

. P(M u=True/False

v=True/False
* PCM—sy=rrwyro), rvrs = rivgrtS),
P(~MA~S) = P(~M)P(~S



Independence

We've stated:

P(M)=0.6
P(S)=0.3 From these statements, we can
PS| M)=P(S) derive the full joint pdf.
M S Prob

T T

T F

F T

F F

And since we now have the joint pdf, we can make
any queries we like.



A more interesting case

* M : Manuela teaches the class

« S:ltissunny

* L : The lecturer arrives slightly late.
Assume both lecturers are sometimes delayed by bad
weather. Andrew is more likely to arrive late than Manuela.



A more Interesting case

* M : Manuela teaches the class

« S:ltissunny

* L : The lecturer arrives slightly late.
Assume both lecturers are sometimes delayed by bad
weather. Andrew is more likely to arrive late than Manuela.

Let's begin with writing down knowledge we're happy about:
P(S| M)=P(S), P(S)=0.3, P(M)=0.6
Lateness is not independent of the weather and is not
independent of the lecturer.




A more Iinteresting case

* M : Manuela teaches the class

 S:ltissunny

» L : The lecturer arrives slightly late.
Assume both lecturers are sometimes delayed by bad
weather. Andrew is more likely to arrive late than Manuela.

P(S| M) = P(S) P(LI MAS)=0.05

P(S)=0.3 P(L| MA~S)=0.1

P(M)=0.6 P(L| ~MAS)=0.1
P(L| ~MA~S8)=0.2

Now we can derive a full joint
p.d.f. with a "mere” six numbers
Instead of seven*

*Savings are larger for larger numbers of variables.



A more Interesting case

« M : Manuela teaches the class

« S:ltissunny

* L : The lecturer arrives slightly late.
Assume both lecturers are sometimes delayed by bad
weather. Andrew is more likely to arrive late than Manuela.

P(S| M)=P(S)
P(S)=0.3
P(M) = 0.6

P(L

(L
(L
(L

MAS)=0.05
MA~S)=0.1
~M A S)=0.1
~M A ~S) = 0.
Question: Express
P(L=x" M=y " S=2z)
in terms that only need the above

expressions, where x,y and z may
each be True or False.




A bit of notation

Ps| my=p(s) Pl M?S5)=0.05
P(S)=0.3 P(LI MA~8)=0.1
P(M)=0.6 P(L| ~M2S)=0.1
P(LI ~MA~S)=0.2
- P(M)=0.6
P(s)=0.3w

P(Ll MAS)=0.05
P(Ll MA~S)=0.1
P(Ll ~MAS)=0.1
P(Ll ~MA~S)=0.2




A bit of notation

ps| m=ps) P

P(S)=0.3 P(L

P(M)=0.6 P(L
P(L

P(s)=03 |

P(L MAS)=0.05

P(L MA~S)=0.1

P(L ~MAS)=0.1

P(L ~MA~8)=0.2

MAS

noJo

= 0.05

M A ~
~MA S
~M A -

Read the absence of an arrow
between S and M to mean “it
would not help me predict M if |
knew the value of S”

aq [|IM Jn)S JO puiy sy

Jaje| pazijew.oy Alyb

1 P(M)=0.6

Read the two arrows into L to

mean that if | want to know the

value of L it may help me to
know M and to know S.




An even cuter trick

Suppose we have these three events:

M : Lecture taught by Manuela

* L : Lecturer arrives late

R : Lecture concerns robots

Suppose:

 Andrew has a higher chance of being late than Manuela.
 Andrew has a higher chance of giving robotics lectures.
What kind of independence can we find?

How about:
*P(L| M)=P(L)?
*P(R| M)=P(R)?
P(L| R)=P(L)?



Conditional independence

Once you know who the lecturer is, then whether
they arrive late doesn’t affect whether the lecture
concerns robots.

P(R| M,L)=P(R| M)and
PR| ~M,L)=P(R]| ~M)
We express this in the following way:

“‘R and L are conditionally independent given M”

..which is also o Given knowledge of M,
notated by the o o knowing anything else in
following diagram. the diagram won't help

us with L, etc.



Conditional Independence formalized

R and L are conditionally independent given M if
for all x,y,z in {T,F}:
P(R=x| M=yAL=z)=P(R=x| M=y)

More generally:
Let S1 and S2 and S3 be sets of variables.

Set-of-variables S1 and set-of-variables S2 are
conditionally independent given S3 if for all
assignments of values to the variables in the sets,

P(S,’s assignments| S,’'s assignments & S;'s assignments)=
P(S1's assignments| S3’s assignments)



Example' “Shoe-size is conditionally independent of Glove-size given
height weight and age”
R and L are Sl 2
means

for all x,y,z forall s,g,h,w,a
P(R: P(ShoeSize=s|Height=h,Weight=w,Age=a)

More genel P(ShoeSize=s|Height=h,Weight=w,Age=a,GloveSize=q)
Let S

Set-of-variables S1 and set-of-variables S2 are
conditionally independent given S3 if for all
assignments of values to the variables in the sets,

P(Ss's assignments| S,’s assignments & S;'s assignments)=
P(S1’s assignments| S3's assignments)



Conditional v
Independence o °

We can write down P(M). And then, since we know
L is only directly influenced by M, we can write
down the values of P(L| M) and P(LI ~M) and know
we’ve fully specified L's behavior. Ditto for R.

P(M) = 0.6

P(L| M)=0.085 ‘R and L conditionally
P(L| ~M)=0.17 independent given M’
P(R| M)=0.3

P(R| ~M)=0.6



Conditional independence

(™)
P(M)=0.6 o - o
P(L| M) = 0.085 Conditional Independence:
PL| ~M)=0.17 PR M,L) =P(R M),
PR| M)=0.3 PR ~M,L) = PR ~M)
PR| ~M)=0.6

Again, we can obtain any member of the Joint
prob dist that we desire:

P(L=x A R=y A M=2) =



Assume five variables

T: The lecture started by 10:35
L: The lecturer arrives late

R: The lecture concerns robots
M: The lecturer is Manuela

S: Itis sunny

T only directly influenced by L (i.e. T is
conditionally independent of R,M,S given L)

L only directly influenced by Mand S (i.e. L is
conditionally independent of R given M & S)

R only directly influenced by M (i.e. R is
conditionally independent of L,S, given M)

M and S are independent



. T: The lecture started by 10:35
M a kl ng a Bayes n et L: The lecturer arrives late
R: The lecture concerns robots
M: The lecturer is Manuela
S: Itis sunny

® O
©

O,

Step One: add variables.

» Just choose the variables you'd like to be included in the
net.

®



. T: The lecture started by 10:35
M a kl ng a Bayes n et L: The lecturer arrives late
R: The lecture concerns robots
M: The lecturer is Manuela
S: Itis sunny

O O
(L

Step Two: add links.

* The link structure must be acyclic.

* If node X is given parents Q,,Q,,..Q,, you are promising
that any variable that's a non-descendent of X is
conditionally independent of X given {Q,,Q,,..Q,}



. T: The lecture started by 10:35
Ma kl ng a Bayes n et L: The lecturer arrives late
R: The lecture concerns robots
M: The lecturer is Manuela
S: Itis sunny

P03 |-(s) (M) P(M)=06

P(R M)=0.3

P(L MAS)=0.05 P(”f“fMFO-G

P(Ll MA~8)=0.1
P(Ll ~MAS)=0.1 P(T| L)=0.3
P(L| ~MA~8)=0.2 P(ﬂ__‘_"-)-o-a

Step Three: add a probability table for each node.

» The table for node X must list P(X|Parent Values) for each
possible combination of parent values



Making a Bayes net

P(s)=0.3

P(L
P(L
P(L

P(L

MAS)=0.05
MA~S)=0.1
~MAS)=0.1
~MA~S)=0.2

T: The lecture started by 10:35
L: The lecturer arrives late
R: The lecture concerns robots
M: The lecturer is Manuela
S: Itis sunny

—

P(M)=0.6

P(T] L)=0.3

P(T] ~L)=0.8

P(R M)=0.3

P(R ~M)=0.6

Two unconnected variables may still be correlated

Each node is conditionally independent of all non-
descendants in the tree, given its parents.

You can deduce many other conditional independence

relations from a Bayes net. See the next lecture.




Bayes Nets Formalized

A Bayes net (also called a belief network) is an
augmented directed acyclic graph, represented by
the pair V , E where:

 Vis a set of vertices.

* E is a set of directed edges joining vertices. No
loops of any length are allowed.

Each vertex in V contains the following information:
 The name of a random variable

A probability distribution table indicating how the

probability of this variable’s values depends on
all possible combinations of parental values.



Building a Bayes Net

1. Choose a set of relevant variables.
Choose an ordering for them

3. Assume they're called X, .. X, (where X, is the
first in the ordering, X, is the second, etc)

4. Fori=1tom:
1. Add the X; node to the network

2. Set Parents(X; ) to be a minimal subset of
{X,...X_} such that we have conditional
independence of X; and all other members of
{X;...X..} given Parents(X;)

3. Define the probability table of
P(X: =k | Assignments of Parents(X: ) ).



Example Bayes Net Building

Suppose we’re building a nuclear power station.
There are the following random variables:

GRL : Gauge Reads Low.

CTL : Core temperature is low.

FG : Gauge is faulty.

FA : Alarm is faulty

AS : Alarm sounds

« |f alarm working properly, the alarm is meant to
sound if the gauge stops reading a low temp.

» |f gauge working properly, the gauge is meant to
read the temp of the core.



Computing a Joint Entry

How to compute an entry in a joint distribution?
E.G: WhatisP(SA~MAL~RA*T)?

-

P(M)=0.6

P(s)=0.3 [
P(H MAS)=0.05
ALS)=
$§ f.”Mé%:g;} P(T| L)=0.3
P(Ll ~MA~S)=0.2 P(Tl ~L)=0.8

P(R M)=0.3
P(Rl ~M)=0.6

"
-r



Computlng with Bayes Net

----- P(M)=0.6

P(s)=03 |-

PR M)=0.3

P(U MAS)=0.05
P(LU MA~S)=0.1
P(U ~MS)=0.1
P(U ~MA~S)=0.2

PRl ~M)=0.6

P(Tl L)=0.3
P(T!‘~L)=0.8

P(TA~RALA~MAS)=
P(T| ~RALA~MAS)*P(~RALA~MAS)=

P(T| L)* P(GRRALA~MAS)=

P(T| L)* P(~R| LA~MAS)*P(LA~MAS) =

P(T| L)* P(~R| ~M)* P(LA~MAS) =

P(T| L)* P(~R| ~M)*P(U ~MAS)*P(~M*S) =

P(T| L)* P(~R| ~M)*P(U ~MAS)*P(~M | S)*P(S) =
P(T| L)* P(~R| ~M)*P(L ~MAS)*P(~M)*P(S).




The general case

PXox M Xo=x, M . X =X,.4 M X, =X,) =

PX,=x," X=X+ " ... X=X, X=X;) =

PX.=x.| X =X, M ... X=X A X=X,) * P, =X o M X=X N X=X,) =
PX=x| X =x M. . X=x"Xz=x)*PX =x__| ... X=x,"Xz=x,)*
P(X, =%, ,". ... X;=x," X,;=X,) =

}{(X: =X (X:—l =x:—1)’\--°(X| =x1)))

=

P((X =X, ]Assignmem of Parent{ X’ ))

So any entry in joint pdf table can be computed. And so any
conditional probability can be computed.



Where are we now?

We have a methodology for building Bayes nets.

We don’t require exponential storage to hold our probability
table. Only exponential in the maximum number of parents
of any node.

We can compute probabilities of any given assignment of
truth values to the variables. And we can do it in time
linear with the number of nodes.

So we can also compute answers to any questions.

Pe=03 t—-{(s8) M) P(M)=0.6
P(R M)=0.3
P(H MAS)=0.05 P(R ~M)=0.6
P(U MA~S)=0.1 —
P(L ~MAS)=0.1 Pq} L)=0.3
P ~MA~8)=0.2 P(T -L08

E.G. What could we do to compute P(R | T,~8)?



Where are we now?

Step 1: Compute P(R* T ~5)  |pujlding Bayes nets.

Il storage to hold our probability

. ! A A o~ o
Step 2: Compute P(~R * T " ~5) 1e maximum number of parents

Step 3: Return , _
2s of any given assignment of

. And we can do it in time

P(RAT A ~S) des

P(RATA~S)+ P(~RATA~5) Swers to any questions.

----- P(M)=0.6

P(R M)=0.3
P(Ll MAS)=0.05 PRl ~M)=0.6
P(LU MA~S)=0.1
P(L ~MAS)=0.1
P(U ~MA~8)=0.2

E.G. What could we do to compute P(R| T,~S)?



Where are we now?

Step 1: Compute P(RA T * ~5) -<L/] Sum of all the rows in the Joint
ﬁ thatmatchR* T * ~5
1S

. ~RATA ~ o " .
Step 2: Compute P(~-R* T S)\me maximum number of parents

Sum of all the rows in the Joint

Step 3: Retum 2g that match ~R * 7 * ~&
P(RAT A ~S) I.dt,;\snd we can doitintime

P(RAT A ~S)+ P(~RATA~g) SWers to any questions.

----- P(M)=0.6

P(R M)=0.3
P(Ll MAS)=0.05 P(R ~M)=0.6
P(L MA~S)=0.1
P(L ~M*S)=0.1
P(L ~MA~S)=0.2

E.G. What could we do to compute P(R | T,~S)?



Wh e re a re We n OW? 4 joint computes

Step 1: Compute P(R* T * ~5) -;J"'J Sum of all the rows irfrthe Joint
thatmatchR* T " ~&

il's
. ~RATA ~ - g -
Step 2: Compute P(~-R * T S)\\me maxighum number of parents

um of all the rows in the Joint

Step 3: Retum " that match ~R A T * ~&
’ AN
. Angwe can go ifipx —2
P(RAT"~S) des. X 4 joint computes
swe Each of these obtained by

P(RATA~S}+ P(~RATA~S) the “computing a joint

‘1| probability entry” method of
the earlier slides

—

P(L MAS)=0.05
P(Ll MA~S)=0.1
P(Ll ~MAS)=0.1
P ~MA~8)=0.2

[PR ~M)=0.6]

E.G. What could we do to compute P(R | T,~S)?



The good news

We can do inference. We can compute any
conditional probability:

P( Some variable | Some other variable values )

P(joint entry)
P(E |E )= P(El AEz) — jointentriesm;ﬁngElandE2
o P(E,) > P(joint entry)

joint entries matching E,



The good news

We can do inference. We can compute any
conditional probability:

P( Some variable | Some other variable values )

P(joint entry)
P(E |E )= P(El AEz) — jointentriesmglingE]andE2
- P(E) > P(joint entry)

joint entries matching E,

Suppose you have m binary-valued variables in your Bayes
Net and expression E, mentions k variables.

How much work is the above computation?



The sad, bad news

Conditional probabilities by enumerating all matching entries
in the joint are expensive:

Exponential in the number of variables.



The sad, bad news

Conditional probabilities by enumerating all matching entries
in the joint are expensive:

Exponential in the number of variables.

But perhaps there are faster ways of querying Bayes nets?

* In fact, if | ever ask you to manually do a Bayes Net
inference, you'll find there are often many tricks to save you
time.

* So we've just got to program our computer to do those tricks
too, right?

Sadder and worse news:
General querying of Bayes nets is NP-complete.



Bayes nets inference algorithms

A poly-tree is a directed acyclic graph in which no two nodes have more than one
path between them.

A poly tree Not a poly tree
(but still a legal Bayes net)

« If net is a poly-tree, there is a linear-time algorithm .

« The best general-case algorithms convert a general net to a poly-
tree (often at huge expense) and calls the poly-tree algorithm.

« Another popular, practical approach (doesn’t assume poly-tree):
Stochastic Simulation.



Sampling from the Joint Distribution

----- P(M)=0.6

P(s)=0.3 |
PR M)=0.3
P(H MAS)=0.05 PR ~M)=06
P(L MA~S)=0.1
~MAS)= P(Tl L)=0.3
§§H ~mfé)g'o1.z P(Tl ~1)=0.8

-e”

It's pretty easy to generate a set of variable-assignments at random with
the same probability as the underlying joint distribution.

How?



Sampling from the Joint Distribution

----- P(M)=0.6

P(s)=0.3 |-
PR M)=0.3

P(H M*S)=0.05 PR ~M)=0.6

P(U MA~8)=0.1 -

P(U ~M"S)=0.1 F’(ﬂ L)=0.3

P(U ~MA~8)=0.2 P(T -)=0.8

1. Randomly choose S. S = True with prob 0.3
. Randomly choose M. M = True with prob 0.6

Randomly choose L. The probability that L is true
depends on the assignments of S and M. E.G. if steps
1 and 2 had produced S=True, M=False, then

probability that L is true is 0.1
Randomly choose R. Probability depends on M.
Randomly choose T. Probability depends on L

w N

o A



A general sampling algorithm

Let's generalize the example on the previous slide to a general Bayes Net.

We  call the variables X, .. X,, where Parents(X) must be a
subset of {X, .. X..}.

For i=1to n:
1. Find parents, if any, of X;. Assume n(i) parents. Call them X, .. X ..,
.e 'Xp(i,n(l))' ' .
2.  Recall the values that those parents were randomly given: x,, ;. X, 5,
pli.n(i)
3. Look up in the lookup-table for:

POXETrue | Xy 17X 1 Xot27 X002+ Xotny ™ot
4. Randomly set x=True according to this probability

X;, X5,...X, are now a sample from the joint distribution of X, X, ...X,.



Stochastic Simulation Example

Someone wants to know P(R = True | T=True?S =False )

We'll do lots of random samplings and count the number of
occurrences of the following:

* N, :Num. samples in which T=True and S=False.
* N, : Num. samples in which R=True, T=1True and S=False.
* N : Number of random samplings
Now if N is big enough:
N_ /N is a good estimate of P(7=True and S=False).
N, /N is a good estimate of P(R=True ,=True , S=False).
P(R] 17~8) = P(RM"~S)/P(T"~S), so N,/ N, can be a good
estimate of P RI TA~S).



General Stochastic Simulation

Someone wants to know P(E, | =5)

We'll do lots of random samplings and count the number of
occurrences of the following:

* N, :Num. samples in which &,
* N, : Num. samples in which E, and £,
* N : Number of random samplings
Now if N is big enough:
N. /N is a good estimate of P(t.).
N, /N is a good estimate of P(E, , ).
P(E. | =,)=P(E," E,)/P(E,), so N,/ N, can be a good estimate
of P(E| E,).



Likelihood weighting

Problem with Stochastic Sampling:

With lots of constraints in E, or unlikely events in E, then most of the
simulations will be thrown away, (they’'ll have no effect on Nc, or Ns).

Imagine we're part way through our simulation.

In E2 we have the constraint Xi = v

We're just about to generate a value for Xi at random. Given the values
assigned to the parents, we see that P(Xi = vl parenis) =p.

Now we know that with stochastic sampling:
« we’'ll generate “Xi = v” proportion p of the time, and proceed.

* And we’ll generate a different value proportion 1-p of the time, and the
simulation will be wasted.

" n

Instead, always generate Xi = v, but weight the answer by weight “p” to
compensate.



Likelihood weighting

Set N, :=0, N, :=0
1. Generate a random assignment of all variables that
matches .. This process returns a weight w.

2. Define w to be the probability that this assignment would
have been generated instead of an unmatching
assignment during its generation in the original
algorithm.Fact: w is a product of all likelihood factors
involved in the generation.

3. N,=N,+w

4. If our sample matches E, then N, := N, +w
5. Goto1

Again, N,/ N, estimates P(E; | =5)



Case Study |

Pathfinder system. (Heckerman 1991, Probabilistic Similarity Networks,
MIT Press, Cambridge MA).

» Diagnostic system for lymph-node diseases.
» 60 diseases and 100 symptoms and test-results.
* 14,000 probabilities
» Expert consulted to make net.
* 8 hours to determine variables.
+ 35 hours for net topology.
* 40 hours for probability table values.

» Apparently, the experts found it quite easy to invent the causal links
and probabilities.

» Pathfinder is now outperforming the world experts in diagnosis. Being
extended to several dozen other medical domains.



One BN for Disease Diagnosis
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What you should know

The meanings and importance of independence
and conditional independence.

The definition of a Bayes net.

Computing probabilities of assignments of
variables (i.e. members of the joint p.d.f.) with a
Bayes net.

The slow (exponential) method for computing
arbitrary, conditional probabilities.

The stochastic simulation method and likelihood
weighting.



What Independenc1es does a Bayes Net Model?

* In order for a Bayesian network to model a
probability distribution, the following must be true by
definition:

Each variable is conditionally independent of all its non
descendants in the graph given the value of all its parents.

* This implies
P(X,...X,)= ]:[P(X,- | parents(X;))

* But what else does it imply?



What Independencies does a Bayes Net Model?

» Example:
Given Y, does learning the value of Z tell us
nothing new about X?

Le., is P(XY, Z) equal to P(X | ¥)?

Yes. Since we know the value of all of X’s
parents (namely, ¥), and Z is not a
descendant of X, X is conditionally

independent of Z.

Also, since independence 1s symmetric,
P(Z21Y, X) = P(Z1Y).



What Independencies does a Bayes Net Model?

* Let I<X,Y,Z> represent X and Z being conditionally
independent given Y.

* IKX,YZ>?7 Yes, just as in previous example: All X’s
parents given, and Z is not a descendant.



What Independencies does a
Bayes Net Model?

o [ <x, {U}, Z>7
e [<x, {U, V}, Z2>?



Things get a little more confusing

* X has no parents, so we’re know all its parents’
values trivially

e 7 1s not a descendant of X

* So, I<X {},Z>, even though there’s a undirected path
from X to Z through an unknown variable Y.

* What if we do know the value of Y, though? Or one
of its descendants?



The Burglar Alarm Example

* Your house has a twitchy burglar alarm that is also
sometimes triggered by earthquakes.

 Earth arguably doesn’t care whether your house is
currently being burgled

* While you are on vacation, one of your neighbors
calls and tells you your home’s burglar alarm is
ringing. Uh oh!



Things get a lot more confusing

* But now suppose you learn that there was a medium-sized
earthquake in your neighborhood. Oh, whew! Probably not a
burglar after all.

» Earthquake “explains away” the hypothetical burglar.

* But then it must not be the case that
I<Burglar,{Phone Call}, Earthquake>, even though
I<Burglar,{}, Earthquake>!



d-separation to the rescue

* Fortunately, there is a relatively simple algorithm for
determining whether two variables in a Bayesian
network are conditionally independent: d-separation.

* Definition: X and Z are d-separated by a set of

evidence variables E iff every undirected path from X
to Z is “blocked”, where a path is “blocked” iff one
or more of the following conditions is true: ...



A path 1s “blocked” when...

* There exists a variable V on the path such that
* itis in the evidence set E
* the arcs putting V in the path are “tail-to-tail”

000@1_@—'@000

* Or, there exists a variable V on the path such that
* itis in the evidence set E
* the arcs putting V in the path are “tail-to-head”

QCQQ_V@_'Q.QQ

* Or, ...



A path is “blocked” when... (the funky case)
Gt

* ... Or, there exists a variable V on the path such that
* itis NOT in the evidence set E
* neither are any of its descendants
* the arcs putting V on the path are “head-to-head”

QQQO—,@<—QQQQ



d-separation to the rescue, cont’d

* Theorem [Verma & Pearl, 1998]:

* If a set of evidence variables E d-separates X and
Z in a Bayesian network’s graph, then I<X, E, Z>.
* d-separation can be computed in linear time using a
depth-first-search-like algorithm.
* Great! We now have a fast algorithm for

automatically inferring whether learning the value of
one variable might give us any additional hints about

some other variable, given what we already know.



D-separation Example

. I<C, {}, D>?

. I<C, {A}, D>?

. I<C, {A,B}, D>?

. I<C, {A, B, I}, D>?

. I<C, {A, B, E, J}, D>?




Demo

 Use UNBBayes software
e Choose XML Alarm model

* Choose button “eye” to do sitmulation



Demo

UnBBayes

File View Tools Window Help

CEEREEE

New BN [cheng_alarm.net]

(o]

Node List ;; Target Node List
PhoneCall Earthquake
Burglar E

: Evidence Node List
R T T Alarm
Global Confusion Matrix 7

Sample Size: 5000 Run

P(TIE) = N[P(EMPM ]

99.75 95.90

0.25 410

P(EIT)

81.11 20.00

15.89 50.00

<« Il v |

] Il I




Bayesian Network Software

e http://www.cs.ubc.ca/~murphyk/Software/
BNT/bnsoft.html



