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ABSTRACT The computer system PROSPECT
for the protein fold recognition using the threading
method is described and evaluated in this article.
For a given target protein sequence and a template
structure, PROSPECT guarantees to find a globally
optimal threading alignment between the two. The
scoring function for a threading alignment em-
ployed in PROSPECT consists of four additive terms:
i) a mutation term, ii) a singleton fitness term, iii) a
pairwise-contact potential term, and iv) alignment
gap penalties. The current version of PROSPECT
considers pair contacts only between core (a-helix
or b-strand) residues and alignment gaps only in
loop regions. PROSPECT finds a globally optimal
threading efficiently when pairwise contacts are
considered only between residues that are spatially
close (7 Å or less between the Cb atoms in the
current implementation). On a test set consisting of
137 pairs of target-template proteins, each pair
being from the same superfamily and having se-
quence identity < 30%, PROSPECT recognizes 69%
of the templates correctly and aligns 66% of the
structurally alignable residues correctly. These num-
bers may be compared with the 55% fold recognition
and 64% alignment accuracy for the same test set
using only scoring terms i), ii), and (iv), indicating
the significant contribution from the contact term.
The fold recognition and alignment accuracy are
further improved to 72% and 74%, respectively, when
the secondary structure information predicted by
the PHD program is used in scoring. PROSPECT
also allows a user to incorporate constraints about a
target protein, e.g., disulfide bonds, active sites, and
NOE distance restraints, into the threading process.
The system rigorously finds a globally optimal
threading under the specified constraints. Test re-
sults have shown that the constraints can further
improve the performance of PROSPECT. Proteins
2000;40:343–354. © 2000 Wiley-Liss, Inc.
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INTRODUCTION

Protein threading 1–9 is expected to play a significant
role in protein structure determination in the post-genome
era as genome projects continue to produce protein se-
quences at a rate magnitudes higher than that at which

protein structures are currently being determined experi-
mentally. In particular, protein threading can help to i)
select a “small” representative set of proteins, which have
“unique” folds, for experimental structure determination,
and ii) computationally model the structures of the rest of
the proteins based on the experimental structures of the
selected ones, in the structural genomics projects.10 Devel-
oping more effective threading methodology to meet these
needs represents a significant challenge. Challenging re-
search problems are posed by the following four key
components of a threading approach,11 i.e., construction of
a structural-template library; development of a scoring
function for threading alignment; design of a search
algorithm for the best threading alignment; and evalua-
tion of a best-scoring threading alignment. Our main focus
in this article is on the development of a mathematically
rigorous and computationally efficient threading algo-
rithm. We have previously published a divide-and-conquer
algorithm8 for efficiently finding the optimal threading
alignment when considering both pair contacts between
spatially nearby residues and variable length alignment
gaps. Throughout this article, the optimal threading align-
ment means the globally optimal threading alignment.) A
key contribution of that work is to have demonstrated that
such an optimal threading problem can be solved effi-
ciently when a widely-accepted cutoff distance for pair
contacts is used.

In this article, we report an improved and generalized
version of the divide-and-conquer algorithm, implemented
as a computer program called PROSPECT (PROtein Struc-
ture Prediction and Evaluation Computer Toolkit; a de-
tailed manual of the program can be found at http://
compbio.ornl.gov/structure/prospect/), and present an
analysis of its threading performance on a large set of
proteins. The key improvements in the current threading
algorithm include the following: 1) it rigorously general-
izes the previous algorithm, which considered only core
residues, to deal with loop alignments as well; 2) it
significantly improves the computational efficiency; and 3)
it allows known (partial) structural information about a
target protein to be used as constraints in the threading
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process, and finds an optimal threading under these
constraints.

To thoroughly evaluate PROSPECT’s performance on
fold recognition and threading-alignment accuracy, we
have run it on a set of 499 pairs of proteins. This set is
divided into four subsets: training and testing sets (with
175 and 137 pairs, respectively), consisting of proteins that
are evolutionarily related, and training and testing sets
(with 100 and 87 pairs, respectively), consisting of proteins
that are not evolutionarily related. The training data are
used to determine the relative scaling factors of the scoring
terms. Similar performance results are achieved for both
the training and testing sets. For evolutionarily related
protein pairs, PROSPECT correctly recognizes 68–69% of
the templates and correctly aligns 66-70% of alignable
residues. For protein pairs that are not evolutionarily
related, PROSPECT correctly recognizes 19–20% of the
templates and correctly aligns 20–23% of alignable resi-
dues. These numbers are further improved when second-
ary structures predicted by PHD 12 are used in scoring.

METHOD

In this section, we present an algorithm for finding the
optimal threading alignment between a target sequence
and a template fold, measured by a statistics-based “en-
ergy” function. Currently the energy function has the
following form:

Etotal 5 vmutateEmutate 1 vsingleEsingle 1 vpairEpair 1 vgapEgap. (1)

The mutation energy Emutate is the sum of the compatibil-
ity measurements emutate (a1; a2) for substituting template
amino acid a1 by target amino acid a2. We use the PAM250
matrix13 for emutate(). The singleton energy Esingle repre-
sents the sum of the preferences esingle(a; s; t) for aligning
amino acid a of the target sequence onto a template
position with a structural environment defined by second-
ary structure s and solvent accessibility t. Epair is the sum
of pair-contact potentials epair(a1; a2 ) between amino acids
a1 and a2 of the target sequence when they are aligned to
template positions that are spatially close. In the current
version of PROSPECT, the cutoff is set at 7 Å between the
Cb atoms of a1 and a2. Egap is the sum of the penalties
egap(g) 5 10.810.6* (g 2 1) for an alignment gap of length
g.13 All statistics for estimating these terms are collected
from the FSSP database (released in March 1998).14 For
more detailed information on the calculation of the energy
function terms, we refer the reader to reference 8. All the v
terms are scaling factors, which are determined through
optimizing the threading alignments of our training set
(see Results) against the structure-structure alignments.

In the current version of PROSPECT, pair-contact poten-
tials are calculated only between residues of core second-
ary structures (a-helices or b-strands). Also we assume
that alignment gaps are confined to loop regions. Based on
these assumptions, the threading problem can be schemati-
cally represented in Figure 1. The goal is to find an
alignment between the template and the target sequence
so that Etotal in Eq. (1) is minimized.

A Divide-and-Conquer Approach

Our threading algorithm employs a divide-and-conquer
strategy to solve the optimal threading problem. For this
purpose, we pre-process the template by repeatedly divid-
ing (bi-partitioning) it into sub-structures until each sub-
structure contains only one core secondary structure.
Dividing the template cuts an interaction between two
cores into two open links, represented as an arc with one of
its ends being a hollow circle as shown in Figure 2. The
divide-and-conquer algorithm works correctly on any bi-
partition of the template. However, the way how a tem-
plate is partitioned affects the computing time (see Compu-
tational Efficiency issues).

The algorithm solves the entire optimal alignment prob-
lem by recursively solving a series of sub-alignment prob-
lems between sub-structures and sub-sequences, under
various constraints, and then combining these sub-
alignments in a consistent and optimal way. Figure 3
illustrates the basic idea, using an example from the last
partition step in Figure 2. In this example, the sub-
structure AB is partitioned into two cores, A and B. The
interaction link between A and B in the partition is cut into
two open links, i.e., a3 and b1.

The algorithm first calculates the alignment score be-
tween A (similarly B) and each sequence position (mean-
ing that the leftmost residue of A is aligned with that
position). Since we assume that there is no alignment gap
within a core alignment, this score can be calculated by
simply adding the singleton scores, Esingle, of the aligned
residues and structural positions, plus the Epair scores.
The calculation of Epair is tricky since we do not know
which sequence positions are aligned to the cores at the
other ends of the open links a1, a2, and a3 (i.e., the first,
fourth, and third cores in Fig. 2). To overcome this, we
simply consider all possible legal alignments of these
cores. Note that not every combination of the alignments of
these cores makes a legal (overall) alignment since some of
them may 1) violate the relative order of these cores (e.g.,
the first core is aligned to a sequence position that is to the
right of the aligned sequence position of the fourth core); 2)
overlap with each other; and 3) violate the allowed mini-
mum and maximum length difference in loop alignments
(we allow a user to specify these numbers in PROSPECT).
Though now we have to consider many possible aligned
positions of the cores connected with a1; a2; a3 (from now
on, we simply call them the assignments to a1, a2, and a3),

Fig. 1. A schematic of sequence-structure alignment. The line at the
bottom shows the target sequence. Each box represents a core second-
ary structure (a-helix or b-strand) of the template. The dotted lines
between boxes represent loop regions. An arc between two core second-
ary structures indicates that there exists at least one pairwise interaction
between the two cores. The two lines between a core and the target
sequence represent a gapless alignment between the core and the
sequence.
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we have enough information to calculate the pair contact
term Epair for each fixed assignment to the open links.

To avoid double counting, we treat the two open links
created from each interaction differently. We use a
dashed arc to represent one open link and a solid arc to
represent the other. We only calculate the pair contact
energy Epair for the solid arc, while both open links are
assigned to the aligned position of the core with a
dashed arc. Here only a2 is used to calculate Epair, and
the corresponding Epair terms for a1 and a3 will be
calculated when the alignment for the first and the third
cores are calculated, respectively. In addition, a3 5 b1 5
sA, where sA is the aligned position of the leftmost
residue of core A on the sequence.

After the algorithm calculates the core alignment scores
for each core under various assumptions that their open
links are assigned to particular sequence positions, it
calculates the alignment scores for larger sub-structures
consisting of multiple cores. We continue to use the above
example to illustrate the basic idea. We now want to
calculate the optimal alignment score for AB under the
assumption that a1, a2, and b2 are assigned with particular
sequence positions. Calculation of this optimal score con-
sists of two parts: i) the sum of the alignment scores for A

and for B under the condition that the two partial align-
ments for A and B are consistent, and ii) the alignment
score of the loop between A and B. The optimal alignment
score for AB is the lowest combined score of i) and ii)
among all possible legal assignments to a3 and b1. To find
the lowest combined score, the algorithm goes through all
the alignment scores for A and B under the conditions a)
that a3 and b1 have the same sequence-position assign-
ment, and b) that a2 5 b2, since they point to the same core
(i.e., core C, see Fig. 3). For each such assignment, the
algorithm calculates the optimal loop alignment (now the
aligned positions of both A and B are fixed) using the
dynamic programming method,15 and adds up the total
alignment score for AB. The assignment to a3 (b1) which
has the lowest combined score gives the optimal alignment
score for AB under the specified assignment condition.

This process continues for merging AB and C until the
top level of the partition tree is reached, i.e., the whole
template is considered. Note that in the lower level
calculations, the algorithm repeatedly solves constrained
alignment problems, e.g., finding the optimal alignment
score for a sub-structure under the condition that the open
links of the sub-structure have particular assignments. On
the top level, the whole structure has no open links, and
the optimal alignment obtained gives the final solution to
our threading problem.

It is worth mentioning that the algorithm is not an
exhaustive search algorithm, i.e., it does not explicitly go
through all possible alignments. A simple example is that
the sub-optimal alignments in AB are examined indepen-
dently of sub-optimal alignments in another merged block,
and no combination between these sub-optimal align-
ments is ever examined. However, it can be shown math-
ematically8 that this algorithm guarantees to find a glo-
bally optimal threading for an energy function in Eq. (1).

Computational Efficiency Issues

We have found that the computational bottleneck of this
algorithm is the consideration of all legal combinations of
link assignments. More specifically, the dominating term

Fig. 2. A partition of a template structure. The first row shows the
template with five core secondary structures of Figure 1. The second row
shows a partition of the template into two substructures, one with three
cores and the other with two cores. A broken arc ended with a circle is
called an open link. The third and fourth rows show further partition of the
template until each sub-structure contains only one core secondary
structure. Note that a partition forms a tree structure as indicated by the
arrows.

Fig. 3. A schematic example of the divide-and-conquer algorithm (see
the text in the article for details).
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in the algorithm’s computational complexity (running
time) increases exponentially with the maximum number
of links among all division points. Fortunately, this (maxi-
mum) number is generally a small number if we only
consider pair contacts between residues that are spatially
close given the optimal way to divide a template. We have
previously demonstrated that the maximum number of
links changes with how a template structure is divided
(e.g., where to cut first, and then second, etc), and pre-
sented an algorithm for finding a division scheme which
minimizes the maximum link number among all division
points.8 The minimized maximum link number is called
the topological complexity (TC) of the template. The topo-
logical complexity is a small number (# 8) in all the cases
that we have studied when the cutoff distance between the
Cb atoms is no more than 15 Å. Table I shows the
distribution of the topological complexity versus the cutoff
distance between Cb atoms for pair contacts. The statistics
were compiled from 750 structures in the FSSP database
14 (release of March 1998). The lengths of these proteins
range from 31 to 793, and the numbers of their core
secondary structures range from 1 to 34. Figure 4 shows
the distribution of TC values vs. the lengths for 120
proteins randomly selected from this set.

By using a similar analysis to that of reference 8, we can
prove that our improved threading algorithm runs in a
time proportional to mn 1 M nTCNTC/2, where m and n
represent the lengths of the template and target protein
sequences, M is the number of core secondary structures of
the template, and N is the maximum allowed difference
between the lengths of two aligned loops (the default value
of N is 20 in the current version of PROSPECT). This
function shows how various parameters affect the running
time of the algorithm. The actual threading time on a
DEC/alpha workstation typically ranges from a few sec-
onds to several hours. A unique feature of our threading
algorithm is that it runs in exponential time only with the
topological complexity of a template rather than with the
length of the template or target sequence as for other
similar algorithms.16, 17

Information-Constrained Threading

PROSPECT allows a user to incorporate the following
types of structural information into the threading process:

disulfide bonds, active sites, NOE distance restraints, or
any geometric constraints defined in terms of a pairwise
relationship between residues.

Such a need may exist if some partial structural informa-
tion is known about a target protein before its full struc-
ture is solved. This type of information puts some con-
straint on a threading alignment and possibly improve the
alignment accuracy and fold recognition. For example, a
user may specify that residues x, y, and z of the target
sequence form an active site satisfying a certain pairwise
geometric relationship among them, or that the cysteines
at positions p and q form a disulfide bond and hence they
are at certain distance range.

PROSPECT finds an optimal threading alignment satis-
fying the specified constraints. It achieves this by enforc-
ing that a pair of residues, specified by a constraint, are
aligned only to structural positions of the template that
satisfy the constraint. Considering the potential structural
difference between the native structure of a target se-
quence and the template, PROSPECT uses hard con-
straints to rule out alignments that significantly deviate

Fig. 4. Distribution of TC values vs. protein lengths. The x-axis is the
protein-length axis, and the y-axis is the TC axis.

TABLE I. Distribution of Topological Complexity†

TC\cutoff (Å) 5 6 7 8 9 10 11 12 13 14 15

0 52 (7%) 52 (7%) 52 (7%) 52 (7%) 52 (7%) 52 (7%) 52 (7%) 52 (7%) 52 (7%) 52 (7%) 52 (7%)
1 87 (12%) 87 (12%) 87 (12%) 87 (12%) 87 (12%) 87 (12%) 87 (12%) 87 (12%) 87 (12%) 87 (12%) 87 (12%)
2 218 (29%) 162 (22%) 135 (18%) 118 (16%) 112 (15%) 106 (14%) 102 (14%) 98 (13%) 96 (13%) 94 (13%) 92 (12%)
3 364 (49%) 318 (42%) 245 (33%) 189 (25%) 152 (20%) 131 (17%) 114 (15%) 104 (14%) 93 (12%) 83 (11%) 77 (10%)
4 29 (4%) 126 (17%) 216 (29%) 245 (33%) 218 (29%) 198 (26%) 185 (25%) 175 (23%) 161 (21%) 156 (21%) 154 (21%)
5 0 (0%) 5 (.7%) 15 (2%) 58 (8%) 121 (16%) 156 (21%) 162 (22%) 151 (20%) 136 (18%) 120 (16%) 105 (14%)
6 0 (0%) 0 (0%) 0 (0%) 1 (.1%) 8 (1%) 19 (3%) 47 (6%) 82 (11%) 117 (16%) 135 (18%) 141 (19%)
7 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 1 (.1%) 1 (.1%) 1 (.1%) 8 (1%) 23 (3%) 38 (5%)
8 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 4 (.5%)
†Each column of Table I represents a cutoff distance, and each row represents the number of proteins having a particular topological complexity
(TC).
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from the specified constraints, and also applies soft con-
straints (penalty functions) to force the alignments to be
close to the specified constraints.

PROSPECT also provides a framework for a user to
easily add position-dependent information about a target
sequence as soft constraints in the threading process by
adding extra penalty (or reward) terms to the energy
function (Eq. 1). The relative weights of the added penalty
terms can be specified by the user or determined through a
training process. We have tested this using a) the second-
ary structure predicted by PHD12 and b) the position-
dependent profile of the target sequence calculated by the
SAM program,18,19 which provides the probability of hav-
ing each of the 20 amino acids in a particular position
based on the multiple-sequence alignment.

RESULTS

We have selected 499† pairs of structurally-aligned
proteins from the data set of 20 to evaluate PROSPECT’s
performance on fold recognition and threading align-
ments. This set consists of 312 pairs of proteins, which are
annotated to be evolutionarily related and 187 pairs which
are not evolutionarily related 20. For convenience, we call
the first subset the superfamily set and the second one the
fold-family set. We further divide each of the two data sets
into two subsets: a training set and a testing set. Training
sets are used to optimize the scaling factors, {vsingle;
vmutate; vpair; vgap}, of our energy function (Eq. 1). The
superfamily training set contains 175 protein pairs, consist-
ing of 175 target sequences and 149 unique templates
(some pairs share the same templates), and the testing set
contains 137 pairs with 137 target sequences and 123
templates. The fold-family training and testing sets have
100 and 87 pairs, respectively. The sequence-template
pairs can be found in Appendices. The selection of our data
set from the data list of 20 is basically arbitrary, with only
one condition: proteins of each pair share less than 30%
sequence identity in threading. In selecting the training
pairs, we generally wanted to exclude large proteins with
the consideration that training takes multiple rounds and
large proteins tend to be slow to thread.

Our evaluation consists of two parts: fold recognition
and threading alignment accuracy. To evaluate fold recog-
nition, we put one protein of each pair into the target-
sequence list and the other one into the template list. We
run PROSPECT for each target sequence against the
whole template list and assess how high it ranks the
original mate by each target sequence. For evaluating
threading-alignment accuracy, we compared the thread-
ing alignment of each pair with the structure-structure
alignment determined by the SARF program.7 A residue is
termed correctly aligned if it is aligned to within a
4-residue shift from the SARF’s structure-structure align-
ment position.

Weighing Energy Terms

The scaling factors in our energy function were selected
to “optimize” the average alignment accuracy for all train-
ing pairs. The alignment accuracy was defined by the
number of correctly aligned residues, divided by the num-
ber of structurally-alignable positions defined by SARF.7

To search for the optimal parameter values, we first set
a range for each parameter, based on preliminary thread-
ing results. Our search program for the optimal parameter
values employed the orthogonal array method.21 This
procedure starts with a coarse search grid and can quickly
approach the local optimal point by reducing the search
range for each parameter and using a finer search grid in
the reduced search region. For the superfamily set, the
following values maximized the averaged alignment accu-
racy, with wmutate being set to be 1:

vsingle 5 0.31; vpair 5 0.31; vgap 5 10.4.

and for the fold-family set, we have decided on the
following values:

vsingle 5 0.27; vpair 5 0.42; vgap 5 9.8.

Table II shows the contribution from each of four energy
terms for 15 examples, in which the templates were all
ranked as number 1.

Threading Performance for the Superfamily Set

PROSPECT correctly aligned 70.0% of the (16,936)
alignable residues, for the 175 pairs of training data, using
the scaling factors above. For the test set of 137 pairs,
PROSPECT correctly aligned 66.3% of the (19,711) align-
able residues. We believe that the 3.7% difference in the
alignment accuracies between the training and testing
sets is not caused by over-training (memorization of the
data) as the number of trained parameters is rather small.
This discrepancy may possibly be explained by the differ-
ence between the averaged sequence lengths of the train-
ing and the testing sets: 166.6 and 256.4 residues, respec-
tively. As we have mentioned, we intentionally chose
smaller proteins for the training set to save training time.
Figure 5 shows that for the training set, the alignment
accuracy decreases slightly as the length of a protein
increases. Similar behavior was observed for the testing
set.

While further study will be conducted to understand this
phenomenon, one possible explanation for the decreased
accuracy for larger proteins is that as the protein size
increases the search space size in general increases. As we
have discussed, the dominating factor in threading time
(and similarly, the threading search space) is the topologi-
cal complexity of a protein structure, which generally
increases with its size (see Fig. 4). The increased search
space may make it more difficult for our energy function to
identify the correct alignment.

We then ran PROSPECT for each target sequence against
the template list using the trained scaling factors. For the
training set, PROSPECT ranked the correct template for
each target sequence at the top in 56.0% of the cases and in

†We originally selected 550 pairs but then found that 51 pairs have
sequence identity level higher than our cutoff, 30%, for the alignable
portions of their structures though the global sequence identity of each
pair is less than 25%.20 We removed those 51 pairs from our data set.
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the top five in 69.1% of the cases. If we use the convention of
CASP3,22 for which the top five ranked templates were
submitted, we can consider that PROSPECT recognized
69.1% of the fold templates for the training set. A similar
level of performance is achieved for the test set, for which
57.7% of the correct templates were ranked at the top, and
68.6% in the top five.

Table III summarizes the template ranking, when its
original mate is used as the target sequence. Table IV
summarizes the fold recognition accuracy and threading-
alignment accuracy vs. the sequence identity level, for

both the training and testing sets (train and test). It can be
seen that the overall threading performance for the two
sets are very similar.

As expected, PROSPECT’s performance in both fold
recognition and threading alignment improves as the
sequence identity level increases. Based on the statistics
from Table IV, we expect that PROSPECT will have a good
threading performance (high fold recognition rate and $

60% threading-alignment accuracy) when the template
and target have at least 15% sequence identity.

To evaluate the contribution of pair-contact potentials to
fold recognition and threading alignments, we conducted
training and testing using the same data but excluding the
pair-contact potential term. Different scaling factors for
the remaining three energy terms were obtained using a
similar procedure to the one described in the Weighing
energy terms section. A comparison of PROSPECT’s perfor-
mance using the two energy functions (one with and one
without the pair-contact potential term) is given in Tables
III and IV. All results for the energy function with the
pair potentials are labeled -A, and without the pair
potentials, -S. While the performance on both fold recogni-
tion and threading alignment improves with pair-contact
potentials, the improvement in fold recognition is more
significant. From Tables III and IV, we can see that with
the pair potential term PROSPECT’s alignment accuracy
improves about 2–3% for both the training and testing set,
and its performance on fold recognition improves 11–22%,
depending on different measurements. Actually, using the
following formula to compare the overall rankings with
and without pair potentials, the improvement is even
greater:

1
L O

pair

ranks~pair! 2 rankp~pair!

max$ranks~pair!, rankp~pair!%
, (2)

TABLE II. Energy Term Contribution in Optimal Alignments†

Pair Class Seq. identity Align accuracy Total score Single score Mutate score Pair score Loop score

1bfma-1tafa superfamily 23.1% 63/64 2647.3 27.8 2134.0 234.0 2472.6
1sxl-1urna superfamily 21.9% 73/73 21531.6 2321.6 2705.0 270.6 2426.6
1isdb-1rsy superfamily 20.5% 87/100 21690.4 2434.7 2634.0 2108.6 2513.2
1hxpa-1kpaa superfamily 17.2% 83/90 21123.7 2399.6 2259.0 2112.1 2355.1
1bgc-2gmfa superfamily 16.7% 0/81 2900.2 2246.6 2504.0 212.9 2146.7
1lbu-1vhh superfamily 16.5% 54/82 2998.1 2399.3 2456.0 256.2 289.6
1cds-3ebx superfamily 16.4% 39/53 2913.0 16.8 2432.0 2325.6 2172.2
1erv-1gp1a superfamily 14.2% 43/89 2928.1 2379.2 2281.0 244.2 2193.8
1slta-2ayh superfamily 12.1% 86/111 2851.3 2679.8 2250.0 2220.7 299.2
1prtd-1prtc superfamily 12.1% 60/86 2845.1 2379.8 2505.0 2144.8 184.5
1dih-1scua fold-family 16.0% 76/115 21524.3 21327.6 2610.0 2287.3 684.3
1hgxa-1opr fold-family 14.6% 0/90 21392.1 2813.2 2453.0 2171.6 45.8
1ris-1spbp fold-family 13.4% 50/62 2549.1 2256.0 2353.0 2161.0 206.7
1udii-1yua fold-family 13.1% 38/45 2658.7 2230.0 274.0 2114.6 2240.0
1led-2ayh fold-family 12.4% 29/139 21568.1 2879.4 2401.0 2376.3 88.6
†Pair is the name of a target-template pair and Class is the set a pair belongs. Seq. identity is the percentage of the identical aligned residues out
of the total number of aligned residues of each alignment. Align accuracy gives the number of residues aligned correctly vs. the total number of
alignable residues. Total score is the alignment score of a pair. The other four scores are the contributions to the Total score from the four energy
terms, respectively.

Fig. 5. The threading-alignment accuracy as a function of the tem-
plate length for the superfamily training set. The dashed line with triangles
is for alignment accuracy with the pair potential and the solid line with
circles for accuracy without the pair term. Each data point is an average
over a window size of 0.2.
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where rankp(pair) and ranks(pair) are ranks of a template
by its target sequence given in a target-template pair with
and without pair contact potentials, respectively; the sum
is over all pairs in the data set; and L is the total number of
pairs. Using this measure, pair potentials improve the
overall ranking by 21% and 31% for the training set and
testing set, respectively.

To understand why the pair potential that we are using
improves the fold recognition performance more signifi-
cantly than the threading-alignment accuracy, we have
studied a number of cases from our training set and
discovered that the key contribution of the pair potential is
in ruling out bad templates. For example, for target

sequence 1octc, PROSPECT, with and without the pair
potential, found the same alignment accuracy of 1octc with
its correct fold 1fj1a: 58 out of the 60 structurally-alignable
residues within a shift of 4 from the SARF-predicted
positions. However with the pair potential included, 1fj1a
was ranked the number 1 template; without it, number 10,
while number 1 was 1gria. As can be seen from Figure 6,
the pairwise contact pattern in 1fjla is dominated by the
packing between a-helices, which have a periodicity of 3.6
residues (per turn), while the pairwise contact pattern in
1gria is dominated by the packing between b-sheets, with
a periodicity of 2. To make the pair contacts favorable in
template 1gria, it requires a segment of 1octc to be

TABLE IV. Threading Performance Vs. Sequence Identity: Superfamily†

Seq
identity Total

1–6%
(1)

7–9%
(4)

9–12%
(26)

13–15%
(28)

16–18%
(44)

19–21%
(28)

22–24%
(19)

25–27%
(15)

28–30%
(10)

Overall
(175)

Train Top-A1 0 0 2 9 25 25 13 15 9 98
8% 32% 57% 89% 68% 100% 90% 56%

Top-A5 0 0 4 15 32 28 17 15 10 121
0% 15% 54% 73% 100% 89% 100% 100% 69%

Align-A 25/88 143/421 797/2153 1564/2786 3127/4423 2704/3122 1589/1743 1022/1221 886/979 11857/16936
28% 34% 37% 56% 71% 87% 91% 84% 91% 70%

Top-S1 0 0 2 6 22 16 10 11 7 74
8% 21% 50% 57% 53% 73% 70% 42%

Top-S5 0 0 3 14 24 24 16 12 9 102
12% 50% 55% 86% 84% 80% 90% 58%

Align-S 25/88 164/421 860/2153 1462/2786 2898/4423 2668/3122 1549/1743 969/1221 889/979 11484/16936
28% 39% 40% 52% 65% 85% 88% 79% 91% 67%

Total (1) (3) (24) (36) (19) (15) (18) (16) (5) (137)
Test Top-A1 0 0 6 18 7 11 17 16 4 79

25% 50% 37% 73% 94% 100% 80% 58%
Top-A5 0 0 9 24 10 12 18 16 5 94

37% 67% 53% 80% 100% 100% 100% 69%
Align-A 0/88 116/312 866/3023 3384/5650 1426/2392 1673/2106 3022/3412 2091/2253 489/505 13067/19723

0% 37% 29% 60% 60% 79% 89% 93% 97% 66%
Top-S1 0 0 2 10 4 8 10 11 4 49

8% 28% 21% 53% 56% 69% 80% 36%
Top-S5 0 0 4 18 7 11 17 15 4 74

16% 50% 37% 73% 94% 94% 80% 55%
Align-S 0/88 59/312 1024/3023 3165/5650 1343/2392 1623/2106 2849/3412 2033/2253 483/505 12627/19723

0% 19% 33% 56% 56% 77% 83% 90% 95% 64%
†Each column represents a different range of sequence identity level, e.g., column 4 (4–6%) represents the pairs with the sequence identity level
at 4–6%. Total is the total number of pairs in a particular sequence-identity range. Top-A1 and Top-A5 represent the numbers of pairs whose
templates are ranked in top one and top five, respectively; and Align-A denotes the averaged alignment accuracy over all pair alignments in a
particular sequence-identity range. All -S terms are defined similarly.

TABLE III. Rank Distribution of the Correct Templates†

1–5 6–10 11–15 16–20 21–25 26–30 31–35 3–40 41–45 46–50 51–75 76–100 101-

Train-A 121 7 5 3 4 4 0 3 6 5 5 3 9
(175) 69% 4% 3% 2% 2% 2% 0% 2% 3% 3% 3% 2% 5%
Test-A 94 9 4 2 8 5 2 1 1 2 6 1 2
(137) 69% 7% 3% 1% 6% 4% 1% 1% 1% 1% 4% 1% 1%
Train-S 102 11 9 4 3 0 5 2 2 5 14 5 13
(175) 58% 6% 5% 2% 2% 0% 3% 1% 1% 3% 8% 3% 7%
Test-S 76 6 4 6 6 3 2 5 1 5 10 10 3
(137) 55% 4% 3% 4% 4% 2% 1% 4% 1% 4% 7% 7% 2%
†Each column represents the number of pairs whose templates are ranked in that range, e.g., 121 pairs out of 175 have their templates ranked in
top five, etc. The rows give the ranking distribution of the templates for the training and testing sets, respectively. -A is for results using all four
energy terms, and -S is for results using all but the pair-contact term.
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mounted on one b-strand of a b-sheet in contact with
another segment of 1octc mounted on the other b-strand of
the b-sheet. This is difficult for the fold of 1octc, whose
favorable pairwise interactions are between a-helices.
This probably explains why the pair terms find the pair-
contact pattern exhibited in 1gria as unfavorable and
down-ranked this template to the number 8, while our
energy function without pair potentials cannot distinguish
the two.

Threading Performance for the Fold-Family Set

Scaling factors are determined for the fold-family set
through a separate training process, similar to the one
above. PROSPECT aligned 23% and 20% of the alignable
residues correctly for the training and testing sets, respec-
tively. These numbers may be compared to 21% and 18%,
respectively, without using the pair-contact potentials.
For fold recognition, PROSPECT ranked 20% of the tem-
plates in the top five by the target sequences for both the
training and testing sets. This number may be compared
to 15% and 18%, respectively, without using the pair term.
Table V summarizes the detailed performance for the
fold-family set. It is interesting to note that PROSPECT’s
performance level is significantly lower for this set than for
the superfamily set even comparing proteins with similar
sequence identity levels. The poor performance for the
fold-family echoes the general performance level in CASP3
in this category, where only a few predictions were success-
ful in this category. More discussion on this is given in the
Discussion.

Threading With Predicted Secondary Structure

The PHD program12 predicts the secondary structures
by assigning three numerical scores to each residue as the
probabilities of its being in a {a-helix, b-strand, loop},
respectively. Each score ranges from 0 to 9: 0 for the lowest
probability and 9 for the highest. We use the following
function to measure the overall consistency of the PHD-
predicted secondary structure of the target sequence with
the PROSPECT-aligned secondary structure of the tem-
plate:

Ess

5 2 O
aligned residue ai

score~xuai aligned to secondary struct x!,

(3)

where score(x | ai) is the PHD score for the secondary
structure type x at residue ai, and where x is the secondary
structure type of the template position to which ai is
aligned. This reward function multiplied by its scaling
factor vss was added to our energy function (Eq. 1). The
value vss 5 0.039 was determined through optimizing the
average alignment accuracy for the training set (with all
the other parameters fixed). Using the PHD-predicted
secondary structure, PROSPECT improves its average
alignment accuracy from 66–70% to 73–74% for the super-
family set and from 20–23% to 28–29% for the fold-family
set (there is a slight difference between the training and
testing sets). Table VI provides detailed results.

Threading Performance With Constraints

All performance results presented above are achieved
fully automatically by PROSPECT. Our experience, par-
ticularly with the CASP3 prediction exercise,22,23 has
shown that human expert input could further improve the
threading performance if partial structural information
exists for particular target proteins. We now give a few
examples.

Example 1 (application of disulfide bond):

The protein pair 1bnd-2tgi is part of our superfamily
training set. 1bnda (119 residues) is the brain derived
neurotrophic factor; 2tgi (112 residues) is the transforming
growth factor-b2. The sequence identity between the struc-
turally alignable positions (49 in all) of the two is 16%.
PROSPECT ranked 2tgi the 127th for the target sequence
1bnda and aligned none of the alignable residues correctly.
We found in its PDB file that residues 58 and 109 of 1bnda
form a disulfide bond. When this constraint was intro-
duced into the threading process (Information-Constrained
Threading section), PROSPECT correctly aligned 36 out of
49 structurally-alignable residues and ranked 2tgi the
24th.

Example 2 (application of active site)

This example is from our CASP3 predictions 23. The
target protein is t0053 (CbiK protein with 264 residues).
The correct template fold is 1ak1 (310 residues). The
sequence identity between t0053 and 1ak1 is 11.2%.
Though PROSPECT recognized 1ak1 as a template of
t0053, it aligned only 1 out of its 13 core secondary
structures with no residue shift. We found that 1ak1 has
an active site at His-183.24 Using the BLOCK search,25 we
identified His-145 of t0053 as the corresponding active
site. We then ran PROSPECT using the constraint that
His-145 of t0053 is aligned with His-183 of 1ak1. The new
PROSPECT alignment has five core secondary structures
aligned with no residue shift and seven more cores are
aligned within four-residue shift from SARF’s alignment.

Fig. 6. The fold templates for the target sequence 1octc. a: The
correct fold 1fjla. b: The wrong fold 1gria, which is ranked number 1 in
threading without using the pair-contact potential. This figure was made
using VMD.27
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Example 3 (application of position-dependent
profile)

This example is also from our CASP3 predictions.23 The
target sequence is t0083 (cyanase with 156 residues). The
correct template is 1adr (76 residues). There is 10% sequence
identity for the 58 alignable residues. PROSPECT correctly
identified 1adr as the template of t0083, but aligned none of
the 58 residues correctly. We then generated a position-
dependent profile of the target sequence using the SAM
server,18,19 and applied it in PROSPECT, using an addi-
tional pseudo-energy term for the profile:

Eprofile 5 O
i

O
j

p~i, j!emutate~j, ti!, (4)

where i is a position on the target sequence, j is an amino
acid type, ti is the amino acid type of the template residue
aligned with the position i, p(i; j) is the probability of the
amino acid type j on the position i, and emutate(j; ti) is the
compatibility of substituting amino acid type j by amino
acid type ti. With the added information, PROSPECT
correctly aligned 34 residues.

DISCUSSION

It is clear to us that our pair-contact potential terms are
fairly noisy and could potentially be improved. Our pair

terms are currently calculated using the following simple
formula:

log1
the number of observed

x-y pairs within our cutoff
the number of expected occurrences

of x-y pairs within the cutoff
2, (5)

where the expected number of occurrences by the x-y pair
is calculated with the assumption that x and y are
independent. An implicit assumption used in our current
calculation is that these numbers have uniform distribu-
tions across different environments (defined by secondary
structure and solvent accessibility). This is generally not
true as we have found. Figure 7 shows that the “informa-
tion content” [defined by the absolute value of Eq. (5),
multiplied by 1,000] is quite different for the Arg-Asp pair
when both are in a-helices and both in b-strands. Mixing
them, as we have been doing, as one case has definitely
reduced the information content (and signal-to-noise ratio)
and hence the discriminating power of the pair-contact
potentials. In the same analysis, we have also found that
the distance-range in which information content is high
(defined by some cutoff) varies from pair to pair. This
suggests that a uniform cutoff for all pairs under all

TABLE V. Threading Performance Vs. Sequence Identity: Fold-Family†

Seq identity Total 1–6% (1) 7–9% (5) 9–12% (33) 13–15% (34) 16–18% (22) 19–21% (3) 22–24% (2) Overall (100)

Train Top-A5 0 0 5 10 3 0 2 20
15% 29% 14% 0% 100% 20%

Align-A 0/36 39/311 370/2063 528/2320 358/1863 52/186 69/78 1416/6280
0% 13% 18% 23% 28% 28% 88% 23%

Top-S5 0 0 3 7 3 0 2 15
9% 21% 14% 0% 100% 15%

Align-S 0/36 51/311 370/2063 524/2320 291/1863 52/186 69/78 1357/6280
0% 16% 18% 23% 22% 28% 88% 21%

Total (1) (3) (27) (36) (13) (5) (1) (87)

Test Top-A5 0 0 3 9 4 0 1 17
11% 24% 30% 0% 100% 20%

Align-A 37/46 67/123 296/2027 672/2565 66/863 7/248 36/38 1181/5910
80% 54% 15% 26% 8% 3% 95% 20%

Top-S5 0 0 3 9 3 0 1 16
11% 24% 23% 0% 100% 18%

Align-S 32/46 67/123 293/2027 658/2565 16/863 0/248 36/38 1102/5910
70% 54% 14% 25% 2% 0% 95% 18%

†Each column represents a different range of sequence identity level. Total is the total number of pairs in a particular sequence-identity range.
Top-A5 represents the number of pairs whose templates are ranked in top five; and Align-A denotes the averaged alignment accuracy over all pair
alignments in a particular sequence-identity range. All -S terms are defined similarly.

TABLE VI. Threading Performance With Predicted Secondary Structures†

Set 1–6% 7–9% 9–12% 13–15% 16–18% 19–21% 22–24% 25–27% 28–30% Overall

Superfamily-train 68% 22% 58% 64% 73% 87% 89% 84% 89% 74%
Superfamily-test 39% 38% 49% 67% 67% 82% 89% 93% 98% 73%
Fold-family-train 0% 12% 26% 31% 29% 60% 90% — — 29%
Fold-family-test 80% 55% 22% 35% 17% 20% 92% — — 28%
†Each column represents a different range of sequence identity level. Each row represents the averaged alignment accuracy among pairs with a
particular level of sequence identity for each of the four sets: the training and testing sets of the superfamily set, and the training and testing sets
of the fold-family set.
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different environments is probably not appropriate. Fur-
ther research is planned to design more sensitive pair
terms.

As we have shown, PROSPECT’s performance is signifi-
cantly worse for the fold-family set than for the superfam-
ily set. A number of key factors contribute to the poor
performance for this set.

Proteins of the same fold-family have much larger
variation than proteins of the same superfamily. They
generally have a larger RMSD between their alignable
core elements than their counterparts from the same
superfamily, and their peripheral elements of secondary

structure and turn regions can have significantly different
lengths and conformations26 Hence, the solvent accessibil-
ity, the secondary structure type, and the Cb pairs of the
template are less transferable to the target protein; and
the threading energy has less discerning power.

The large variation in the secondary structures of periph-
eral elements, among proteins of the same fold-family, has
also caused problems. Figure 8 shows an example in which
the target protein has a short loop where the template has
a long region containing two b-sheets. PROSPECT did not
align a single residue correctly, mainly because deletions
of secondary structures are not allowed. If we manually
delete the long peripheral region in the template (residues
462–515), PROSPECT aligns 26 out of 63 structurally
alignable residues correctly against this modified tem-
plate. This suggests that PROSPECT’s threading algo-
rithm needs more flexibility.

In our analysis of the computational results, we also
found that certain templates tend to be ranked high for
many target sequences, indicating that the baseline thread-
ing scores (typical threading score against an arbitrary
protein sequence) for these templates are relatively high
compared to the other templates. We are currently attempt-
ing to find a method to determine the baseline score for
each template. The goal is to replace our current raw
threading score by a significance score through deducting
the baseline scores.

In summary, we have described a new computer pro-
gram for the globally-optimal threading problem and
presented an analysis of its performance for a fairly large
data set. We have also identified a number of research
issues for further improvements.
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Fig. 7. Information content. The x-axis is the distance axis in Å and the
y-axis is the information content. The solid line with circles is the
information content measure for the Arg-Asp pair when both are in
b-strands. The dashed line with triangles is for the same pair when both
are in a-helices. The dotted line with squares is the information content
when not distinguishing the secondary structure types. The distance is
calculated between the Cb atoms.

Fig. 8. A target-template pair with
1exg (a) as the target and 1knb (b) as
the template. The thicker lines show
the corresponding peripheral elements
(residues 45–52 for 1exg and residues
462–515 for 1knb). This figure was
made using VMD27
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APPENDIX I: THE TRAINING SET IN THE SUPERFAMILY†

1aba-1grx 1aboa-1ckaa 1acf-1pne 1aera-1ddt 1agg-1eit 1agt-1gpt 1ahsa-1bvp1 1ash-2fal
1baba-1mbd 1bbha-2ccya 1bbpa-1hbq 1bbt1-1pov1 1bbt1-2mev1 1bbt2-2stv 1bcfa-1riba 1bco-1itg
1bdo-1ghj 1bera-1lea 1bfma-1tafa 1bgc-1hula 1bgc-1lki 1bgc-1rcb 1bgc-1rmi 1bgc-2gmfa
1bia-1lea 1bmda-1ldm 1bnda-2tgi 1bova-1prtf 1brha-1rgea 1broa-1thta 1btn-1dyna 1btn-1mai
1c53-1fcdc 1c53-451c 1cc5-1cyj 1cdka-1csn 1cds-3ebx 1cem-1clc 1cewi-1mola 1cfb-1ten
1chka-1192 1cis-2seci 1cmba-1myla 1cnsa-1sly 1cpca-1cpcb 1csma-1ecma 1ctf-1ptf 1cus-3tgl
1cyj-1ycc 1cyj-2mtac 1cyj-451c 1cyx-1occb 1din-1whtb 1dlha-1dlhb 1dlhb-1hila 1dlhb-1hsba
1dtr-1hsta 1dtr-1lea 1eaf-3cla 1ecfb-1opr 1egf-1hae 1epaa-1hbq 1epaa-1mup 1erd-2erl
1erv-1gp1a 1erv-1thx 1etd-2hts 1fc1a-1hila 1fim-1otga 1fipa-1rnl 1fjla-1lfb 1fjla-1yrnb
1flp-1itha 1flp-1mbd 1fmb-1hvc 1fmb-2rspa 1fnc-1ndh 1fnf-1ten 1fnf-2hft 1fnf-3hhrb
1frd-1put 1gdha-2dlda 1gky-1ukz 1gln-2ts1 1gpt-1pnh 1gtpa-1gtqa 1hae-3tgf 1hcna-1pdga
1hcnb-1pdga 1hcra-1idy 1hfc-1iae 1hfc-1sat 1hfh-1tpg 1higb-2ilk 1hlb-1mbd 1hleb-7apib
1hmcb-3inkc 1hmf-1hrya 1hnf-3cd4 1hpt-2ovo 1hula-2ilk 1huma-3il8 1hura-1tag 1huw-1lki
1hxpa-1kpaa 1hyha-1ldm 1ica-1gpt 1igd-2ptl 1isdb-1rsy 1itg-1vsd 1kifa-1pbe 1kte-1thx
1l92-1sly 1lbu-1vhh 1lcl-1slta 1lmb3-1neq 1lmb3-1r69 1lpe-2asr 1ltsd-1prtf 1lzr-1sly
1mbd-2gdm 1mbg-1pdnc 1mfa-3cd4 1mfa-7fabh 1mmod-1riba 1mola-1stfi 1mup-1obpa 1myla-1fjla
1ncm-1tlk 1ncm-1vcaa 1ncx-1rro 1ncx-1sra 1ncx-2scpa 1ncx-4icb 1npk-1ris 1ntr-1rnl
1octc-1fjla 1orta-8atca 1osa-1rec 1prs-2bb2 1prtd-1prtc 1pvua-1rvaa 1qrda-1rcf 1r69-1octc
1rcb-3inkc 1rcf-4fx2 1rgea-9rnt 1riba-1xsm 1ris-1urna 1rnl-1troa 1rnl-3chy 1rpa-3pgm
1ryc-1scha 1slta-2ayh 1svpa-1try 1svr-1vil 1sxl-1urna 1tgxa-3ebx 1try-2pkab 1tuc-1gria
1vcaa-1wit 1vhia-2pii 1vin-1vola 1wdcb-1wdcc 1whta-1ysc 1xnb-2ayh 1yppa-2prd 1ytfc-1ytfd
1zaac-2drpa 2bpa2-2stv 2cbh-1lpba 2dri-8abp 2i1b-2ila 2omf-2por 2pcda-2pcdm
†The first entry of each pair is used as a target protein sequence and the second as a template structure.
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APPENDIX II: THE TESTING SET IN THE SUPERFAMILY

153l-1sly 1aac-1plc 1aba-1kte 1aera-1ddt 1aky-1ukz 1alo-1frra 1amg-1bpla 1amp-2ctc
1apyb-1pmap 1arb-1hava 1arv-1ryc 1aszb-1lyla 1atla-1hfc 1baba-2hbg 1bbha-1cpq 1bbrh-1try
1bbt2-1pvc2 1bbt3-1pvc3 1bbt3-1smva 1bcfa-1rci 1bdo-1ctm 1bdo-1htp 1bec-1ncm 1bec-8faba
1bera-1rgs 1bfg-2ilb 1bfma-1tafb 1bhs-1cyda 1bmv1-1dhx 1bplb-1smd 1broa-1din 1broa-1ede
1broa-1ysc 1btl-3pte 1btn-1pls 1cd8-1ctn 1cd8-1hila 1cdka-1hcl 1cem-1gai 1ceo-1ghr
1ceo-1xyza 1cewi-1std 1cfb-1ctn 1cid-1mfa 1cnv-1nar 1ctn-2ebn 1cur-2azaa 1cus-1tca
1cwpa-1smva 1cyda-1hdca 1dai-1nipa 1dbqa-1tlfa 1ddt-1mspa 1deka-1gky 1dhr-1hdca 1dlha-1hsbb
1dpe-2olba 1dsba-1thx 1dtr-1ecl 1ecpa-1pbn 1eft-5p21 1enp-1eny 1eny-1hdca 1esfa-1tssa
1esl-1lit 1esl-1rtm1 1exg-1qba 1fca-1fxd 1fim-1otfa 1flp-2fal 1fnc-2pia 1frpa-1imba
1gca-2dri 1gdha-1psda 1gdha-2nada 1gen-1hxn 1glcg-1kay 1gria-1lkka 1gsa-2dln 1gym-1isdb
1hae-1tpg 1hcl-1irk 1hilb-8faba 1hmt-1obpa 1hmy-1vid 1hpi-1isua 1hura-5p21 1igs-1ubsa
1ilr2-2i1b 1imba-1inp 1jkw-1vin 1ldm-2cmd 1led-1scs 1lkka-1mil 1lpe-256ba 1ltsd-1tiid
1lxa-1thja 1mal-2omf 1mbg-1yrna 1mfa-2dblh 1mina-1minb 1mjc-1tssa 1mml-1rtha 1mmob-1mmod
1msc-1qbea 1muca-2mnr 1ncm-1tit 1onc-7rsa 1osa-1wdcb 1paz-1plc 1pea-2dri 1pea-2liv
1plq-2pola 1pmaa-1pmap 1pmaa-1pnkb 1pona-1ponb 1ppn-1thea 1prcl-1prcm 1prn-2por 1prtd-1prtf
1pru-1r69 1ptva-1ytw 1pvc2-1pvc3 1pvc3-2mev1 1rtha-2rn2 1saca-2ayh 1scua-1scub 1smva-2tbva
1sva2-2stv 1thg-1thta 1tlfa-2dri 1vhra-1ytw 1vid-1vpt 1wdcc-1syma 2bpa1-2stv 2fal-3sdha
2sas-2scpa

APPENDIX III: THE TRAINING SET IN THE FOLD FAMILY

1aboa-1pse 1aca-1dkza 1acf-1pda 1acf-2phy 1acp-1knya 1aep-1rci 1amm-1wkt 1aps-1taq
1axn-1mzm 1axn-1occe 1bbha-1knya 1bbpa-1smpi 1bcfa-1lki 1bgh-1gpc 1bgh-1prtd 1bgw-1lba
1bia-1dcpa 1bia-1umua 1bmfg-1prcl 1bmta-1ecma 1bmta-3chy 1bnca-2rsla 1bpi-1tcp 1bw4-1ptf
1bw4-2eng 1c5a-1hula 1cgme-1occc 1cid-3ssi 1cola-1cpca 1cpca-2hbg 1ctf-1pba 1ctt-2chsa
1dar-1pkp 1dar-2pii 1dcpa-2fua 1deka-1ra9 1dera-1tif 1dhr-1qrda 1dih-1scua 1dkza-1spzz
1dlc-1lpe 1efub-1ecma 1ehs-1jud 1epaa-1sria 1eps-1tig 1etb1-1fnf 1etb1-1thv 1exg-1knb
1fc2c-1whta 1fipa-1ret 1fjla-1scha 1fnf-1kum 1fps-1lis 1frd-1guab 1hdj-1mmog 1hgxa-1opr
1hiwa-1hula 1hnf-8ruci 1hoe-1wkt 1huma-1sap 1hvc-1ytfc 1iso-1svr 1kifa-1phr 1knya-1srsa
1kpaa-1tig 1lcl-1msaa 1led-2ayh 1lepa-1qora 1lgr-1ris 1lpe-1occc 1ltsd-3il8 1lyla-1prtf
1mjc-2prd 1mli-1ris 1mspa-3dpa 1nal3-2mnr 1occa-2brd 1pdo-2liv 1prch-1whi 1psda-1ptf
1psda-1ris 1qbea-1sria 1ris-1spbp 1ris-2chsa 1rvv1-1eria 1sfe-1vsd 1sh1-2bds 1sly-2erl
1smna-1sria 1thm-2liv 1tnra-2stv 1tpg-1fbr 1troa-1utg 1udii-1yua 1xsoa-2mcm 1xxaa-2olba
1ytfb-1ecma 256ba-2mhr 2asr-1occh 2mcm-1fnf

APPENDIX IV: THE TESTING SET IN THE FOLD FAMILY

1abrb-1bfg 1alo-1ubi 1aps-1dar 1aps-1vih 1axn-1hyp 1bbha-1dkza 1bcfa-1occc 1bfg-1hce
1bgw-1cus 1bgw-1etd 1bhs-1vid 1bia-1pse 1bia-1tnt 1bip-1hyp 1bmfd-1mtnc 1bmfg-1vsga
1bmta-1scub 1bnca-1gara 1brha-1imba 1brsd-1rlr 1cewi-1oaca 1cfb-1slua 1chd-2dri 1cis-1orda
1cpq-1lpe 1cus-8abp 1dai-1deka 1dlc-1glqa 1ecma-1mbd 1eit-1lpba 1erv-1gca 1esl-1prea
1etb1-2pcda 1fkj-1grj 1frvb-3mong 1fwp-1mla 1fwp-1psda 1gdoa-1pmaa 1gln-6inse 1gria-1ihva
1grj-1rpo 1guab-1igd 1guab-1ubi 1hgxa-2liv 1hjra-2yhx 1hoe-3dpa 1hqi-2bopa 1icea-8abp
1iceb-1mla 1ido-1rnl 1igs-1luca 1jud-1nbaa 1lpe-1occa 1mml-1regx 1mola-1qbea 1mola-2bbkh
1muca-1tig 1nal3-1tph2 1obpa-2cae 1occe-1mmog 1occf-3cd4 1orc-1ret 1orda-3chy 1otga-2ctc
1ovaa-1udii 1pda-1stu 1pdga-2tgi 1pft-1tfi 1pne-2blta 1prtf-1snc 1qbea-2cba 1rci-3mdea
1rie-1svb 1rmi-1vnc 1rnl-1tag 1rvv1-1tpt 1rvv1-2dri 1sesa-2spca 1stfi-1udii 1tafa-1tfe
1tig-3dni 1tpg-1pth 1vhia-2bopa 1vsd-2yhx 1wba-2i1b 2ayh-2stv 2spca-1hgeb
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