Genome Annotation

Dong Xu

Digital Biology Laboratory Computer Science Department Christopher S. Life Sciences Center University of Missouri, Columbia http://digbio.missouri.edu

- Introduction
- Manual Curation
- Automatic Annotation
- Conclusions

What is Genome Annotation?

- Annotation is the process of interpreting raw sequence data into useful biological information by integrating computational analyses, other biological data and biological expertise
- It involves characterizing genomic features using computational and experimental methods
- Features could be repeats, genes, promoters, protein domains......

What is Genome Annotation?

Questions:

- What genes does this genome contain?
- What proteins do they encode?
- How are they regulated?
- In what interactions or pathways do the proteins participate?

Structural annotation

- Location of protein-coding genes
- Location of regions of homology with
 - other genomes
 - cDNA sequences
 - protein sequences
- Location and type of transcription regulatory elements

Functional annotation

- Molecular function of encoded proteins
- Membership in metabolic and regulatory networks

Aim: To get from here ...

-4000	<pre></pre>
	$= \begin{bmatrix} -1 & -1 & -1 & -1 & -1 & -1 & -1 & -1$
	$= \frac{1}{2} = $
	<pre></pre>
	<pre></pre>

- Complete DNA segments responsible to make functional products
- Products
 - Proteins
 - ✓ Functional RNA molecules
 - RNAi (interfering RNA)
 - rRNA (ribosomal RNA)
 - snRNA (small nuclear)
 - snoRNA (small nucleolar)
 - ✤ tRNA (transfer RNA)

Non-coding ∽ RNA

- Definition vs. dynamic concept
- Consider
 - ✓ Prokaryotic vs. eukaryotic gene models
 - ✓ Introns/exons
 - Posttranscriptional modifications
 - Alternative splicing
 - ✓ Differential expression
 - Posttranslational modifications
 - Multi-subunit proteins

Prokaryotic Gene Structure

Coding region of Open Reading Frame

Promoter region (maybe)

Ribosome binding site (maybe)

Termination sequence (maybe)

Open reading frame (ORF): a segment of DNA with two in-frame stop codons at the two ends and no in-frame stop codon in the middle

Prokaryotic gene model: ORF-genes

"Small" genomes, high gene density

✓ Haemophilus influenza genome 85% genic

Operons

One transcript, many genes

No introns

✓ One gene, one protein

Open reading frames

✓ One ORF per gene

ORFs begin with start, end with stop codon (def.)

TIGR: http://www.tigr.org/tigr-scripts/CMR2/CMRGenomes.spl

NCBI: http://www.ncbi.nlm.nih.gov/PMGifs/Genomes/micr.html

Eukaryotic Gene Structure

Genetic Code

		200	Seco	nd letter	12		
	1	U	С	А	G		
First letter	υ	$\left. \begin{matrix} UUU\\ UUC \end{matrix} \right\} Phe \\ \left. \begin{matrix} UUC\\ UUA\\ UUG \end{matrix} \right\} Leu$	UCU UCC UCA UCG	UAU UAC UAA Stop UAG Stop	UGU UGC UGA Stop UGG Trp		
	с	CUU CUC CUA CUG	CCU CCC CCA CCG	CAU CAC His CAA CAG GIn	CGU CGC CGA CGG	UCAG	Third
	A	AUU AUC AUA AUG Met	ACU ACC ACA ACG	AAU AAC AAA AAG	AGU AGC AGA AGA AGG	U C A G	letter
	G	GUU GUC GUA GUG	GCU GCC GCA GCG	GAU GAC GAA GAG GIu	GGU GGC GGA GGG	U C A G	

Reading Frame

 Reading (or translation) frame: each DNA segment has six possible reading frames

Forward strand:	ATGGCTTACGCTTG	À
Reading frame #1 ATG GCT TAC GCT TGC	Reading frame #2 TGG CTT ACG CTT GA.	Reading frame #3 GGC TTA CGC TTG A
Reverse strand:	TCAAGCGTAAGCCAT	
Reading frame #4	Reading frame #5	Reading frame #6
TCA	CAA	AAG
AGC	GCG	CGT
GTA	ТАА	AAG
AGC	GCC	CCA
CAT	AT.	Т

- Introduction
- Manual Curation
- Automatic Annotation
- Challenges or Pitfalls
- Conclusions

- Annotation for all genes in the genome has been manually reviewed by a curator and should be regarded as accurate as possible given the data available at the time of curation.
- Annotation data assigned has been based on all evidence available to the curator.
- In addition, gene models are curated to remove overlapping genes, resolve frameshifted genes, and determine the initiation codon of each gene.

- Task involves identifying Genes
- Known
- Novel
- Novel transcript
- Putative
- Pseudogene

- Known Gene Predicted gene matches the entire length of a known gene.
- Putative Gene Predicted gene contains region conserved with known gene. Also referred to as "like" or "similar to".
- Unknown Gene Predicted gene matches a gene or EST of which the function is not known.
- Hypothetical Gene Predicted gene that does not contain significant similarity to any known gene or EST.

- CDS
- mRNA
- Alternative RNA splicing
- Promoter and Poly-A Signal
- Pseudogenes
- ncRNA

 Could be as high as 20-30% of all Genomic sequence predictions could be pseudogene

Non-functional copy of a gene

- Processed pseudogene
 - Retro-transposon derived
 - No 5' promoters
 - No introns
 - Often includes polyA tail
- Non-processed pseudogene
 - Gene duplication derived
- Both include events that make the gene non-functional
 - Frameshift
 - Stop codons
- We assume pseudogenes have no function, but we really don't know!

Example Pseudogene

LOCUS	NG_00548	7	1850 bj	p DNA	linear	ROD 14-FEB-2006					
DEFINITION	Mus musc	ulus ubiquit:	in-conjuga	ting enzyme	E2 variant	2 pseudogene					
	(LOC6252	21) on chromo	osome 6.								
ACCESSION	NG_00548	7									
VERSION NG_005487.1 GI:87239965											
KEYWORDS .											
SOURCE	Mus musculus (house mouse)										
ORGANISM	Mus musc	ulus									
	Eukaryot	a; Metazoa; 🤇	Chordata; 🤇	Craniata; V	'ertebrata;	Euteleostomi;					
	Mammalia	; Eutheria; 1	Euarchonto	glires; Gli	res; Rodent	ia;					
	Sciurogn	athi; Muroide	ea; Muridae	e; Murinae;	Mus.						
REFERENCE	1 (base	s 1 to 1850)									
AUTHORS	Wilson,R	•									
TITLE	Mus musc	ulus BAC clo	ne RP24-203	1D17 from 6)						
JOURNAL	Unpublis	hed (2003)									
COMMENT	PROVISIO	NAL REFSEQ: This record has not yet been subject to final									
	NCBI rev	iew. The refe	erence sequ	uence was d	lerived from	AC121925.2.					
FEATURES		Location/Qualifiers									
source	e	11850									
		/organism="Mus musculus"									
		/mol_type="genomic DNA"									
		/db_xref="taxon:10090"									
		/chromosome="6"									
		/note="AC121925.2 3227734126"									
gene		1011750									
		/gene="LOC625221"									
		/pseudo									
		/db_xref="GeneID:625221"									
repea	t_region	17921827									
		/rpt_family=	="ID"								
ORIGIN											
	tcttctgcct	caatteetca a	agtgctagta	tcatatgccc	atgccattat	ttttaactcc					
6L (cctttttcat	gctaagaatt (gaacacacgg	ccctgcgtgc	ggtggtgcgt	ctggtagcag					
121 gagaagatgg cggtctccac aggagttaaa gttcctcgta attttcgctt gttggaagaa											

- ncRNA represent 98% of all transcripts in a mammalian cell
- ncRNA have not been taken into account in gene counts
 - ✤ cDNA
 - ORF computational prediction
 - Comparative genomics looking at ORF
- ncRNA can be:
 - ✓ Structural
 - Catalytic
 - Regulatory

From NW_632744.1

gene	complement(5510055691) /locus_tag="CR40465" /note="synonym: CR_tc_AT13310" /db_xref="GeneID:3354945"
misc_RNA	<pre>complement(5510055691) /locus_tag="CR40465" /note="This annotation is identical to the ncRNA CR_tc_AT13310 annotation, also mapped identically to 2L [20224138,20223553] last curated on Thu Jan 15 13:37:02 PST 2004" /db_xref="FlyBase:FBgn0058465" /db_xref="GeneID:3354945"</pre>

Noncoding RNA (ncRNA)

- tRNA transfer RNA: involved in translation
- rRNA ribosomal RNA: structural component of ribosome, where translation takes place
- snoRNA small nucleolar RNA: functional/catalytic in RNA maturation
- Antisense RNA: gene regulation / silencing?

Repetitive Sequence

Definition

∠DNA sequences that made up of copies of the same or nearly the same nucleotide sequence

∠Present in many copies per chromosome set

Repeat Filtering

• RepeatMasker

└ Uses precompiled representative sequence libraries to find homologous copies of known repeat families

└Use Blast

<u>http://www.repeatmasker.org/</u>

- Introduction
- Manual Curation
- Automatic Annotation
- Conclusions

Automatic Annotation

- Automated annotation describes annotation which has been generated by an computational algorithm without being further curated.
- Who does automatic annotation?
- EnsEMBL
- NCBI
- UCSC

Gene-Finding Strategies

Bulk properties of sequence:

- Open reading frames
- Codon usage
- Repeat periodicity
- Compositional complexity

Absolute properties of sequence:

- Consensus sequences
- Donor and acceptor splice sites
- Transcription factor binding sites
- Polyadenylation signals
- "Right" ATG start
- Stop codons out-of-context

Inferences based on sequence homology:

- Protein sequence with similarity to translated product of query
- Modular structure of proteins usually precludes finding complete gene

Homology-based gene prediction

- ✓ Similarity Searches (e.g. BLAST)
- Genome Browsers
- ✓ RNA evidence (ESTs)

• Ab initio gene prediction

- Gene prediction programs
- Prokaryotes
 - ORF identification
- Eukaryotes
 - Promoter prediction
 - PolyA-signal prediction
 - Splice site, start/stop-codon predictions

Homology based approaches

- Idea is new species are not produced from scratch, they are evolutionary related to extant species
- Search by local alignment programs
 ∠EST/cDNA to genome : BlastN, FASTA
 ∠Protein to genome : TBlastN

Gene prediction through comparative genomics

- Highly similar (Conserved) regions between two genomes are useful or else they would have diverged
- If genomes are too closely related all regions are similar, not just genes
- If genomes are too far apart, analogous regions may be too dissimilar to be found

Genome Browsers

Ensembl Genome Browser

www.ensembl.org/

Generic Genome Browser (CSHL)

www.wormbase.org/db/seq/gbrowse

UCSC Genome Browser

genome.ucsc.edu/cgi-bin/hgGateway?org=human

NCBI Map Viewer

www.ncbi.nlm.nih.gov/mapview/

🖻 http://www.bdgp.org/annot/apollo/

- Trops, () mmm.bagp.big) anno(apollo)

Apollo Genome Annotation and Curation Tool

	1.1.1.1					
14						
2112	(1)(1 × 1) × 10 × 1	0111948 0111948 01119 KC	Richard Charles	-46 TH1261452154 34	22.121 34	ing and the second
2000	uque ,	LOW	1.146	T T>.4P		,
	the SCISCH KI	Contras das	Entity as	();c2r4 2022-5- 10	C 21.1595 RA	Server 12 New participa
1						
						1 1

Apollo Genome Browser www.bdgp.org/annot/apollo/

Gene discovery using ESTs

- Expressed Sequence Tags (ESTs) represent sequences from expressed genes.
- If region matches EST with high stringency then region is probably a gene or pseudo gene.
 - ✓EST overlapping exon boundary gives an accurate prediction of exon boundary.

Rely on

- Identification of specific signals : start codon, stop codon, ribosomal binding site
 - The Shine-Dalgarno Sequence (AGGAGG) is the signal for initiation of protein biosynthesis in bacterial mRNA.
 - It is located 5' of the first coding AUG, and consists primarily, but not exclusively, of purines.
 - ✓ It is the ribosomal binding site.

- Rely on
- Differences in nucleotide-motif composition between
 - protein coding and non-coding sequences
 - Correct reading frame of a gene and other reading frames

Coding Signal Detection

• Frequency distribution of dimers in protein sequence (shewanella)

Name	ala	arg	asn	asp	cys	glu	gln	gly	his	ile	leu	lys	met	phe	pro	ser	thr	trp	tyr	val
ala	9.5	4.1	4.3	5.3	1.2	6	4.8	6.5	2	6.5	11.5	6	2.6	3.7	3.5	6.2	5	1.1	2.7	6.5
arg	7.9	5.5	3.9	5.3	1.1	6	5.5	5.9	2.6	6.5	11.4	5	2.2	4.7	3.6	5.5	4.4	1.4	4	6.6
asn	9.6	4.9	4.2	4.9	1	5.3	5.6	7.4	2.3	6	10	4.9	2	3.5	5.1	6.1	5.5	1.5	3.1	6.1
asp	9.3	4	4.7	5.1	1	6.7	2.9	7	1.8	7.1	9.6	6.3	2.3	4.3	3.9	5.9	5.1	1.6	3.6	6.6
cys	8.4	4.8	3.3	5.4	1.7	5.6	5.2	8.1	4.3	5.4	10.2	3.8	1.8	4.1	4.5	6.3	4.3	1.6	3.4	6.8
glu	9.4	5.8	3.6	4.5	0.8	4.9	7	5.8	2.6	5.9	12.7	5	2.4	4	3.5	5.4	5	1.1	2.8	6.8
gln	10.3	4.9	3	4.4	0.9	4.5	6.8	7	2.7	5.5	12.8	4.1	2	3.9	3.8	5.8	5.3	1.4	3	6.9
gly	8.1	4.8	3.9	5.1	1.2	6	4.6	6.4	2.4	6.8	10.5	5.8	2.7	4.8	2.4	5.8	5.1	1.4	3.7	7.5
his	7.3	4.7	4	4.8	1.5	4.9	5.6	6.9	3	6.2	10.8	4.8	1.6	5	5.2	6.8	4.9	1.7	4.2	5.1
ile	11	4.7	4.9	6.5	1.1	6.9	3.6	7.2	2.1	5.3	8.6	5.3	1.8	3.2	4.2	7	5.6	0.9	2.9	6.1
leu	10.4	4.2	4.3	5.2	1.1	5.2	3.7	6.8	2	5.6	10.6	5.3	2.3	3.8	4.5	7.4	6.2	1	2.6	6.6
lys	10.6	5.2	3.8	5.2	0.5	5.3	5.9	6.6	2.6	5.2	11.3	4.7	1.9	2.8	4.6	6	5.5	1.2	2.6	7.6
met	10.8	4.8	3.8	4.6	0.7	4.6	4.9	7	1.7	4.7	11.4	5.2	2.8	3.3	5.1	7.4	6.3	0.9	2	6.8
phe	9.6	3.7	5.2	6.5	1.2	6.4	2.7	7.9	1.9	6.7	7.4	5	2.5	3.9	3.6	8	5.8	1.3	3.3	6.3
pro	8.4	3.6	4.6	5.4	0.7	7.6	5.2	5.4	2.3	6.1	11.2	5.5	2.4	4.2	2.8	6.5	5.4	1.4	2.9	7.5
ser	9.1	4.6	3.7	5	1	5.4	5.2	7.2	2.6	6	11.6	4.5	2.2	4.1	4.1	6.5	5	1.2	3.2	6.8
thr	9.1	4.2	3.7	5.6	0.9	5.7	5.7	7.5	2.2	5.5	12	4.2	2	3.5	5.5	6.2	5.3	1.1	2.6	6.7
trp	7.1	6.3	3.2	4.8	1.3	3.9	8.5	6.6	3.6	5	14.2	3.2	2.4	4.6	3.9	5.8	4.3	1.3	3	6.1
tyr	7.9	6.5	3.6	4.9	1.2	4.5	7	7.1	2.6	5	11.7	4	1.6	4.7	4.9	6.4	4.6	1.5	3.4	5.7
val	9.6	4.1	4.4	5.9	1	6.2	3.4	6.4	1.8	6.5	10.2	5.2	2.5	3.7	3.8	7.2	6.1	1.1	2.7	7.1

The average frequency is 5%

Some amino acids prefer to be next to each other

Some other amino acids prefer to be not next to each other

Compositional differences

- Nucleotides in coding and non-coding regions evolve under different constraints
- First and second codon position are constrained by the encoded amino acid
- Third codon position is subject to mutational and translation efficiency constraints
- Nucleotide in non-coding regions can evolve independently

Prokaryotes

VORF-Detectors

- Eukaryotes
 - Position, extent & direction: through promoter and polyA-signal predictors

Structure: through splice site predictors

Exact location of coding sequences: through determination of relationships between potential start codons, splice sites, ORFs, and stop codons

Gene prediction programs

Rule-based programs

Use explicit set of rules to make decisions.
 Example: <u>GeneFinder</u>

Neural Network-based programs

✓ Use data set to build rules.

✓ Examples: <u>Grail</u>, <u>GrailEXP</u>

• Hidden Markov Model-based programs

✓ Use probabilities of states and transitions between these states to predict features.

✓ Examples: <u>Genscan</u>, <u>GenomeScan</u>

Tools for Annotation

- EnsEMBL (EBI)
- Sequin (NCBI)
- PseudoCAP (SFU)
- GMOD (CSHL)
- Pegasys (UBiC)
- Apollo (EBI/Berkeley)

Tools for Annotation

- ORF detectors
 - ✓ NCBI: <u>http://www.ncbi.nih.gov/gorf/gorf.html</u>
- Promoter predictors
 - CSHL: http://rulai.cshl.org/software/index1.htm
 - BDGP: <u>fruitfly.org/seq_tools/promoter.html</u>
 - ✓ ICG: <u>TATA-Box predictor</u>
- PolyA signal predictors
 - CSHL: argon.cshl.org/tabaska/polyadq_form.html
- Splice site predictors
 - BDGP: <u>http://www.fruitfly.org/seq_tools/splice.html</u>
- Start-/stop-codon identifiers
 - ✓ DNALC: <u>Translator/ORF-Finder</u>
 - ∠ BCM: <u>Searchlauncher</u>

Ensembl Automatic Annotation Process -2

Ensembl Automatic Annotation Process -3

Map cDNAs and ESTs using Exonerate (determine coverage, % identity and location in genome)

Store hits and filter on percentage identity and length coverage

ESTs and cDNA

blast sequence and create a miniseq

Run est2genome on miniseq (determine strand, splicing)

Map transcripts back into genome-assembly

Miniseq - the need for speed

NCBI GenBank Features

-10_signal -35_signal 3'clip 3'UTR 5'clip 5'UTR attenuator CAAT_signal CDS conflict C_region D-loop D_segment enhancer exon

GC_signal gene **iDNA** intron J_segment LTR mat_peptide misc_binding misc difference misc_feature misc_recomb misc RNA misc_signal misc_structure modified base

mRNA N_region old_sequence polyA_signal polyA_site precursor_RNA primer bind prim_transcript promoter protein_bind RBS repeat_region repeat_unit rep_origin rRNA

satellite scRNA sig_peptide snoRNA snRNA S_region stem_loop STS TATA_signal terminator transit_peptide tRNA unsure variation V_region V_segment

About Entrez

Entrez Genome Project Home Overview Help Statistics

Sequencing Centers

Submitting

Project Submissions Project Instructions General Genome Submissions Feature Tables Bacterial Genome Submissions Whole Genome Shotgun Sequences

Related Resources DOE Projects DOE SAI Survey Genome News Network Genomes OnLine Database IntiGenome NHGRI Projects NIAID Projects TIGR Projects Welcome to the NCBI Entrez Genome Project database. This searchable database is a collection of complete and incomplete large-scale sequencing, assembly, annotation, and mapping projects for cellular organisms. The database is organized into organismspecific overviews that function as portals from which all projects in the database pertaining to that organism can be browsed and retrieved. <u>Read more...</u>

NCBI Resources

Entrez Gene gene-related information

Entrez Genome sequence and map data from whole genomes **Eukaryotic Projects** eukaryotic-specific genome projects Genomic Biology organism-specific links Prokaryotic Projects prokaryotic-specific genome projects Organellar Genomes organellar reference sequences and tools Plant Genomes major plant genome projects RefSeq the reference sequence project Viral Genomes viral reference sequences and tools WGS Sequences whole genome shotgun sequences

NCBI Tools

<u>COGs</u> clusters of orthologous groups <u>GenePlot</u> pairwise comparison of protein homologs <u>Genomic BLAST</u>

with complete and unfinished genomes

Updates

Proposal to Improve the use of Locus Tags in Microbial Genomes

NCBI and ASM have a joint proposal to improve the use of locus tags in microbial genomes. An updated search interface is available <u>here</u>.

- in order to assign function, all predicted ORF's are translated to amino acid sequence and analysed by homology searches against sequence databases (usually Genbank)
- for each ORF there are three possible results -
- i) clear sequence homology indicating function
- ii) blocks of homology to defined functional motifs
- these <u>should</u> be confirmed experimentally
- iii) no significant homology or homology to proteins of unknown function

- Introduction
- Manual Curation
- Automatic Annotation
- Conclusions

Challenges or Pitfalls

- First and last exons difficult to annotate because they contain UTRs.
- Smaller genes are not statistically significant so they are thrown out.
- Algorithms are trained with sequences from known genes which biases them against genes about which nothing is known.

- Trust but verify
- Beware of gene prediction tools!
- Always use more than one gene prediction tool and more than one genome when possible.
- Active area of bioinformatics research, so be mindful of the new literature in this.

- <u>http://www.genome.org/cgi/content/full/15/12/1</u>
 <u>777</u>
- Play with ORF Finder <u>http://www.ncbi.nlm.nih.gov/gorf/gorf.html</u>
- Study Microbial Genomes Resources
 <u>http://www.ncbi.nlm.nih.gov/genomes/MICRO</u>

 <u>BES/microbial_taxtree.html</u>

Teaching through Undergraduate Research in Microbial Genome Annotation

Cheryl Kerfeld, Ph.D. Seth Axen Education Program DOE Joint Genome Institute Walnut Creek, California

Thursday, Sept 24, 2009 1:00—2:30 pm Monsanto Auditorium Bond Life Sciences Center

This file is for the educational purpose only. Some materials (including pictures and text) were taken from the Internet at the public domain.