Protein Function Prediction

Jianlin Cheng, PhD

Department of Computer Science
Informatics Institute

2009
References

• Slides and documents at: www.geneontology.org
Widely Used Systems for Protein Function Definition

- Enzyme Commission (EC), Transporter Classification (TC)
- Riley scheme: assign prokaryotic gene products to cellular processes
- The MIPS Functional Catalogue (FUNCAT): extension of Riley to all three kinds of life
- Kyoto Encyclopedia of Genes and Genomes (KEGG)
- **Gene Ontology (GO)**: molecular function, biological process, and cellular component.
Gene Ontology widely adopted
Gene Ontology

- **Biological process ontology**
 Which process is a gene product involved in?

- **Molecular function ontology**
 Which molecular function does a gene product have?

- **Cellular component ontology**
 Where does a gene product act?
Where is it?

Cell Structure
- Mitochondrion
- Rough endoplasmic reticulum
- Cell membrane
- Cytoplasm
- Nucleolus
- Chromatin
- Ribosomes
- Nuclear membrane

GO cellular component term:
GO:0005743

Mitochondrial p450
What does it do?

substrate + O₂ = CO₂ + H₂O product

monooxygenase activity

GO molecular function term:
GO:0004497
Which process is this?

electron transport

http://ntri.tamuk.edu/cell/mitochondrion/krebpic.html

GO biological process term:
GO:0006118
Nucleic acid binding is a type of binding.

DNA binding is a type of nucleic acid binding.
Biological process ontology

Adaxial/abaxial pattern formation is a type of pattern specification.

Adaxial/abaxial pattern specification is a part of adaxial/abaxial pattern formation.
membrane-bound organelle is a type of organelle

nucleus is part of the intracellular domain
Categorizing gene products is called ‘annotation’.

The gene product *inner no outer* is involved in adaxial/abaxial axis specification.
The gene product *inner no outer* has transcription factor activity.
The gene product *inner no outer* is active in the nucleus.
Fun: Biological Process

courtship behavior
The Gene Ontology is like a dictionary

each concept has:

• a name

• a definition

• an ID number

• Parent nodes

term: transcription initiation

id: GO:0006352

definition: Processes involved in the assembly of the RNA polymerase complex at the promoter region of a DNA template resulting in the subsequent synthesis of RNA from that promoter.

Parent nodes: GO:0002221, is-a
Current State of Function of Model Genome Annotation

Figure 1: Extent of annotation of proteins in model species. For each species, the charts give the fractions and numbers of annotated and unannotated proteins, according to the three ontologies of the GO annotation. The numbers are based on the Entrez Gene and the WormBase databases as of September 2006.

Sharan et al., Molecular Systems Biology, 2007
Whole genome analysis
(J. D. Munkvold et al., 2004)
...analysis of high-throughput data according to GO

MicroArray data analysis

Bregje Wertheim at the Centre for Evolutionary Genomics, Department of Biology, UCL and Eugene Schuster Group, EBI.
Simple Function Prediction

• The easiest way to infer the molecular function of an uncharacterized sequence is by finding an obvious (highly sequence-similar) and well-characterized homologue.

• BLAST (sequence-sequence local alignment tool)

• PSI-BLAST (profile-sequence local alignment tool)

• Problem: many proteins do not have obvious homologs
AmiGO: BLAST Query Results

Database: go_20070107-seqdblite.fasta
103,515 sequences; 47,470,660 total letters.
Searching... 10... 20... 30... 40... 50... 60... 70... 80... 90... 100% done

<table>
<thead>
<tr>
<th>Sequences producing High-scoring Segment Pairs:</th>
<th>High Score</th>
<th>Probability P(N)</th>
<th>Probability N</th>
</tr>
</thead>
<tbody>
<tr>
<td>UNIPROT</td>
<td>P22303 - symbol: ACES_HUMAN "ACHE: Acetylcholinesterase"</td>
<td>3113</td>
<td>0.</td>
</tr>
<tr>
<td>UNIPROT</td>
<td>P23795 - symbol: ACES_BOVIN "ACHE: Acetylcholinesterase"</td>
<td>2913</td>
<td>4.3e-304</td>
</tr>
<tr>
<td>MGI</td>
<td>MGI:87876 - symbol: Ache "acetylcholinesterase" species</td>
<td>2808</td>
<td>5.7e-293</td>
</tr>
<tr>
<td>ZFIN</td>
<td>ZDB-GENE-010906-1 - symbol: ache "acetylcholinesterases"</td>
<td>1401</td>
<td>9.5e-205</td>
</tr>
<tr>
<td>UNIPORT</td>
<td>P06276 - symbol: CHEL_HUMAN "ACHE, CHE1: Cholinesterase"</td>
<td>1680</td>
<td>2.0e-173</td>
</tr>
<tr>
<td>MGI</td>
<td>MGI:894278 - symbol: Bcche "btrycholinesterase" species</td>
<td>1644</td>
<td>1.3e-169</td>
</tr>
<tr>
<td>FB</td>
<td>FBgn00000024 - symbol: Ace "Acetylcholine esterase" species</td>
<td>742</td>
<td>5.7e-99</td>
</tr>
<tr>
<td>UNIPORT</td>
<td>Q9N294 - symbol: NLN3_HUMAN "NLN3, KIAA1480, NL3...</td>
<td>635</td>
<td>3.8e-83</td>
</tr>
<tr>
<td>MGI</td>
<td>MGI:2444609 - symbol: NLn3 "neuroligin 3" species:100...</td>
<td>634</td>
<td>4.8e-83</td>
</tr>
<tr>
<td>UNIPORT</td>
<td>Q8NQ7 - symbol: NLN1_HUMAN "NLN1, KIAA1070: Neu...</td>
<td>580</td>
<td>1.2e-76</td>
</tr>
<tr>
<td>MGI</td>
<td>MGI:2179435 - symbol: NLn1 "neuroligin 1" species:100...</td>
<td>577</td>
<td>6.8e-76</td>
</tr>
<tr>
<td>UNIPORT</td>
<td>P30122 - symbol: CEL_BOVIN "CEL: Bile salt-activat...</td>
<td>707</td>
<td>2.5e-70</td>
</tr>
<tr>
<td>UNIPORT</td>
<td>Q9N1D1 - symbol: Q9N1D1_9PRIM "CEL: Carboxylesterase...</td>
<td>686</td>
<td>8.5e-68</td>
</tr>
<tr>
<td>UNIPORT</td>
<td>Q5T7U7 - symbol: Q5T7U7_HUMAN "CEL, RP11-32L24.2...</td>
<td>678</td>
<td>3.0e-67</td>
</tr>
<tr>
<td>UNIPORT</td>
<td>P19835 - symbol: CEL_HUMAN "CEL, BAL: Bile salt-ac...</td>
<td>678</td>
<td>3.0e-67</td>
</tr>
<tr>
<td>ZFIN</td>
<td>ZDB-GENE-050626-67 - symbol: zgc:112377 "zgc:112377...</td>
<td>678</td>
<td>3.0e-67</td>
</tr>
<tr>
<td>MGI</td>
<td>MGI:95432 - symbol: Es22 "esterase 22" species:10090...</td>
<td>670</td>
<td>2.1e-66</td>
</tr>
<tr>
<td>UNIPORT</td>
<td>P23141 - symbol: EST1_HUMAN "CES1, CES2, SES1: Liv...</td>
<td>663</td>
<td>1.1e-65</td>
</tr>
<tr>
<td>MGI</td>
<td>MGI:95420 - symbol: Es1 "esterase 1" species:10090 "Mu...</td>
<td>658</td>
<td>3.9e-65</td>
</tr>
<tr>
<td>FB</td>
<td>FBgn0029690 - symbol: CG6414 "CG6414" species:7227 "Dros...</td>
<td>585</td>
<td>1.1e-64</td>
</tr>
<tr>
<td>UNIPORT</td>
<td>000748 - symbol: EST2_HUMAN "CES2, ICE: Carboxylester...</td>
<td>653</td>
<td>1.3e-64</td>
</tr>
<tr>
<td>MGI</td>
<td>MGI:88378 - symbol: Cse1 "carboxylesterase 1" species...</td>
<td>648</td>
<td>4.5e-64</td>
</tr>
<tr>
<td>FB</td>
<td>FBgn0051146 - symbol: CG31146 "CG31146" species:7227 "Dros...</td>
<td>654</td>
<td>1.4e-63</td>
</tr>
<tr>
<td>MGI</td>
<td>MGI:2148202 - symbol: Ces3 "carboxylesterase 3" species...</td>
<td>625</td>
<td>1.2e-61</td>
</tr>
<tr>
<td>MGI</td>
<td>MGI:2681835 - symbol: NLn2 "neuroligin 2" species:100...</td>
<td>624</td>
<td>1.6e-61</td>
</tr>
<tr>
<td>UNIPORT</td>
<td>Q8NFZ4 - symbol: NLN2_HUMAN "NLN2, KIAA1366: Neu...</td>
<td>621</td>
<td>3.2e-61</td>
</tr>
</tbody>
</table>
Score = 3113 (1100.9 bits), Expect = 0., P = 0.
Identities = 580/614 (94%), Positives = 580/614 (94%)

Query: 1 MRPPQC XXXXXX...GGGVEAEGRDEALLLVTRGGRGLRGLK...PGPVPV 60
 MRPPQC GGGVEAEGRDEALLLVTRGGRGLRGLK...PGPVPV 60
Sbjct: 1 MRPPQC LLL 60

Query: 61 SAFLGIPEAPMPGRRFLPPEPKQPWSGVDAATTTFQSVCYQYDLYPGFEGTEMWNPN 120
 SAFLGIPEAPMPGRRFLPPEPKQPWSGVDAATTTFQSVCYQYDLYPGFEGTEMWNPN 120
Sbjct: 61 SAFLGIPEAPMPGRRFLPPEPKQPWSGVDAATTTFQSVCYQYDLYPGFEGTEMWNPN 120

Query: 121 RELSEDCLYNVTYPFRTPSTTPVVLWY...SSLDYVDFRLVQAERTVLSM 180
 RELSEDCLYNVTYPFRTPSTTPVVLWY...SSLDYVDFRLVQAERTVLSM 180
Sbjct: 121 RELSEDCLYNVTYPFRTPSTTPVVLWY...SSLDYVDFRLVQAERTVLSM 180

Query: 181 NYRVAGFGLALPGSREPAGNVGLLDQRLALQWQVENAAFGGDPTSVTIFGESAGAASV 240
 NYRVAGFGLALPGSREPAGNVGLLDQRLALQWQVENAAFGGDPTSVTIFGESAGAASV 240
Sbjct: 181 NYRVAGFGLALPGSREPAGNVGLLDQRLALQWQVENAAFGGDPTSVTIFGESAGAASV 240

Query: 241 GMHLLSPFSRLFG...RAVLQSGAPNFVATVMGMEARRATQLAHLVGCPGGTG...NDTEL 300
 GMHLLSPFSRLFG...RAVLQSGAPNFVATVMGMEARRATQLAHLVGCPGGTG...NDTEL 300
Sbjct: 241 GMHLLSPFSRLFG...RAVLQSGAPNFVATVMGMEARRATQLAHLVGCPGGTG...NDTEL 300
Integrative Approaches

• Similarity grouping
• Phylogenomics
• Sequence patterns
• Sequence clustering
• Machine learning
• Network approach
• Results: at least coarse functional characterization
Similarity Group Methods

Idea: Similarly, the sequences found in a similarity search will usually share some annotated functions – some GO terms will be significantly enriched over others.
PFP Method

- Sequence hit retrieved by a PSI-BLAST search
- Associated GO terms are scored according to the alignment expectation value (E-value) provided by PSI-BLAST.
- The scores for terms associated to several sequence hits are combined by summation. This scoring system ranks GO terms according to both (1) their frequency of association to similar sequences and (2) the degree of similarity those sequences share with the query.
- A GO term, fa, is scored as follows:

Hawkins et al., Proteins, 2008
\[s(f_a) = \sum_{i=1}^{N} \sum_{j=1}^{N_{func}(i)} \left((-\log(E_{value}(i)) + b) \delta_{f_j,f_a} \right) \]

- where \(s(f_a) \) is the final score assigned to the GO term, \(f_a \); \(N \) is the number of the similar sequences retrieved by PSI-BLAST, \(N_{func}(i) \) is the number of GO terms assigned to sequence \(j \), \(E_{value}(i) \) is the E-value given to the sequence \(i \), and \(f_j \) is a GO term assigned to the sequence \(i \). \(\delta_{f_j,f_a} \) returns 1 when \(f_j \) equals to \(f_a \), and 0 otherwise.

- E-value threshold is set to 125.
Function Association Matrix

\[s(f_a) = \sum_{i=1}^{N} \sum_{j=1}^{N} \text{Nfunc}(i) \left((-\log(E_{\text{value}(i)}) + b)P(f_a|f_j) \right) \]

\[P(f_a|f_j) = \frac{c(f_a, f_j) + \varepsilon}{c(f_j) + \mu \cdot \varepsilon'} \]

The Function Association Matrix, describes the probability that two GO terms are associated to the same sequence based on the frequency at which they co-occur in UniProt sequences. This allows the FAM to associate function annotations from different GO categories, for example, the biological process “positive regulation of transcription, DNA-dependent” is strongly associated with the molecular function “DNA binding activity” (\(P(0045893|0003677) = 0.455 \)).
Phylogenomic Approach

• The accuracy of annotation transfer can be increased further by taking the evolutionary relationships within protein families into account.

• This addresses the difference between orthologous and paralogous relative of a query sequence (i.e. between relatives by speciation and relatives by gene duplication)
• A “duplication event” captures a single instance of a gene duplicating into divergent copies of that gene within a single genome;
• a “speciation event” captures a single instance of a gene in an ancestral species evolving into divergent copies of a gene in distinct genomes of different species.

Which event more likely preserves function?
Steps

- Find all homologues of the query sequence and align them.
- Build a phylogenetic tree and reconcile this tree (make all bifurcations in the tree as either duplication or speciation).
- Transfer functions (primarily) from orthologues.
SIFTER

1. Given a query protein, we find a Pfam family of a homologous domain, and extract the multiple sequence alignment from the Pfam database
2. Build a rooted phylogenetic tree with PAUP version, using parsimony with the BLOSUM50 matrix
3. Apply Forester version 1.92 to estimate the location of the duplication events at the internal nodes of the phylogeny by reconciling the topological differences between a reference species tree (taken from the Pfam database) and the protein tree.
4. Infer function mainly from orthologs and consider GO annotation evidences

Engelhardt et al., Plot Comput. Biology, 2005
Pros and Cons

• Similarity group methods are ready for whole-genome application (relatively fast)
• Show moderate precision levels, whereas phylogenomic methods are significantly slower but can provide higher precision
Pattern-Based Methods

- Classify proteins by locally conserved sequence patterns, which often indicate the functions of the whole protein (e.g. active site motifs)

Figure 1. Conserved sequence patterns are tied to protein function. This illustration shows an example sequence, with active site (green) and cofactor-binding site (blue) residues highlighted. The different InterPro member databases (in brackets) group protein sequences into families, based on conserved short patterns, fingerprints (discontinuous patterns), domains or overall similarity.
• **InterPro**: the best gateway to pattern-based functional annotations, which collates patterns at all levels into hierarchically arranged database entries.

• **InterProScan** server is a meta-tool, which scans the query sequence against ten core member databases, from which the output is collected and presented in a simple, non-redundant manner.

• **PROSITE** scan query sequences against short, position-specific residue profiles that are characteristic of individual protein families

• **PRINTS** follows a similar principle but uses discontinuous profiles (“fingerprints”)
InterPro members

• Pfam, SUPERFAMILY, PRODOM, SMART, Gene3D, PANTHER, PIRSF, and TIGRFAMs.
• PRODOM automatically clusters evolutionary conserved sequence segments, based on recursive PSI-BLAST searches of UniProtKB.
• All others use hidden Markov models (HMMs), generated from multiple sequence alignments, to represent sequence families.
Pfam and SMART

• Pfam focuses on the functional aspect of the “domain” definition. Classifying sequences into a large number of relatively small (functionally conserved) families.

• SMART consists of a considerably smaller but completely manually curated set of families.
SUPERFAMILY and Gene3D

• Based on structural classifications, assigning sequences to the domain families defined in the Structural Classification of Proteins (SCOP) and CATH databases

• These families are usually much bigger (less functionally conserved) than, those in Pfam – they often contain very remote homologues, only detectable by patterns of structural conservation
Clustering Approaches

• Cluster the known sequence space, whereby uncharacterized sequences can be functionally annotated by virtue of their clustering with characterized sequences
• Clustering based on sequence similarity (homologues)
• Clustering based on function similarity
ProtoNet

• Sequence similarity clustering-based method
• Annotation transfer within ProtoNet clusters, based on the predominant functions assigned to known members are effective
• Hierarchical clustering of over one million proteins in SwissProt.
• Clustering process is based on an all-against-all BLAST. E-score is used to perform a continuous bottom-up clustering process by joining the two most similar protein clusters at each step
• Filter clusters by function similarity
• Assess the function of novel protein sequences, by finding the best matching cluster for the new sequences

Kaplan et al., Nucleic Acids Research, 2005
Machine Learning Methods

• Learn a relationship between characteristic combinations of sequence features function categories in a training set of known sequences.
• Support vector machines
• Neural networks
Data Driven Machine Learning Approach

Key idea: **Learn** from known data and **Generalize** to unseen data

Input: sequence features

Output: function category

Training: Build a classifier

Test: Test the model

Classifier: Map Input to Output

Split

Training Data

Test Data

Prediction

New Data
ProtFun

- Assign eukaryotic query sequence to: (i) one of 14 GO categories; (ii) one of 12 “cellular roles” of the Riley scheme; (iii) an Enzyme Commission class (if an enzyme).

- Input features: hydrophobicity, post-translational modification, subcellular location signals, secondary structure composition, putative transmembrane parts

Jensen et al., Bioinformatics, 2003
Figure 2. Current approaches in molecular function prediction. The superposed workflows of the different discussed approaches highlight their common dependency on (sufficient and high-quality annotated) sequence data. Pattern-based, clustering and ML methods build pre-computed databases (shown by blue arrows, the dashed arrow indicates no sequence comparisons are conducted), which are later scanned against individual queries. Similarity group and phylogenomic resources perform one-off similarity searches (orange arrows). Green arrows represent parts of the workflow shared by all methods.
Method Selection

• A sensible approach to molecular function prediction ‘when BLAST fails’ is to try finding consensus between these methods.

• With respect to this, the development and maintenance of a meta-server for sequence-based function prediction, querying several of the discussed resources would be incredibly beneficial to the community.
Network-Based Approach

- In theory, once a network (protein-protein interaction network) is constructed, further methods can propagate annotations to uncharacterized members.
- Functional Linkage Networks – integration of different types of data
Function Association in Networks

The functional associations detected by these methods can be tight or loose, ranging from direct physical interaction, as opposed to co-occurrence in the same biochemical pathway, to merely being involved in the same cellular process or influencing the same phenotypical trait.
Network-Based Annotation Transfer
Assumptions and Observations

• Closer that two nodes are in the network, the more functionally similar they will be in terms of cellular pathway or process as opposed to molecular function

• Non-neighbor proteins with similar network connectivity patterns can have similar molecular functions (as members of the same complex)
Local Neighbor Methods

• Early network-based annotation methods simply inherited the function(s) most commonly observed among the direct neighbors of an uncharacterized node (“majority rule”)

• Performances increases when wider local neighborhood is taken into account and only statistically enriched functions are transferred

• The predictive power of local methods is still limited, most obviously when interaction and/or annotation are sparse
Figure 3 Correlation between protein functional distance and network distance. \(X\)-axis: distance in the network. \(Y\)-axis: average functional similarity of protein pairs that lie at the specified distance. The functional similarity of two proteins is measured using the semantic similarity of their GO categories (Lord et al, 2003).

Sharan et al., Molecular Systems Biology, 2007
Global Topology Methods

• Take global network topology into account
• Use graph-theory and different types of iterative stochastic approximation to identify clusters / modules
• Global methods can significantly boost performance
Module-Assisted Approaches

• Subdivide the entire network into smaller, coherent modules, within which functions are then transferred independently
• Transfer algorithm is usually one of the local ones described above
• Module detection highly influences the final annotation accuracy.
• MCODE – molecular complex detection
MCODE Method

- Stands for Molecular Complex Detection – detects densely connected regions that may represent molecular complexes
- Using the Biomolecular Interaction Network Database (BIND), collected 15,143 yeast protein-protein interactions among 4,825 proteins (about 75% of the yeast genome)
- Identify vertices with high degree (connections)
- Takes as input the vertex weighted graph, seeds a complex with the highest degree/weighted vertex and recursively moves outward from the seed vertex, including vertices in the complex whose degree/weight in the sub-graph is above a given threshold, which is a given percentage away from the weight of the seed vertex.

Bader et al., BMC Bioinformatics, 2003
Direct Neighbors VS Module Assisted

Figure 2 Direct versus module-assisted approaches for functional annotation. The scheme shows a network in which the functions of some proteins are known (top), where each function is indicated by a different color. Unannotated proteins are in white. In the direct methods (left), these proteins are assigned a color that is unusually prevalent among their neighbors. The direction of the edges indicates the influence of the annotated proteins on the unannotated ones. In the module-assisted methods (right), modules are first identified based on their density. Then, within each module, unannotated proteins are assigned a function that is unusually prevalent in the module. In both methods, proteins may be assigned with several functions.
Functional Linkage Networks

• Motivation: Individual PPI datasets are sparse and unreliable
• Integration of different types of interaction data into FLNs is a promising approach
• FLN edge weights are integrated interaction probability values (e.g. vote).
Figure 3. The concept of functional linkage networks (FLNs). FLNs can integrate multiple datasets of experimentally derived and/or predicted interactions, each containing direct (physical) or general (both physical and indirect) interactions. Each interaction (edges) is associated to an integrated probability value (edge thickness). Topological and graph-theoretic measures applied to PPI networks can equally be applied to FLNs (the blue edges here, for example, denote a clique of nodes). As with PPIs, annotations can potentially be transferred from functionally characterized (orange) to uncharacterized (grey) nodes.
GeneFAS

• A function network based on protein interaction data, microarray gene expression data, protein complex data, protein sequence data, and protein localization data

• Bayesian Function Inference of the probability that two genes have the same function (S: same function, Mr: gene expression coefficient)

\[
p(S \mid M_r) = \frac{p(M_r \mid S)p(S)}{p(M_r)}
\]

Chen and Xu, Nucleic Acids Research, 2004
Tools and Resources

<table>
<thead>
<tr>
<th>Method</th>
<th>Resource*</th>
<th>Server</th>
<th>Seq. queries</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Similarity group methods</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phylogenomics</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SIFTER [15]</td>
<td></td>
<td>http://sifter.berkeley.edu/</td>
<td>n/a</td>
<td>Download only (uses Pfam)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>http://www.myexperiment.org/workflows/95/</td>
<td>n/a</td>
<td>AFAWE workflow (uses RefSeq)</td>
</tr>
<tr>
<td>Pattern/profile methods</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>InterProScan [20]</td>
<td></td>
<td>http://www.ebi.ac.uk/tools/interproscan/</td>
<td>✔️</td>
<td>DB composition: meta-tool, queries 10 pattern-based resources (see below)</td>
</tr>
<tr>
<td>PRINTS [22]</td>
<td></td>
<td>http://www.bionf.manchester.ac.uk/dbbrowser/PRINTS/</td>
<td>✔️</td>
<td>DB composition: >1900 fingerprints</td>
</tr>
<tr>
<td>Pfam [16]</td>
<td></td>
<td>http://pfam.sanger.ac.uk/</td>
<td>✔️</td>
<td>DB composition: >10 000 domain families</td>
</tr>
<tr>
<td>CatFam [35]</td>
<td></td>
<td>http://www.bhsai.org/downloads/catfam.tar.gz</td>
<td>n/a</td>
<td>DB composition: not stated, download only</td>
</tr>
<tr>
<td>PRIAM [37]</td>
<td></td>
<td>http://bioinfo.genotoul.fr/priam/REL_JUL06/index_jul06.html</td>
<td>✔️</td>
<td>DB composition: 2368 enzyme families</td>
</tr>
</tbody>
</table>
Tools and Resources

<table>
<thead>
<tr>
<th>Clustering approaches</th>
<th>Homologues</th>
<th>ML methods</th>
<th>Network-based approaches</th>
</tr>
</thead>
<tbody>
<tr>
<td>ProtoNet [38]</td>
<td>http://www.protonet.cs.huji.ac.il/</td>
<td>ProtFun [50]</td>
<td>http://www.cbs.dtu.dk/services/ProtFun/</td>
</tr>
<tr>
<td>CluStR [41]</td>
<td>http://www.ebi.ac.uk/clustr/</td>
<td>SVM-Prot [51]</td>
<td>http://jing.cz3.nus.edu.sg/cgi-bin/svmprot.cgi</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>MCL [48]</td>
</tr>
<tr>
<td></td>
<td>MultiParanoid [47]</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>OrthoMCIWeb.cgi</td>
<td></td>
<td>VisANT [80]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>VIRGO [83]</td>
</tr>
</tbody>
</table>

- Clustered DB: current UniProtKB
- Clustered DB: current UniProtKB and IPI
- Clustered DB: 373 genomes
- Clustered DB: 66 genomes
- Clustered DB: 7 genomes
- Clustered DB: 35 genomes
- Clustered DB: uses inParanoid, download only
- Clustered DB: 87 genomes
- Functional categories: 32 (14 GO terms, 1st l. ECs, etc.)
- Functional categories: 130 (all 2nd l. ECs and TCs. etc.)
- Functional categories: 197 (197 GO terms)
- Functional categories: 49 (49 2nd l. ECs)
- Cytoscape plugin and source code
- Explanation and source code
- Cytoscape plugin using MCL
- Network visualization software
- DB of PPIs in 630 genomes
- DB of PPIs in 108 genomes
- Gene expression data as input

Abbreviations: DB, database; MCL, Markov Clustering; MCODE, Molecular Complex Detection; ML, machine learning; n/a, not available; PPI, protein–protein interaction.

*This covers actively maintained resources but is not guaranteed to be exhaustive. Some are not directly aimed at function prediction; the main text explains how they contribute to it. All servers were tested, database statistics refer to the current releases (11/2008).

*Indicates whether a server or database can be queried directly with a sequence. ‘n/a’ here means ‘not applicable’ (to the method, i.e. sequence queries would make no sense), whereas the dash (-) means it could (or should) have this option but does not.
Conclusion

• The combination of sequence- and network-based function transfer approaches is promising

• Complementary nature: while sequence (and structural) similarity can provide a safe basis for molecular function transfer, interactions hints at the pathways and the processes in which uncharacterized proteins participate

• We didn’t talk about structure-based function prediction
Reading Assignment (select one paper to review)